期刊文献+
共找到151篇文章
< 1 2 8 >
每页显示 20 50 100
Energy evolution and structural health monitoring of coal under different failure modes:An experimental study
1
作者 Yarong Xue Xueqiu He +4 位作者 Dazhao Song Zhenlei Li Majid Khan Taoping Zhong Fei Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期917-928,共12页
Structural instability in underground engineering,especially in coal-rock structures,poses significant safety risks.Thus,the development of an accurate monitoring method for the health of coal-rock bodies is crucial.T... Structural instability in underground engineering,especially in coal-rock structures,poses significant safety risks.Thus,the development of an accurate monitoring method for the health of coal-rock bodies is crucial.The focus of this work is on understanding energy evolution patterns in coal-rock bodies under complex conditions by using shear,splitting,and uniaxial compression tests.We examine the changes in energy parameters during various loading stages and the effects of various failure modes,resulting in an innovative energy dissipation-based health evaluation technique for coal.Key results show that coal bodies go through transitions between strain hardening and softening mechanisms during loading,indicated by fluctuations in elastic energy and dissipation energy density.For tensile failure,the energy profile of coal shows a pattern of “high dissipation and low accumulation” before peak stress.On the other hand,shear failure is described by “high accumulation and low dissipation” in energy trends.Different failure modes correlate with an accelerated increase in the dissipation energy before destabilization,and a significant positive correlation is present between the energy dissipation rate and the stress state of the coal samples.A novel mathematical and statistical approach is developed,establishing a dissipation energy anomaly index,W,which categorizes the structural health of coal into different danger levels.This method provides a quantitative standard for early warning systems and is adaptable for monitoring structural health in complex underground engineering environments,contributing to the development of structural health monitoring technology. 展开更多
关键词 energy dissipation structural health monitoring early warning coal-rock mechanics failure mode
下载PDF
Comparative Analysis of ARIMA and LSTM Model-Based Anomaly Detection for Unannotated Structural Health Monitoring Data in an Immersed Tunnel
2
作者 Qing Ai Hao Tian +4 位作者 Hui Wang Qing Lang Xingchun Huang Xinghong Jiang Qiang Jing 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1797-1827,共31页
Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficient... Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficiently identifying abnormal conditions from the extensive unannotated SHM data presents a significant challenge.This study proposed amodel-based approach for anomaly detection and conducted validation and comparative analysis of two distinct temporal predictive models using SHM data from a real immersed tunnel.Firstly,a dynamic predictive model-based anomaly detectionmethod is proposed,which utilizes a rolling time window for modeling to achieve dynamic prediction.Leveraging the assumption of temporal data similarity,an interval prediction value deviation was employed to determine the abnormality of the data.Subsequently,dynamic predictive models were constructed based on the Autoregressive Integrated Moving Average(ARIMA)and Long Short-Term Memory(LSTM)models.The hyperparameters of these models were optimized and selected using monitoring data from the immersed tunnel,yielding viable static and dynamic predictive models.Finally,the models were applied within the same segment of SHM data,to validate the effectiveness of the anomaly detection approach based on dynamic predictive modeling.A detailed comparative analysis discusses the discrepancies in temporal anomaly detection between the ARIMA-and LSTM-based models.The results demonstrated that the dynamic predictive modelbased anomaly detection approach was effective for dealing with unannotated SHM data.In a comparison between ARIMA and LSTM,it was found that ARIMA demonstrated higher modeling efficiency,rendering it suitable for short-term predictions.In contrast,the LSTM model exhibited greater capacity to capture long-term performance trends and enhanced early warning capabilities,thereby resulting in superior overall performance. 展开更多
关键词 Anomaly detection dynamic predictive model structural health monitoring immersed tunnel LSTM ARIMA
下载PDF
Health Monitoring of Milling Tool Inserts Using CNN Architectures Trained by Vibration Spectrograms 被引量:1
3
作者 Sonali S.Patil Sujit S.Pardeshi Abhishek D.Patange 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期177-199,共23页
In-process damage to a cutting tool degrades the surface􀀀nish of the job shaped by machining and causes a signi􀀀cant􀀀nancial loss.This stimulates the need for Tool Condition Monitoring(TCM)t... In-process damage to a cutting tool degrades the surface􀀀nish of the job shaped by machining and causes a signi􀀀cant􀀀nancial loss.This stimulates the need for Tool Condition Monitoring(TCM)to assist detection of failure before it extends to the worse phase.Machine Learning(ML)based TCM has been extensively explored in the last decade.However,most of the research is now directed toward Deep Learning(DL).The“Deep”formulation,hierarchical compositionality,distributed representation and end-to-end learning of Neural Nets need to be explored to create a generalized TCM framework to perform eciently in a high-noise environment of cross-domain machining.With this motivation,the design of dierent CNN(Convolutional Neural Network)architectures such as AlexNet,ResNet-50,LeNet-5,and VGG-16 is presented in this paper.Real-time spindle vibrations corresponding to healthy and various faulty con􀀀gurations of milling cutter were acquired.This data was transformed into the time-frequency domain and further processed by proposed architectures in graphical form,i.e.,spectrogram.The model is trained,tested,and validated considering dierent datasets and showcased promising results. 展开更多
关键词 Milling tool inserts health monitoring vibration spectrograms deep learning convolutional neural network
下载PDF
Wearable sweat biosensors on textiles for health monitoring
4
作者 Yuqing Shi Ziyu Zhang +2 位作者 Qiyao Huang Yuanjing Lin Zijian Zheng 《Journal of Semiconductors》 EI CAS CSCD 2023年第2期11-24,共14页
With the rapid technological innovation in materials engineering and device integration,a wide variety of textilebased wearable biosensors have emerged as promising platforms for personalized healthcare,exercise monit... With the rapid technological innovation in materials engineering and device integration,a wide variety of textilebased wearable biosensors have emerged as promising platforms for personalized healthcare,exercise monitoring,and pre-diagnostics.This paper reviews the recent progress in sweat biosensors and sensing systems integrated into textiles for wearable body status monitoring.The mechanisms of biosensors that are commonly adopted for biomarkers analysis are first introduced.The classification,fabrication methods,and applications of textile conductors in different configurations and dimensions are then summarized.Afterward,innovative strategies to achieve efficient sweat collection with textile-based sensing patches are presented,followed by an in-depth discussion on nanoengineering and system integration approaches for the enhancement of sensing performance.Finally,the challenges of textile-based sweat sensing devices associated with the device reusability,washability,stability,and fabrication reproducibility are discussed from the perspective of their practical applications in wearable healthcare. 展开更多
关键词 BIOSENSOR textile-based electronics wearable device sweat analysis health monitoring
下载PDF
Deformation warning index for reinforced concrete dam based on structural health monitoring data and numerical simulation
5
作者 Ming-qiang Zhan Bo Chen Zhong-ru Wu 《Water Science and Engineering》 EI CAS CSCD 2023年第4期408-418,共11页
The material mechanical parameters of the dam body and foundation will change when a dam is reinforced during the aging process.This causes significant changes in the structural state of the project and makes it diffi... The material mechanical parameters of the dam body and foundation will change when a dam is reinforced during the aging process.This causes significant changes in the structural state of the project and makes it difficult to ensure its structural safety.In this study,a new deformation warning index for reinforced concrete dams was developed according to the prototype monitoring data,statistical models,three-dimensional finite element model(FEM)numerical simulation,and the critical conditions of the dam structure.A statistical model was established to separate the water pressure component.Then,a three-dimensional FEM of the reinforced concrete dam was constructed to simulate the water pressure component.Furthermore,the deformation components that affected the mechanical parameters of the dam under the same amount of reservoir water level change were separated and quantified accurately.In addition,the method for inversion of comprehensive mechanical parameters after dam reinforcement was used.The influence mechanisms of the deformation behavior of concrete dams under the reservoir water level and temperature changes were investigated.A new deformation warning index was developed by combining the forward-simulated critical water pressure component and temperature component in the period of extreme temperature decrease with the aging component separated by the statistical model.The new deformation warning index considers the structural state of the dam before and after reinforcement and links the structural strength criterion and the deformation evolution mechanisms.It provides a theoretical foundation and decision support for long-term service and operation management of reinforced dams. 展开更多
关键词 Deformation warning index Structural health monitoring Finite element simulation REINFORCEMENT Multiple-arch dam Parameter inverse analysis
下载PDF
A framework for computer vision-based health monitoring of a truss structure subjected to unknown excitations
6
作者 Mariusz Ostrowski Bartlomiej Blachowski +3 位作者 Bartosz Wójcik Mateusz Żarski Piotr Tauzowski Łukasz Jankowski 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第1期1-17,共17页
Computer vision(CV)methods for measurement of structural vibration are less expensive,and their application is more straightforward than methods based on sensors that measure physical quantities at particular points o... Computer vision(CV)methods for measurement of structural vibration are less expensive,and their application is more straightforward than methods based on sensors that measure physical quantities at particular points of a structure.However,CV methods produce significantly more measurement errors.Thus,computer vision-based structural health monitoring(CVSHM)requires appropriate methods of damage assessment that are robust with respect to highly contaminated measurement data.In this paper a complete CVSHM framework is proposed,and three damage assessment methods are tested.The first is the augmented inverse estimate(AIE),proposed by Peng et al.in 2021.This method is designed to work with highly contaminated measurement data,but it fails with a large noise provided by CV measurement.The second method,as proposed in this paper,is based on the AIE,but it introduces a weighting matrix that enhances the conditioning of the problem.The third method,also proposed in this paper,introduces additional constraints in the optimization process;these constraints ensure that the stiffness of structural elements can only decrease.Both proposed methods perform better than the original AIE.The latter of the two proposed methods gives the best results,and it is robust with respect to the selected coefficients,as required by the algorithm. 展开更多
关键词 computer vision structural health monitoring physics-based graphical models augmented inverse estimate model updating non-negative least square method
下载PDF
Engineering Smart Composite Hydrogels for Wearable Health Monitoring
7
作者 Jianye Li Qiongling Ding +6 位作者 Hao Wang Zixuan Wu Xuchun Gui Chunwei Li Ning Hu Kai Tao Jin Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期233-277,共45页
Growing health awareness triggers the public's concern about health problems. People want a timely and comprehensive picture of their condition without frequent trips to the hospital for costly and cumbersome gene... Growing health awareness triggers the public's concern about health problems. People want a timely and comprehensive picture of their condition without frequent trips to the hospital for costly and cumbersome general check-ups. The wearable technique provides a continuous measurement method for health monitoring by tracking a person's physiological data and analyzing it locally or remotely.During the health monitoring process,different kinds of sensors convert physiological signals into electrical or optical signals that can be recorded and transmitted, consequently playing a crucial role in wearable techniques. Wearable application scenarios usually require sensors to possess excellent flexibility and stretchability. Thus, designing flexible and stretchable sensors with reliable performance is the key to wearable technology. Smart composite hydrogels, which have tunable electrical properties, mechanical properties, biocompatibility, and multi-stimulus sensitivity, are one of the best sensitive materials for wearable health monitoring. This review summarizes the common synthetic and performance optimization strategies of smart composite hydrogels and focuses on the current application of smart composite hydrogels in the field of wearable health monitoring. 展开更多
关键词 Wearable health monitoring Smart composite hydrogel Hydrogel engineering Wearable sensor Flexible and stretchable sensors
下载PDF
Health Monitoring of Dry Clutch System Using Deep Learning Approach
8
作者 Ganjikunta Chakrapani V.Sugumaran 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期1513-1530,共18页
Clutch is one of the most significant components in automobiles.To improve passenger safety,reliability and economy of automobiles,advanced supervision and fault diagnostics are required.Condition Monitoring is one of... Clutch is one of the most significant components in automobiles.To improve passenger safety,reliability and economy of automobiles,advanced supervision and fault diagnostics are required.Condition Monitoring is one of the key divisions that can be used to track the reliability of clutch and allied components.The state of the clutch elements can be monitored with the help of vibration signals which contain valuable information required for classification.Specific drawbacks of traditional fault diagnosis techniques like high reliability on human intelligence and the requirement of profes-sional expertise,have made researchers look for intelligent fault diagnosis techniques.In this article,the classification performance of the deep learning technique(employing images plotted from vibration signals)is compared with the machine learning technique(using features extracted from vibration signals)to identify the most viable solution for condition monitoring of the clutch system.The overall experimentation is carried out in two phases,namely the deep learning phase and the machine learning phase.Overall,the effectiveness of the pre-trained networks was assessed and compared with machine learning algorithms.Based on the comparative study,the best-performing technique is recommended for real-time application. 展开更多
关键词 Deep learning health monitoring pre-trained models transfer learning vibration analysis statistical features
下载PDF
Development of piezoelectric-based technology for application in civil structural health monitoring
9
作者 Qian Feng Yabin Liang 《Earthquake Research Advances》 CSCD 2023年第2期54-61,共8页
Piezoelectric material,as one of the great potential materials,had attracted lots of attention all over the world due to its distinguish advantages.In this paper,the development of piezoelectric-based technology for a... Piezoelectric material,as one of the great potential materials,had attracted lots of attention all over the world due to its distinguish advantages.In this paper,the development of piezoelectric-based technology for application in the field of civil structural health monitoring(CSHM),was summarized and discussed.Based on the different identification mechanisms,the piezoelectric transducer-based technology can be divided into two main approaches as the active or passive sensing and detection methods.This paper summarized the development of these two approaches and discussed their applications in the area of civil structural health monitoring,such as structural and concrete engineering,bridge engineering,pipeline engineering,protection engineering for geological hazards and earthquake disasters,and so on.In addition,the electrical mechanical impedance(EMI)technique,as one of the active identification methods,was also detailly presented.Finally,its great potential for the piezoelectric-based technique was presented based on the detail discussion,especially in the areas of civil structural health monitoring. 展开更多
关键词 Piezoelectric-based technology Civil structural health monitoring Active or passive sensing Detection methods
下载PDF
Fatigue Safety Assessment of Concrete Continuous Rigid Frame Bridge Based on Rain Flow Counting Method and Health Monitoring Data
10
作者 Yinghua Li Junyong He +1 位作者 Xiaoqing Zeng Yanxing Tang 《Journal of Architectural Environment & Structural Engineering Research》 2023年第3期31-40,共10页
The fatigue of concrete structures will gradually appear after being subjected to alternating loads for a long time,and the accidents caused by fatigue failure of bridge structures also appear from time to time.Aiming... The fatigue of concrete structures will gradually appear after being subjected to alternating loads for a long time,and the accidents caused by fatigue failure of bridge structures also appear from time to time.Aiming at the problem of degradation of long-span continuous rigid frame bridges due to fatigue and environmental effects,this paper suggests a method to analyze the fatigue degradation mechanism of this type of bridge,which combines long-term in-site monitoring data collected by the health monitoring system(HMS)and fatigue theory.In the paper,the authors mainly carry out the research work in the following aspects:First of all,a long-span continuous rigid frame bridge installed with HMS is used as an example,and a large amount of health monitoring data have been acquired,which can provide efficient information for fatigue in terms of equivalent stress range and cumulative number of stress cycles;next,for calculating the cumulative fatigue damage of the bridge structure,fatigue stress spectrum got by rain flow counting method,S-N curves and damage criteria are used for fatigue damage analysis.Moreover,it was considered a linear accumulation damage through the Palmgren-Miner rule for the counting of stress cycles.The health monitoring data are adopted to obtain fatigue stress data and the rain flow counting method is used to count the amplitude varying fatigue stress.The proposed fatigue reliability approach in the paper can estimate the fatigue damage degree and its evolution law of bridge structures well,and also can help bridge engineers do the assessment of future service duration. 展开更多
关键词 Long-span continuous rigid frame bridge Rain flow counting method Fatigue performance health monitoring system Strain monitoring data
下载PDF
STM32-based Health Monitoring System for Infants and Toddlers
11
作者 ZHUANG Jianjun DONG Jianing 《Instrumentation》 2023年第3期34-41,共8页
In order to allow the guardians to monitor the physiological parameters of the infant more intuitively and to be able to respond to sudden irregularities in the pulse rate,abnormal blood oxygen,high or low body temper... In order to allow the guardians to monitor the physiological parameters of the infant more intuitively and to be able to respond to sudden irregularities in the pulse rate,abnormal blood oxygen,high or low body temperature and other conditions,and to facilitate communication with the medical staff or to request assistance in treatment,an STM32 microcontroller-based infant health monitoring system is designed.The digital signal acquisition module for pulse,blood oxygen and body temperature acquire the raw data,and the microcontroller performs algorithmic processing to display the physiological parameters such as pulse,blood oxygen and body temperature of the infant,and configures the threshold alarms for the physiological parameters by means of a keypad module.Finally,the test results are compared and tested against the standard physiological parameters of infants and children to verify that the system meets the requirements of medical precision and accuracy. 展开更多
关键词 Infants and Children Microcontrollers health monitoring Systems Physiological Parameters
下载PDF
In-site health monitoring of cement concrete pavements based on optical fiber sensing technology
12
作者 Huaping Wang Yibin Wu +1 位作者 Cong Chen Yanxin Guo 《Journal of Road Engineering》 2023年第1期113-123,共11页
Premature stress of cement concrete pavements i the coupled action of construction technique,structural ma-terial and environmental action.It is quite diffiault to accurately get the actual stress distribution merely ... Premature stress of cement concrete pavements i the coupled action of construction technique,structural ma-terial and environmental action.It is quite diffiault to accurately get the actual stress distribution merely based on the theoretical or simulation analysis.Ther efore,in-situ health monitoring is particularly si gnificant to obtain the stress or strain information for the assessment on structural perfor mance of cement concrete pavements.To contribute this topic,different kinds of FBG based sensors have been specially designed to measure the tem-perature,pressure and deformation in cement concrete pavements.A relatively long-term monitoring has been aonducted to collect the effective data after the solidification of the pavement lasts for about 15 d.Data analysis indicates that the temperature variation inside the pavement was very stable,with maximum ampltude smaller than 2.25°C in Sep.2020.The longitudinal,transverse and ver tical deformations of the pavement behaved in non-umniform distribution,and partial me asuring points suffered from large tensile force.The concrete course had better deformation resi stance than that of the soil base,and local interfacial micro void defects existed in the soil base.The preliminary results can help to understand the actual structural performance of cement concrete pavements based on the optical fiber sensing sys tem. 展开更多
关键词 Cement concrete pavement FBG based sensor health monitoring Strain measurement
下载PDF
Strain Transfer Mechanism of Grating Ends Fiber Bragg Grating for Structural Health Monitoring 被引量:4
13
作者 Guang Chen Keqin Ding +2 位作者 Qibo Feng Xinran Yin Fangxiong Tang 《Structural Durability & Health Monitoring》 EI 2019年第3期289-301,共13页
The grating ends bonding fiber Bragg grating(FBG)sensor has been widely used in sensor packages such as substrate type and clamp type for health monitoring of large structures.However,owing to the shear deformation of... The grating ends bonding fiber Bragg grating(FBG)sensor has been widely used in sensor packages such as substrate type and clamp type for health monitoring of large structures.However,owing to the shear deformation of the adhesive layer of FBG,the strain measured by FBG is often different from the strain of actual matrix,which causes strain measurement errors.This investigation aims at improving the measurement accuracy of strain for the grating ends surface-bonded FBG.To fulfill this objective,a strain transfer equation of the grating ends bonding FBG is derived,and a theoretical model of the average strain transfer from the matrix to the optical fiber is developed.Moreover,parameters that influence the average strain transfer rate from the matrix to the optical fiber are analyzed.A selection scheme of bonding parameters by numerical simulation is provided,which is significantly advantageous over that of the grating bonding FBG.The theoretical equation is verified by finite element method(FEM).Compared with the existing model,the proposed model has higher measurement accuracy.Experimental tests are performed to validate the effectiveness of the proposed model on the equalintensity cantilever beam,whose surface is attached to the bare FBG with grating ends bonding and strain gauge by using epoxy glue.The results show that there is a great agreement between the outcome of the bare FBG and that of the strain gauge,and the corrected strain is closer to the true strain.The proposed model provides a theoretical basis for the design of the grating ends surface-bonded FBG strain sensor for health monitoring of large structures. 展开更多
关键词 Structural health monitoring grating ends bonding fiber Bragg grating the average strain transfer shear-lag theory
下载PDF
A Certifiable Framework for Health Monitoring and Management 被引量:1
14
作者 Matthias Buderath 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第3期229-246,共18页
The scope of this paper is to provide an E2 Eperspective of health monitoring and management(HMM)and structural health mornitoring(SHM)as an integrated system element of an integrated system health monitoring and mana... The scope of this paper is to provide an E2 Eperspective of health monitoring and management(HMM)and structural health mornitoring(SHM)as an integrated system element of an integrated system health monitoring and management(ISHM)system.The paper will address two main topics:(1)The importance of a diagnostics and prognostic requirements specification to develop an innovative health monitoring and management system;(2)The certification of a health monitoring and management system aiming at a maintenance credit as an integral part of the maintenance strategies.The development of a maintenance program which is based on combinations of different types of strategies(preventive,condition-based maintenance(CBM)and corrective maintenance…)for different subsystems or components and structures of complex systems like an aircraft to achieve the most optimized solution in terms of availability,cost and safety/certification is a real challenge.The maintenance strategy must satisfy the technical-risk and cost feasibility of the maintenance program. 展开更多
关键词 health monitoring and management enhanced diagnostic data driven and model based prognostic ISHM Simulation Framework
下载PDF
Fatigue Performance Analysis and Evaluation for Steel Box Girder Based on Structural Health Monitoring System 被引量:1
15
作者 Meiling Zhuang Changqing Miao Rongfeng Chen 《Structural Durability & Health Monitoring》 EI 2020年第1期51-79,共29页
Taizhou Yangtze River Bridge as a long-span suspension bridge,the finite element model(FEM)of it is established using the ANSYS Software.The beam4 element is used to simulate the main beam to establish the“spine beam... Taizhou Yangtze River Bridge as a long-span suspension bridge,the finite element model(FEM)of it is established using the ANSYS Software.The beam4 element is used to simulate the main beam to establish the“spine beam”model of the Taizhou Yangtze River Bridge.The calculated low-order vibration mode frequency of the FEM is in good agreement with the completion test results.The model can simulate the overall dynamic response of the bridge.Based on the vehicle load survey,the Monte Carlo method is applied to simulate the traffic load flow.Then the overall dynamic response analysis of FEM is car-ried out.Taking the bending moment of the main beam as the control index,the fatigue sensitive section in the steel box girder of FEM is analyzed.Based on the strain time history data of steel box girder recorded by the structural health mon-itoring system(SHM),the true stress response of steel box girder under vehicle load is extracted.Taking the cumulative fatigue damage increment as the evalua-tion index,the fati gue performance evaluation of the steel box girders is con-ducted based on the collected health monitoring data.The fatigue effect of the beam section near the steel tower,especially the first section of the middle tower,is the key section of the fatigue analysis by health morning system,which is con-sistent with the calculation results of FEM. 展开更多
关键词 Steel box girder FATIGUE stress response Monte Carlo method structural health monitoring system
下载PDF
Fault Identification and Health Monitoring of Gas Turbine Engines Using Hybrid Machine Learning-based Strategies 被引量:1
16
作者 Yan-yan Shen Khashayar Khorasani 《风机技术》 2022年第1期71-80,共10页
Ahealth monitoring scheme is developed in this work by using hybrid machine learning strategies to iden-tify the fault severity and assess the health status of the aircraft gas turbine engine that is subject to compon... Ahealth monitoring scheme is developed in this work by using hybrid machine learning strategies to iden-tify the fault severity and assess the health status of the aircraft gas turbine engine that is subject to component degrada-tions that are caused by fouling and erosion.The proposed hybrid framework involves integrating both supervised recur-rent neural networks and unsupervised self-organizing maps methodologies,where the former is developed to extract ef-fective features that can be associated with the engine health condition and the latter is constructed for fault severity modeling and tracking of each considered degradation mode.Advantages of our proposed methodology are that it ac-complishes fault identification and health monitoring objectives by only discovering inherent health information that are available in the system I/O data at each operating point.The effectiveness of our approach is validated and justified with engine data under various degradation modes in compressors and turbines. 展开更多
关键词 Gas Turbine Engines health monitoring Fault Identification Self-organizing Maps Machine Learn-ing Recurrent Neural Networks
下载PDF
Data Reliability and Sensors Lifetime in Bridge Health Monitoring using LoRaWAN-Zigbee
17
作者 Awad Ali Reyazur Rashid Irshad +1 位作者 Ahmed Abdu Alattaab Aamir Fatahayab 《Computers, Materials & Continua》 SCIE EI 2022年第11期2663-2678,共16页
The Wireless Sensor Network(WSN)is regarded as the fastest expanding technological trend in recent years due its application in a variety of sectors.In the monitoring region,several sensor nodes with various sensing c... The Wireless Sensor Network(WSN)is regarded as the fastest expanding technological trend in recent years due its application in a variety of sectors.In the monitoring region,several sensor nodes with various sensing capabilities are installed to gather appropriate data and communicate it to the gateway.The proposed system of the heterogeneous WSN employing LoRaWAN-Zigbee based hybrid communication is explored in this research study.To communicate in a network,two Long–Range Wide Area Network(LoRaWAN)sensor clusters and two Zigbee sensor clusters are employed,together with two Zigbee and LoRaWAN converters.The suggested Golden eagle shepherd optimization(GESO)method then forms Zigbee as well as LoRaWAN networking clusters.Furthermore,depending on energy usage and data packet size,the fitness of each sensor node is assessed using the Dynamic Intelligent Reasoning Based Neural(DIRN)approach.MATLAB software is used to implement and execute this study.When the Zigbee network’s transmission distance is 650 m and the LoRaWAN network’s transmission range is 3.5 km,the system can function with a packet loss rate of less than 0.04 percent.This study shows significant gains in the performance of the system when compared to traditional approaches based on digital findings obtained on software solutions. 展开更多
关键词 ZIGBEE LoRaWAN wireless sensor network health monitoring routing protocol
下载PDF
UTM:A trajectory privacy evaluating model for online health monitoring
18
作者 Zhigang Yang Ruyan Wang +1 位作者 Dapeng Wu Daizhong Luo 《Digital Communications and Networks》 SCIE CSCD 2021年第3期445-452,共8页
A huge amount of sensitive personal data is being collected by various online health monitoring applications.Although the data is anonymous,the personal trajectories(e.g.,the chronological access records of small cell... A huge amount of sensitive personal data is being collected by various online health monitoring applications.Although the data is anonymous,the personal trajectories(e.g.,the chronological access records of small cells)could become the anchor of linkage attacks to re-identify the users.Focusing on trajectory privacy in online health monitoring,we propose the User Trajectory Model(UTM),a generic trajectory re-identification risk predicting model to reveal the underlying relationship between trajectory uniqueness and aggregated data(e.g.,number of individuals covered by each small cell),and using the parameter combination of aggregated data to further mathematically derive the statistical characteristics of uniqueness(i.e.,the expectation and the variance).Eventually,exhaustive simulations validate the effectiveness of the UTM in privacy risk evaluation,confirm our theoretical deductions and present counter-intuitive insights. 展开更多
关键词 Online health monitoring Trajectory privacy User trajectory model Aggregated data UNIQUENESS
下载PDF
Sensor placement of long-term health monitoring for large bridges based on the real-time correction of finite element model
19
作者 陈悦 ZHOU Jian-ting SHEN Pei-wen 《Journal of Chongqing University》 CAS 2013年第3期123-130,共8页
The process of optimized placement of long-term health monitoring sensors for large bridges generally begins with finite element models, but there will arise great discrepancies between theoretically-calculated result... The process of optimized placement of long-term health monitoring sensors for large bridges generally begins with finite element models, but there will arise great discrepancies between theoretically-calculated results and actual measurements.Therefore, rectified finite element models need to be rectified by virtue of model rectifying technology. Firstly, the result of construction monitoring and finished state load test is used to real-time modification of finite element model. Subsequently, an accurate finite element model is established. Secondly, the optimizing the layout of sensor with following orthogonality guarantees orthogonal property and linear independence for the measured data. Lastly, the effectiveness and feasibility of method in the paper is tested by real-time modifying finite element model and optimizing the layout of sensor for Nujiang Bridge. 展开更多
关键词 large bridges health monitoring real-time correction optimal sensor placement
下载PDF
Internet of things-based health monitoring system for early detection of cardiovascular events during COVID-19 pandemic
20
作者 Sina Dami 《World Journal of Clinical Cases》 SCIE 2022年第26期9207-9218,共12页
The coronavirus disease 2019(COVID-19)has currently caused the mortality of millions of people around the world.Aside from the direct mortality from the COVID-19,the indirect effects of the pandemic have also led to a... The coronavirus disease 2019(COVID-19)has currently caused the mortality of millions of people around the world.Aside from the direct mortality from the COVID-19,the indirect effects of the pandemic have also led to an increase in the mortality rate of other non-COVID patients.Evidence indicates that novel COVID-19 pandemic has caused an inflation in acute cardiovascular mortality,which did not relate to COVID-19 infection.It has in fact increased the risk of death in cardiovascular disease(CVD)patients.For this purpose,it is dramatically inevitable to monitor CVD patients’vital signs and to detect abnormal events before the occurrence of any critical conditions resulted in death.Internet of things(IoT)and health monitoring sensors have improved the medical care systems by enabling latency-sensitive surveillance and computing of large amounts of patients’data.The major challenge being faced currently in this problem is its limited scalability and late detection of cardiovascular events in IoT-based computing environments.To this end,this paper proposes a novel framework to early detection of cardiovascular events based on a deep learning architecture in IoT environments.Experimental results showed that the proposed method was able to detect cardiovascular events with better performance(95.30%average sensitivity and 95.94%mean prediction values). 展开更多
关键词 health monitoring Early detection Cardiovascular events COVID-19 Pandemic Internet of things
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部