C-SiC coatings were prepared on stainless steel substrate by the middle frequency magnetron sputtering (MFMS) and ion beam mixing technique. After deposition, these samples were implanted by 5 keV hydrogen ion beam ...C-SiC coatings were prepared on stainless steel substrate by the middle frequency magnetron sputtering (MFMS) and ion beam mixing technique. After deposition, these samples were implanted by 5 keV hydrogen ion beam at a dose of 1×1018 ion/cm2. Some samples were heat treated at different temperatures from 273 K to 1173 K separately. The surface morphology, surface concentration of the elements of the C-SiC coatings and element iron from substrate as well as their depth profiles were checked with SEM, XPS and SIMS analyses. The results show that the composition of the coatings is changed due to heat treatment at different temperatures. The C-50%SiC coating with an excellent hydrogen resistant property can act as hydrogen barrier at the temperature below 723 K. But the hydrogen resistant property of the coating becomes bad when it is used at the temperature of 1023 K.展开更多
Three tungsten coatings with a thickness of 250 μm, 600μm and 220 μm, respectively, were deposited on a CuCrZr substrate by the vacuum plasma spraying technology. In order to study the thermal performance of the co...Three tungsten coatings with a thickness of 250 μm, 600μm and 220 μm, respectively, were deposited on a CuCrZr substrate by the vacuum plasma spraying technology. In order to study the thermal performance of the coatings, heat load limit, thermal fatigue lifetime and thermal response tests were performed by means of the electron beam irradiation with a heat flux from 0 MW/m^2 to 10 MW/m^2. Experimental results indicated that tungsten coatings on CuCrZr with a titanium or tungsten/copper interlayer could expel heat flux timely and had good thermal fatigue properties, titanium was a promising compliant layer which provided a reliable way to join tungsten onto the CuCrZr heat sink, even suffering from a heat flux of 10 MW/m^2 or withstanding 54 cycles of fatigue tests under 5 MW/m^2. However, the better quality of tungsten coating itself was necessary because its surface temperature was higher than that of the sample with a tungsten/copper interlayer.展开更多
The changes of the microstructure and the mechanical properties of FeCrMoCBY amorphous coatings prepared by plasma spraying after heat treatment were investigated.300,400,500 and 600℃were selected as the heat treatme...The changes of the microstructure and the mechanical properties of FeCrMoCBY amorphous coatings prepared by plasma spraying after heat treatment were investigated.300,400,500 and 600℃were selected as the heat treatment temperature,and the crystallization phenomenon occurred after the heat treatment at 600℃.The crystallization products of the coating heat-treated at 600℃were a-Fe and Fe23(C,B)6.Heat treatment was beneficial to the microhardness and the bonding strength of the coatings.The microhardness of the coating heat-treated at 600℃increased obviously,and the strongest bonding strength occurred in the coating heat-treated at 500℃.The improvement of the wear resistance of the coatings could attribute to heat treatment as well,and the wear resistance of the coating heat-treated at 600℃was the optimum,compared with the coating heat-treated at 500℃.展开更多
Nanostructured zirconia top coat was deposited by air plasma spray and NiCoCrAlTaY bond coat was deposited on Ni substrate by low pressure plasma spray.Nanostructured and conventional thermal barrier coatings were hea...Nanostructured zirconia top coat was deposited by air plasma spray and NiCoCrAlTaY bond coat was deposited on Ni substrate by low pressure plasma spray.Nanostructured and conventional thermal barrier coatings were heat-treated at temperature varying from 1050 to 1 250oC for 2-20 h.The results show that obvious grain growth was found in both nanostructured and conventional thermal barrier coatings(TBCs)after high temperature heat treatment.Monoclinic/tetragonal phases were transformed into cubic phase in the agglomerated nano-powder after calcination.The cubic phase content increased with increasing calcination temperature.Calcination of the powder made the yttria distributed on the surface of the nanocrystalline particles dissolve in zirconia when grains grew.Different from the phase constituent of the as-sprayed conventional TBC which consisted of diffusionlesstransformed tetragonal,the as-sprayed nanostructured TBC consisted of cubic phase.展开更多
Air plasma spraying process was employed to fabricate various hydroxyapatite(HA)coatings on titanium substrates.The influence of processing parameters on the phase composition and the microstructure of the obtained co...Air plasma spraying process was employed to fabricate various hydroxyapatite(HA)coatings on titanium substrates.The influence of processing parameters on the phase composition and the microstructure of the obtained coatings was investigated.The effect of heat treatment on as-sprayed coating in terms of the crystallinity and microstructure was also studied.The phase composition of coatings was analyzed by X-ray diffraction(XRD)and FTIR.The surface and cross-section morphologies and microstructure of coatings as well as the morphology of feedstock were evaluated using scanning electron microscope(SEM).The crystallization temperature of amorphous HA phase in as-sprayed coating was examined by using differential thermal analysis(DTA). The results suggest that phase composition and microstructure of as-sprayed HA coatings strongly depend on the spraying parameters,and heat treatment at 760 ℃for 2 h is one of effective means for increasing the crystallinity and improvement in microstructure of as-sprayed HA coatings.展开更多
In this paper,the microstructures and rolling contact fatigue behaviors of laser cladding Inconel 625 coatings with or without post-heat treatments were analyzed.The results revealed that the fatigue resistance of the...In this paper,the microstructures and rolling contact fatigue behaviors of laser cladding Inconel 625 coatings with or without post-heat treatments were analyzed.The results revealed that the fatigue resistance of the laser cladding coating after any post-heat treatment was worse than that of the as-deposited coating.First,through the finite element analysis,the distribution of stress along the thickness direction of the coating was obtained,and it was concluded that the bonding interface between the coating and the matrix had little effect on the fatigue properties of the coating.Then X-ray diffraction(XRD),scanning electron microscopy(SEM)and energy dispersive spectrometry(EDS)were used to analyze the microstructure and failure morphology.The results revealed that the subsurface failure morphology of the coatings showed a consistent correlation with rolling fatigue property after different heat treatments.The TCP phase and carbides have been shown in the laser cladding coating.The coating after stress relieved annealing exhibited chain-shaped granular carbides on the grain boundaries which could accelerate crack propagation.The aging heat treatment made small amounts of Laves phase dissolved in the coating,while the dispersed phase was precipitated which could result in the formation of pores.And the solution treatment made large amounts of Laves phase dissolved,while the rod-shape brittle phases were generated which was easy to fracture and contribute to crack initiation and spalling.展开更多
An experimental study has been carried out to investigate the influence of heat treatment at 300 ℃,450 ℃,550 ℃,650 ℃ and 800 ℃ on the microstructure and sliding wear behavior of Fe Al/WC intermetallic composite c...An experimental study has been carried out to investigate the influence of heat treatment at 300 ℃,450 ℃,550 ℃,650 ℃ and 800 ℃ on the microstructure and sliding wear behavior of Fe Al/WC intermetallic composite coatings produced by high velocity arc spraying (HVAS) and cored wires. The result shows, the main phases in both as sprayed and heat treated Fe Al/WC composite coatings are iron aluminide intermetallics (Fe 3Al+FeAl) and α as well as a little oxide (Al 2O 3) and carbides (WC, W 2C, Fe 2W 2C and Fe 6W 6C). After heat treated at 450-650 ℃, dispersion strengthening of Fe 2W 2C and Fe 6W 6C will lead to a rise in microhardness of the coatings. The microhardness is likely to be the most important factor which influences the sliding wear behavior of the coatings. Increasing the microhardness through heat treatment will improve the sliding wear resistance of the Fe Al/WC composite coatings.展开更多
Water-based architectural heat insulation coatings were studied to overcome the drawbacks of conventional inorganic silicate heat insulation coatings. The heat insulation coatings were prepared with the method of mech...Water-based architectural heat insulation coatings were studied to overcome the drawbacks of conventional inorganic silicate heat insulation coatings. The heat insulation coatings were prepared with the method of mechanical agitation when the mixed organic polymer emulsions were used as binder of the coatings and the mixed heat insulating aggregates were applied as powder, and some assistants were also added. Water temperature difference in the plastic container, which was coated with heat insulation coatings, represented the heat-insulating property of the coatings. The influences of components of mixed polymer emulsion, mass ratio of polymer emulsion to powder, particle size of heat insulating aggregates, added amount of air entraining admixture and the match of thickeners on the properties of the coatings were studied. The experimental results show that the heat insulation coatings with good finishing, heat-insulation property and artificial weathering can be prepared when the binder is composed of 66.92% styrene-acrylic emulsion, 16.59% elastic emulsion and 16.49% silicone-acrylic emulsion, the mass ratio of polymer emulsion to powder is 0.45, the particle size of heat insulating aggregates is in the rang of 200 and 250 mesh size, the added amount of sericite is 15%, and the added amount of air entraining admixture is in the range of 1.0% and 1.5% and the thickeners are the mixtures of ASE-60 and RM-5000.展开更多
Waste shell stacking with odor and toxicity is a serious hazard to our living environment. To make effective use of the natural resources, the shell powder was applied as a filler of outdoor thermal insulation coating...Waste shell stacking with odor and toxicity is a serious hazard to our living environment. To make effective use of the natural resources, the shell powder was applied as a filler of outdoor thermal insulation coatings. Sodium stearate(SS) was used to modify the properties of shell powder to reduce its agglomeration and to increase its compatibility with the emulsion. The oil absorption rate and the spectrum reflectance of the shell powder show that the optimized content of SS as a modifier is 1.5wt%. The total spectrum reflectance of the coating made with the shell powder that is modified at this optimum SS content is 9.33% higher than that without any modification. At the optimum SS content of 1.5wt%, the thermal insulation of the coatings is improved by 1.0℃ for the cement mortar board and 1.6℃ for the steel plate, respectively. The scouring resistance of the coating with the 1.5wt% SS-modified shell powder is three times that of the coating without modification.展开更多
Based on modified silicon polyester resin in addition to several functional fillers such as corrosion-resistant fillers, heat-resistant fillers and thermal conductive fillers, a high thermal conductive coating can be ...Based on modified silicon polyester resin in addition to several functional fillers such as corrosion-resistant fillers, heat-resistant fillers and thermal conductive fillers, a high thermal conductive coating can be made. On the basis of boronnitride(BN) and aluminum nitride(AIN) used as thermal conductive fillers and by means of the testing system of hot disk and heat transfer experiment, researches on the varieties of thermal conductive fillers and the effects of the contents of high-thermal conductive coating have been done, which shows that the thermal conductivity of coating increases with the increase of the quality fraction and the coefficient of thermal conductivity of the thermal conductive fillers of coating. With guaranteeing better heat resistance, stronger corrosion resistance and adhesive force, the coefficient of coating can reach a level as high as 3 W·m-1·K-1.展开更多
To improve the low thermal conductivities and poor wear resistances of TC4(Ti-6Al-4V)alloy,the most widely used titanium alloy,the surface of TC4 alloys is modified by electroplating deposition of Ni and Cu layers,and...To improve the low thermal conductivities and poor wear resistances of TC4(Ti-6Al-4V)alloy,the most widely used titanium alloy,the surface of TC4 alloys is modified by electroplating deposition of Ni and Cu layers,and then heat-treated to increase the diffusivity at the interface.In this paper,the corrosion behavior of Cu/Ni coatings on TC4 alloy at different heat treatment processes was investigated in 3.5 wt%Na Cl by the electrochemical analysis,and the microstructure and composition of corrosion products was carried out to reveal the corrosion resistance mechanism of Cu/Ni coatings.It was found that the corrosion resistance was significantly influenced by heat treatment temperature.With the increasing diffusion treatment temperature from 500 to 700℃,the corrosion potential positively shifted from-330.87 to-201.14 m V,and the corrosion current density decreased from 4.02×10^-3 to 0.514×10^-3 m A/cm^2.However,when heat treatment temperature increased to 800℃,the corrosion potential negatively shifted to-207.21 m V,and the current density increased to 1.62×10^-3 m A/cm^2.The diffusion behavior of Ti,Ni and Cu elements occurred and small amounts of Ni and Ti elements appeared on the specimen surface under different heat treatment temperature.Especially heattreated at 700℃,the smaller pore size,dense Cu2O film,and highly stable Ti O and Ni O oxide layer were formed,which dramatically enhanced the corrosion resistance of Cu/Ni coatings.Finally,a novel model of corrosion resistance was proposed based on the analysis mentioned above.展开更多
Hot dip aluminizing is one of the most effective methods of surface protection for steels and is gradually gaining popularity.Although the pulling speed is one of the most important parameters to control the coating t...Hot dip aluminizing is one of the most effective methods of surface protection for steels and is gradually gaining popularity.Although the pulling speed is one of the most important parameters to control the coating thickness of aluminizing products,however,there are few publications on the mathematical modeling of pulling speed during the hot dip process.In order to describe the correlation among the pulling speed,coating thickness and solidification time,the principle of mass and heat transfer during the aluminizing process is investigated in this paper.The mathematical models are based on Navier-Stokes equation and heat transfer analysis.Experiments using the self-designed equipment are carried out to validate the mathematical models.Specifically,aluminum melt is purified at 730 ℃.The Cook-Norteman method is used for the pretreatment of Q235 steel plates.The temperature of hot dip aluminizing is set to 690 ℃ and thedipping time is set to 3 min.A direct current motor with stepless speed variation is used to adjust the pulling speed.The temperature change of the coating is recorded by an infrared thermometer,and the coating thickness is measured by using image analysis.The validate experiment results indicate that the coating thickness is proportional to the square root of pulling speed for the Q235 steel plate,and that there is a linear relationship between coating thickness and solidification time when the pulling speed is lower than 0.11 m/s.The prediction of the proposed model fits well with the experimental observations of the coating thickness.展开更多
A bond coat for thermal barrier coating (TBC), NiCrAlY coating, is subjected to vac-uum heat treatment in order to remove internal stress before ceramic top coat is de-posited. The effect of vacuum heat treatment on t...A bond coat for thermal barrier coating (TBC), NiCrAlY coating, is subjected to vac-uum heat treatment in order to remove internal stress before ceramic top coat is de-posited. The effect of vacuum heat treatment on the oxidation behavior of the sputtered NiCrAlY coating has been investigated. The as-sputtered NiCrAlY coating consists of γ-Ni and b-NiAl phases. After vacuum heat treatment, the sputtered NiCrAlY coating mainly consists of γ'-Ni3Al, β-NiAl, γ-Ni, and trace of α-Al2O3 phases. The isothermal oxidation of sputtered NiCrAlY coating with and without vacuum heat treatment has been performed at 1000℃. It is shown that a-Al2O3 formed during vacuum heat treatment acts as nuclei for the formation of a-Al2O3, and the protective a-Al2O3 scale is formed more rapidly on the vacuum heat treated NiCrAlY coating than that formed on the untreated coating. Also the a-Al2O3 scale has a better adherence to the vacuum heat treated NiCrAlY coating. Therefore the vacuum heat treatment improves the oxidation resistance of sputtered NiCrAlY coating.展开更多
This experiment was conducted to investigate the effect of coat characteristics on physiological traits and heat tolerance of dwarf sheep in southern Nigeria. A total number of twenty West African dwarf male sheep wit...This experiment was conducted to investigate the effect of coat characteristics on physiological traits and heat tolerance of dwarf sheep in southern Nigeria. A total number of twenty West African dwarf male sheep with an average weight of 9.00 ± 0.52 kg and aged 10 months old were used for the experiment. The dwarf sheep were assigned to four treatment groups in a completely randomized design with five sheep per treatment group. The compared treatment groups were TA (black coat colour sheep with low coat depth and short hair length), TB (black coat colour sheep with high coat depth and long hair length), TC (light brown coat colour sheep with low coat depth and short hair length) and TD (light brown coat colour sheep with high coat depth and long hair length). The results obtained in the study showed that midday was significantly (P 0.05) affected by morning, midday and evening. Rectal temperature (40.09℃), respiratory rate (21.01 breaths/min), pulse rate (87.49 beats/min), heat tolerance coefficient (97.10%), haemoglobin (9.04 g/l), blood cell (10.84 × 106/μl), white blood cell (12.06 × 106/μl) and glucose (50.10 mg/dl) were significantly (P 0.05) did not occur in total protein, albumin and globulin among treatment groups. It is concluded that coat characteristics have significant effects on physiological indices and heat tolerance in Nigeria.展开更多
Fe-6.5Si soft magnetic composites(SMCs)with hybrid phosphate-silica insulation coatings have been designed to improve their comprehensive property via chemical coating combining sol-gel method in this work.The microst...Fe-6.5Si soft magnetic composites(SMCs)with hybrid phosphate-silica insulation coatings have been designed to improve their comprehensive property via chemical coating combining sol-gel method in this work.The microstructure and magnetic performance of the Fe-6.5Si SMCs with hybrid phosphate-silica insulation coatings were investigated.The hybrid phosphate-silica coatings with high heat resistance and high withstand pressure,formed on the surface of the Fe-6.5Si ferromagnetic powders,were found stable in the composites.Compared with Fe-6.5Si SMCs coated by single phosphate or single silica,Fe-6.5Si SMCs with hybrid phosphate-silica show much higher permeability and lower core loss.The work provides a new way to optimize the magnetic performance of soft magnetic composites.展开更多
A promising solid-state coating mechanism based on the cold spray technique provides highly advantageous conditions on thermal-sensitive magnesium alloys.To study the effect of heat balance in cold spray coating on mi...A promising solid-state coating mechanism based on the cold spray technique provides highly advantageous conditions on thermal-sensitive magnesium alloys.To study the effect of heat balance in cold spray coating on microstructure,experiments were designed to successfully coat AA7075 on AZ31B with two different heat balance conditions to yield a coated sample with tensile residual stress and a sample with compressive residual stress in both coating and substrate.The effects of coating temperature on the microstructure of magnesium alloy and the interfaces of coated samples were then analyzed by SEM,EBSD,TEM in high-and low-heat input coating conditions.The interface of the AA7075 coating and magnesium alloy substrate under both conditions consists of a narrow-band layer with very fine grains,followed by columnar grains of magnesium that have grown perpendicular to the interface.At higher temperatures,this layer became wider.No intermetallic phase was detected at the interface under either condition.It is shown that the microstructure of the substrate was affected by coating temperature,leading to stress relief,dynamic recrystallization and even dynamic grain growth of magnesium under high temperature.Reducing the heat input and increasing the heat transfer decreased microstructural changes in the substrate.展开更多
The cutting friction, cutting deformation, producing heat, conducting heat, temperature field of TiN coated HSS tools in the cutting process are discussed profoundly. In order to make clear the heat property of TiN co...The cutting friction, cutting deformation, producing heat, conducting heat, temperature field of TiN coated HSS tools in the cutting process are discussed profoundly. In order to make clear the heat property of TiN coated tools, from the micromechanism angle, the relationship of the heat property and the crystal structure of TiN compound is analyzed, and the regularity of TiN compound crystal structure changing with temperature rising is sought. The difference of the wear resistance and heat resistance of TiN coated tools deposited by c1 and c2 depositing techniques is proved by tests. The conclusions will offer the theoretical basis for correct design of geometrical parameters of TiN coated tools, rational selection of cutting regimes and optimization of the depositing technique.展开更多
The Fe-based coatings in powder form were deposited on a steel type E335 by flame spraying technique.The effects of the post heat treatment on the microstructure and the mechanical properties of sprayed coatings were ...The Fe-based coatings in powder form were deposited on a steel type E335 by flame spraying technique.The effects of the post heat treatment on the microstructure and the mechanical properties of sprayed coatings were studied.Post heat treatment was conducted in a furnace in air at 623 K,823 K and 1023 K for 1 h and then cooled in air.The results showed that with the increase of annealing temperature,the microstructure of coating treated at 823 K and 1023 K had several changes as follows:the reduction of porosity,formation of carbides and oxides.It was found that the solid solution FCC(Fe,Ni),intermetallic compound AlFe3 and carbides[Fe,C]were the main phases for coatings as-sprayed and treated at 623 K and while iron carbide,molybdenum carbide and oxide as Fe3O4 became the main phases and reinforced the solid solution FCC(Fe,Ni)phase for annealed coatings at 823 K.However,it was observed the disappearance of molybdenum carbide and oxide Fe3O4 at 1023 K.The coating annealed at 823 K exhibited an excellent wear resistance than the as-sprayed and annealed coatings at 623 K and 1023 K and shows the lower wear rate than another coating treated or as sprayed.展开更多
The objective of this review is to present the results on the production techniques, process parameters and compositions of heat-resistant coatings for graphite and carbon-carbon composites. The data reported concern ...The objective of this review is to present the results on the production techniques, process parameters and compositions of heat-resistant coatings for graphite and carbon-carbon composites. The data reported concern the resistance of such protective coatings in air at temperatures up to 2273 K and in the high-speed flows of oxidizing gas media taking place in the spacecraft equipment. Coatings of this type, generally, have a multilayer structure based on the refractory compounds such as carbides, borides, silicides of transition metals and oxides with a high melting temperature. An efficient heat-resistant coating for carbon-based materials should be composed of three layers from which each fulfills its own function. The paper presents a new complex method for formation of heat-resistant coatings on the carbon-based materials. The method combines the vacuum-activated diffusion saturation in the presence of a liquid-phase and self-propagating high-temperature synthesis (SHS) simultaneously.展开更多
The effect of vacuum heat treatment on the microstructure and microhardness of cold-sprayed Cu-4%Cr-2%Nb alloy coating was investigated. The heat treatment was conducted under the temperatures from 250 ℃ to 950 ℃ wi...The effect of vacuum heat treatment on the microstructure and microhardness of cold-sprayed Cu-4%Cr-2%Nb alloy coating was investigated. The heat treatment was conducted under the temperatures from 250 ℃ to 950 ℃ with a step of 100 ℃ for 2 h. It was found that a dense thick Cu-4Cr-2Nb coating could be formed by cold spraying. After heat treatment, a Cr2Nb phase was uniformly distributed in the matrix, which was transferred from the gas-atomized feedstock. A little grain growth of Cr2Nb phase was observed accompanying with the healing-up of the incomplete interfaces between the deposited particles at the elevated temperatures. The coating microhardness increases a little with increasing the temperature to 350 ℃, and then decreases with further increasing temperature up to 950 ℃. This fact can be attributed to the microstructure evolution during the heat treatment.展开更多
基金Project(Q20122808)supported by the Department of Education of Hubei Province,ChinaProject(59781002)supported by the National Natural Science Foundation of China
文摘C-SiC coatings were prepared on stainless steel substrate by the middle frequency magnetron sputtering (MFMS) and ion beam mixing technique. After deposition, these samples were implanted by 5 keV hydrogen ion beam at a dose of 1×1018 ion/cm2. Some samples were heat treated at different temperatures from 273 K to 1173 K separately. The surface morphology, surface concentration of the elements of the C-SiC coatings and element iron from substrate as well as their depth profiles were checked with SEM, XPS and SIMS analyses. The results show that the composition of the coatings is changed due to heat treatment at different temperatures. The C-50%SiC coating with an excellent hydrogen resistant property can act as hydrogen barrier at the temperature below 723 K. But the hydrogen resistant property of the coating becomes bad when it is used at the temperature of 1023 K.
基金supported by National Natural Science Foundotion of China(No.10475080)
文摘Three tungsten coatings with a thickness of 250 μm, 600μm and 220 μm, respectively, were deposited on a CuCrZr substrate by the vacuum plasma spraying technology. In order to study the thermal performance of the coatings, heat load limit, thermal fatigue lifetime and thermal response tests were performed by means of the electron beam irradiation with a heat flux from 0 MW/m^2 to 10 MW/m^2. Experimental results indicated that tungsten coatings on CuCrZr with a titanium or tungsten/copper interlayer could expel heat flux timely and had good thermal fatigue properties, titanium was a promising compliant layer which provided a reliable way to join tungsten onto the CuCrZr heat sink, even suffering from a heat flux of 10 MW/m^2 or withstanding 54 cycles of fatigue tests under 5 MW/m^2. However, the better quality of tungsten coating itself was necessary because its surface temperature was higher than that of the sample with a tungsten/copper interlayer.
基金Funded by National Natural Science Foundation of China(No.51379070)。
文摘The changes of the microstructure and the mechanical properties of FeCrMoCBY amorphous coatings prepared by plasma spraying after heat treatment were investigated.300,400,500 and 600℃were selected as the heat treatment temperature,and the crystallization phenomenon occurred after the heat treatment at 600℃.The crystallization products of the coating heat-treated at 600℃were a-Fe and Fe23(C,B)6.Heat treatment was beneficial to the microhardness and the bonding strength of the coatings.The microhardness of the coating heat-treated at 600℃increased obviously,and the strongest bonding strength occurred in the coating heat-treated at 500℃.The improvement of the wear resistance of the coatings could attribute to heat treatment as well,and the wear resistance of the coating heat-treated at 600℃was the optimum,compared with the coating heat-treated at 500℃.
基金Project(1343-77212)supported by the Innovation Program for Graduate Students of Central South University,China
文摘Nanostructured zirconia top coat was deposited by air plasma spray and NiCoCrAlTaY bond coat was deposited on Ni substrate by low pressure plasma spray.Nanostructured and conventional thermal barrier coatings were heat-treated at temperature varying from 1050 to 1 250oC for 2-20 h.The results show that obvious grain growth was found in both nanostructured and conventional thermal barrier coatings(TBCs)after high temperature heat treatment.Monoclinic/tetragonal phases were transformed into cubic phase in the agglomerated nano-powder after calcination.The cubic phase content increased with increasing calcination temperature.Calcination of the powder made the yttria distributed on the surface of the nanocrystalline particles dissolve in zirconia when grains grew.Different from the phase constituent of the as-sprayed conventional TBC which consisted of diffusionlesstransformed tetragonal,the as-sprayed nanostructured TBC consisted of cubic phase.
文摘Air plasma spraying process was employed to fabricate various hydroxyapatite(HA)coatings on titanium substrates.The influence of processing parameters on the phase composition and the microstructure of the obtained coatings was investigated.The effect of heat treatment on as-sprayed coating in terms of the crystallinity and microstructure was also studied.The phase composition of coatings was analyzed by X-ray diffraction(XRD)and FTIR.The surface and cross-section morphologies and microstructure of coatings as well as the morphology of feedstock were evaluated using scanning electron microscope(SEM).The crystallization temperature of amorphous HA phase in as-sprayed coating was examined by using differential thermal analysis(DTA). The results suggest that phase composition and microstructure of as-sprayed HA coatings strongly depend on the spraying parameters,and heat treatment at 760 ℃for 2 h is one of effective means for increasing the crystallinity and improvement in microstructure of as-sprayed HA coatings.
基金This work was financially supported by the National Natural Science Foundation of China(No.51875425)Open Fund of Shandong Key Laboratory of Corrosion Science(No.KLCS201907).
文摘In this paper,the microstructures and rolling contact fatigue behaviors of laser cladding Inconel 625 coatings with or without post-heat treatments were analyzed.The results revealed that the fatigue resistance of the laser cladding coating after any post-heat treatment was worse than that of the as-deposited coating.First,through the finite element analysis,the distribution of stress along the thickness direction of the coating was obtained,and it was concluded that the bonding interface between the coating and the matrix had little effect on the fatigue properties of the coating.Then X-ray diffraction(XRD),scanning electron microscopy(SEM)and energy dispersive spectrometry(EDS)were used to analyze the microstructure and failure morphology.The results revealed that the subsurface failure morphology of the coatings showed a consistent correlation with rolling fatigue property after different heat treatments.The TCP phase and carbides have been shown in the laser cladding coating.The coating after stress relieved annealing exhibited chain-shaped granular carbides on the grain boundaries which could accelerate crack propagation.The aging heat treatment made small amounts of Laves phase dissolved in the coating,while the dispersed phase was precipitated which could result in the formation of pores.And the solution treatment made large amounts of Laves phase dissolved,while the rod-shape brittle phases were generated which was easy to fracture and contribute to crack initiation and spalling.
文摘An experimental study has been carried out to investigate the influence of heat treatment at 300 ℃,450 ℃,550 ℃,650 ℃ and 800 ℃ on the microstructure and sliding wear behavior of Fe Al/WC intermetallic composite coatings produced by high velocity arc spraying (HVAS) and cored wires. The result shows, the main phases in both as sprayed and heat treated Fe Al/WC composite coatings are iron aluminide intermetallics (Fe 3Al+FeAl) and α as well as a little oxide (Al 2O 3) and carbides (WC, W 2C, Fe 2W 2C and Fe 6W 6C). After heat treated at 450-650 ℃, dispersion strengthening of Fe 2W 2C and Fe 6W 6C will lead to a rise in microhardness of the coatings. The microhardness is likely to be the most important factor which influences the sliding wear behavior of the coatings. Increasing the microhardness through heat treatment will improve the sliding wear resistance of the Fe Al/WC composite coatings.
基金Funded by the Scientific Research Foundation for Postdoctor(20061023)
文摘Water-based architectural heat insulation coatings were studied to overcome the drawbacks of conventional inorganic silicate heat insulation coatings. The heat insulation coatings were prepared with the method of mechanical agitation when the mixed organic polymer emulsions were used as binder of the coatings and the mixed heat insulating aggregates were applied as powder, and some assistants were also added. Water temperature difference in the plastic container, which was coated with heat insulation coatings, represented the heat-insulating property of the coatings. The influences of components of mixed polymer emulsion, mass ratio of polymer emulsion to powder, particle size of heat insulating aggregates, added amount of air entraining admixture and the match of thickeners on the properties of the coatings were studied. The experimental results show that the heat insulation coatings with good finishing, heat-insulation property and artificial weathering can be prepared when the binder is composed of 66.92% styrene-acrylic emulsion, 16.59% elastic emulsion and 16.49% silicone-acrylic emulsion, the mass ratio of polymer emulsion to powder is 0.45, the particle size of heat insulating aggregates is in the rang of 200 and 250 mesh size, the added amount of sericite is 15%, and the added amount of air entraining admixture is in the range of 1.0% and 1.5% and the thickeners are the mixtures of ASE-60 and RM-5000.
文摘Waste shell stacking with odor and toxicity is a serious hazard to our living environment. To make effective use of the natural resources, the shell powder was applied as a filler of outdoor thermal insulation coatings. Sodium stearate(SS) was used to modify the properties of shell powder to reduce its agglomeration and to increase its compatibility with the emulsion. The oil absorption rate and the spectrum reflectance of the shell powder show that the optimized content of SS as a modifier is 1.5wt%. The total spectrum reflectance of the coating made with the shell powder that is modified at this optimum SS content is 9.33% higher than that without any modification. At the optimum SS content of 1.5wt%, the thermal insulation of the coatings is improved by 1.0℃ for the cement mortar board and 1.6℃ for the steel plate, respectively. The scouring resistance of the coating with the 1.5wt% SS-modified shell powder is three times that of the coating without modification.
基金Supported by the State Key Development of Basic Research of China(2001CB710703)the National Natural Science Foundation of China(51176053)+2 种基金the Key Technologies R&D Program of Guangdong Province(2011B090400562)the Strategic Emerging Industry Special Funds of Guangdong Province(2012A080304015)the Key Technologies R&D Program of Guangzhou City(2010U1-D00221,2011Y5000006)
文摘Based on modified silicon polyester resin in addition to several functional fillers such as corrosion-resistant fillers, heat-resistant fillers and thermal conductive fillers, a high thermal conductive coating can be made. On the basis of boronnitride(BN) and aluminum nitride(AIN) used as thermal conductive fillers and by means of the testing system of hot disk and heat transfer experiment, researches on the varieties of thermal conductive fillers and the effects of the contents of high-thermal conductive coating have been done, which shows that the thermal conductivity of coating increases with the increase of the quality fraction and the coefficient of thermal conductivity of the thermal conductive fillers of coating. With guaranteeing better heat resistance, stronger corrosion resistance and adhesive force, the coefficient of coating can reach a level as high as 3 W·m-1·K-1.
基金Funded by Key Projects of Shaanxi Natural Science Foundation(No.2019JZ-27)Shaanxi Natural Science Basic Research Program-Shaanxi Coal(No.2019JLM-47)Fundamental Research Funds for the Central Universities CHD(No.300102319304).
文摘To improve the low thermal conductivities and poor wear resistances of TC4(Ti-6Al-4V)alloy,the most widely used titanium alloy,the surface of TC4 alloys is modified by electroplating deposition of Ni and Cu layers,and then heat-treated to increase the diffusivity at the interface.In this paper,the corrosion behavior of Cu/Ni coatings on TC4 alloy at different heat treatment processes was investigated in 3.5 wt%Na Cl by the electrochemical analysis,and the microstructure and composition of corrosion products was carried out to reveal the corrosion resistance mechanism of Cu/Ni coatings.It was found that the corrosion resistance was significantly influenced by heat treatment temperature.With the increasing diffusion treatment temperature from 500 to 700℃,the corrosion potential positively shifted from-330.87 to-201.14 m V,and the corrosion current density decreased from 4.02×10^-3 to 0.514×10^-3 m A/cm^2.However,when heat treatment temperature increased to 800℃,the corrosion potential negatively shifted to-207.21 m V,and the current density increased to 1.62×10^-3 m A/cm^2.The diffusion behavior of Ti,Ni and Cu elements occurred and small amounts of Ni and Ti elements appeared on the specimen surface under different heat treatment temperature.Especially heattreated at 700℃,the smaller pore size,dense Cu2O film,and highly stable Ti O and Ni O oxide layer were formed,which dramatically enhanced the corrosion resistance of Cu/Ni coatings.Finally,a novel model of corrosion resistance was proposed based on the analysis mentioned above.
基金supported by Guangxi Provincial Natural Science Foundation of China (Grant No. 0832001)
文摘Hot dip aluminizing is one of the most effective methods of surface protection for steels and is gradually gaining popularity.Although the pulling speed is one of the most important parameters to control the coating thickness of aluminizing products,however,there are few publications on the mathematical modeling of pulling speed during the hot dip process.In order to describe the correlation among the pulling speed,coating thickness and solidification time,the principle of mass and heat transfer during the aluminizing process is investigated in this paper.The mathematical models are based on Navier-Stokes equation and heat transfer analysis.Experiments using the self-designed equipment are carried out to validate the mathematical models.Specifically,aluminum melt is purified at 730 ℃.The Cook-Norteman method is used for the pretreatment of Q235 steel plates.The temperature of hot dip aluminizing is set to 690 ℃ and thedipping time is set to 3 min.A direct current motor with stepless speed variation is used to adjust the pulling speed.The temperature change of the coating is recorded by an infrared thermometer,and the coating thickness is measured by using image analysis.The validate experiment results indicate that the coating thickness is proportional to the square root of pulling speed for the Q235 steel plate,and that there is a linear relationship between coating thickness and solidification time when the pulling speed is lower than 0.11 m/s.The prediction of the proposed model fits well with the experimental observations of the coating thickness.
基金The authors thank Prof.H. Y. Lou for sputtering NiCrAlY coating.
文摘A bond coat for thermal barrier coating (TBC), NiCrAlY coating, is subjected to vac-uum heat treatment in order to remove internal stress before ceramic top coat is de-posited. The effect of vacuum heat treatment on the oxidation behavior of the sputtered NiCrAlY coating has been investigated. The as-sputtered NiCrAlY coating consists of γ-Ni and b-NiAl phases. After vacuum heat treatment, the sputtered NiCrAlY coating mainly consists of γ'-Ni3Al, β-NiAl, γ-Ni, and trace of α-Al2O3 phases. The isothermal oxidation of sputtered NiCrAlY coating with and without vacuum heat treatment has been performed at 1000℃. It is shown that a-Al2O3 formed during vacuum heat treatment acts as nuclei for the formation of a-Al2O3, and the protective a-Al2O3 scale is formed more rapidly on the vacuum heat treated NiCrAlY coating than that formed on the untreated coating. Also the a-Al2O3 scale has a better adherence to the vacuum heat treated NiCrAlY coating. Therefore the vacuum heat treatment improves the oxidation resistance of sputtered NiCrAlY coating.
文摘This experiment was conducted to investigate the effect of coat characteristics on physiological traits and heat tolerance of dwarf sheep in southern Nigeria. A total number of twenty West African dwarf male sheep with an average weight of 9.00 ± 0.52 kg and aged 10 months old were used for the experiment. The dwarf sheep were assigned to four treatment groups in a completely randomized design with five sheep per treatment group. The compared treatment groups were TA (black coat colour sheep with low coat depth and short hair length), TB (black coat colour sheep with high coat depth and long hair length), TC (light brown coat colour sheep with low coat depth and short hair length) and TD (light brown coat colour sheep with high coat depth and long hair length). The results obtained in the study showed that midday was significantly (P 0.05) affected by morning, midday and evening. Rectal temperature (40.09℃), respiratory rate (21.01 breaths/min), pulse rate (87.49 beats/min), heat tolerance coefficient (97.10%), haemoglobin (9.04 g/l), blood cell (10.84 × 106/μl), white blood cell (12.06 × 106/μl) and glucose (50.10 mg/dl) were significantly (P 0.05) did not occur in total protein, albumin and globulin among treatment groups. It is concluded that coat characteristics have significant effects on physiological indices and heat tolerance in Nigeria.
基金Projects(2020GDSYL-20200402008,2018GDASCX-0117)supported by GDAS’Project of Science and Technology Development,ChinaProjects(2015B010136004,2019A1515010886)supported by Science and Technology Planning Project of Guangdong Province of ChinaProject(1920001001392)supported by Key Technology Project of Foshan,China。
文摘Fe-6.5Si soft magnetic composites(SMCs)with hybrid phosphate-silica insulation coatings have been designed to improve their comprehensive property via chemical coating combining sol-gel method in this work.The microstructure and magnetic performance of the Fe-6.5Si SMCs with hybrid phosphate-silica insulation coatings were investigated.The hybrid phosphate-silica coatings with high heat resistance and high withstand pressure,formed on the surface of the Fe-6.5Si ferromagnetic powders,were found stable in the composites.Compared with Fe-6.5Si SMCs coated by single phosphate or single silica,Fe-6.5Si SMCs with hybrid phosphate-silica show much higher permeability and lower core loss.The work provides a new way to optimize the magnetic performance of soft magnetic composites.
基金The financial support of the Natural Sciences and Engineering Research Council of Canada(NSERC)through the Automotive Partnership Canada(APC)under APCPJ 459269-13 grant with contributions from Multimatic Technical centre,Ford Motor CompanyCenterline Windsor are acknowledged.Funds from NSERC-RTI program under EQPEQ458441-2014 grant also supported this research.
文摘A promising solid-state coating mechanism based on the cold spray technique provides highly advantageous conditions on thermal-sensitive magnesium alloys.To study the effect of heat balance in cold spray coating on microstructure,experiments were designed to successfully coat AA7075 on AZ31B with two different heat balance conditions to yield a coated sample with tensile residual stress and a sample with compressive residual stress in both coating and substrate.The effects of coating temperature on the microstructure of magnesium alloy and the interfaces of coated samples were then analyzed by SEM,EBSD,TEM in high-and low-heat input coating conditions.The interface of the AA7075 coating and magnesium alloy substrate under both conditions consists of a narrow-band layer with very fine grains,followed by columnar grains of magnesium that have grown perpendicular to the interface.At higher temperatures,this layer became wider.No intermetallic phase was detected at the interface under either condition.It is shown that the microstructure of the substrate was affected by coating temperature,leading to stress relief,dynamic recrystallization and even dynamic grain growth of magnesium under high temperature.Reducing the heat input and increasing the heat transfer decreased microstructural changes in the substrate.
文摘The cutting friction, cutting deformation, producing heat, conducting heat, temperature field of TiN coated HSS tools in the cutting process are discussed profoundly. In order to make clear the heat property of TiN coated tools, from the micromechanism angle, the relationship of the heat property and the crystal structure of TiN compound is analyzed, and the regularity of TiN compound crystal structure changing with temperature rising is sought. The difference of the wear resistance and heat resistance of TiN coated tools deposited by c1 and c2 depositing techniques is proved by tests. The conclusions will offer the theoretical basis for correct design of geometrical parameters of TiN coated tools, rational selection of cutting regimes and optimization of the depositing technique.
文摘The Fe-based coatings in powder form were deposited on a steel type E335 by flame spraying technique.The effects of the post heat treatment on the microstructure and the mechanical properties of sprayed coatings were studied.Post heat treatment was conducted in a furnace in air at 623 K,823 K and 1023 K for 1 h and then cooled in air.The results showed that with the increase of annealing temperature,the microstructure of coating treated at 823 K and 1023 K had several changes as follows:the reduction of porosity,formation of carbides and oxides.It was found that the solid solution FCC(Fe,Ni),intermetallic compound AlFe3 and carbides[Fe,C]were the main phases for coatings as-sprayed and treated at 623 K and while iron carbide,molybdenum carbide and oxide as Fe3O4 became the main phases and reinforced the solid solution FCC(Fe,Ni)phase for annealed coatings at 823 K.However,it was observed the disappearance of molybdenum carbide and oxide Fe3O4 at 1023 K.The coating annealed at 823 K exhibited an excellent wear resistance than the as-sprayed and annealed coatings at 623 K and 1023 K and shows the lower wear rate than another coating treated or as sprayed.
文摘The objective of this review is to present the results on the production techniques, process parameters and compositions of heat-resistant coatings for graphite and carbon-carbon composites. The data reported concern the resistance of such protective coatings in air at temperatures up to 2273 K and in the high-speed flows of oxidizing gas media taking place in the spacecraft equipment. Coatings of this type, generally, have a multilayer structure based on the refractory compounds such as carbides, borides, silicides of transition metals and oxides with a high melting temperature. An efficient heat-resistant coating for carbon-based materials should be composed of three layers from which each fulfills its own function. The paper presents a new complex method for formation of heat-resistant coatings on the carbon-based materials. The method combines the vacuum-activated diffusion saturation in the presence of a liquid-phase and self-propagating high-temperature synthesis (SHS) simultaneously.
文摘The effect of vacuum heat treatment on the microstructure and microhardness of cold-sprayed Cu-4%Cr-2%Nb alloy coating was investigated. The heat treatment was conducted under the temperatures from 250 ℃ to 950 ℃ with a step of 100 ℃ for 2 h. It was found that a dense thick Cu-4Cr-2Nb coating could be formed by cold spraying. After heat treatment, a Cr2Nb phase was uniformly distributed in the matrix, which was transferred from the gas-atomized feedstock. A little grain growth of Cr2Nb phase was observed accompanying with the healing-up of the incomplete interfaces between the deposited particles at the elevated temperatures. The coating microhardness increases a little with increasing the temperature to 350 ℃, and then decreases with further increasing temperature up to 950 ℃. This fact can be attributed to the microstructure evolution during the heat treatment.