期刊文献+
共找到49篇文章
< 1 2 3 >
每页显示 20 50 100
Solution of Combined Heat and Power Economic Dispatch Problem Using Direct Optimization Algorithm 被引量:1
1
作者 Dedacus N. Ohaegbuchi Olaniyi S. Maliki +1 位作者 Chinedu P. A. Okwaraoka Hillary Erondu Okwudiri 《Energy and Power Engineering》 CAS 2022年第12期737-746,共10页
This paper presents the solution to the combined heat and power economic dispatch problem using a direct solution algorithm for constrained optimization problems. With the potential of Combined Heat and Power (CHP) pr... This paper presents the solution to the combined heat and power economic dispatch problem using a direct solution algorithm for constrained optimization problems. With the potential of Combined Heat and Power (CHP) production to increase the efficiency of power and heat generation simultaneously having been researched and established, the increasing penetration of CHP systems, and determination of economic dispatch of power and heat assumes higher relevance. The Combined Heat and Power Economic Dispatch (CHPED) problem is a demanding optimization problem as both constraints and objective functions can be non-linear and non-convex. This paper presents an explicit formula developed for computing the system-wide incremental costs corresponding with optimal dispatch. The circumvention of the use of iterative search schemes for this crucial step is the innovation inherent in the proposed dispatch procedure. The feasible operating region of the CHP unit three is taken into account in the proposed CHPED problem model, whereas the optimal dispatch of power/heat outputs of CHP unit is determined using the direct Lagrange multiplier solution algorithm. The proposed algorithm is applied to a test system with four units and results are provided. 展开更多
关键词 Economic Dispatch Lagrange Multiplier Algorithm Combined heat and power Constraints and Objective Functions Optimal Dispatch
下载PDF
Modelling and optimization of combined heat and power system in microgrid based on renewable energy
2
作者 Ghassan F.Smaisim Azher M.Abed +2 位作者 Salema K.Hadrawi Hasan Sh.Majdi Ali Shamel 《Clean Energy》 EI CSCD 2023年第4期735-746,共12页
Due to the short distance between the sources of production and consumption,microgrids(MGs)have received considerable attention because these systems involve fewer losses and waste less energy.And another advantage of... Due to the short distance between the sources of production and consumption,microgrids(MGs)have received considerable attention because these systems involve fewer losses and waste less energy.And another advantage of MGs is that renewable energy sources can be widely used because these resources are not fully available and can provide a part of the required power.The purpose of this research is to model the MG considering the production sources of microturbines,gas turbines and internal combustion engines.Renewable energies such as wind turbines(WTs)and photovoltaic(PV)cells have been used to provide part of the required power and,because of the lack of access to renewable energy sources at all times,energy reserves such as batteries and fuel cells(FCs)have been considered.The power of the microturbine,gas turbine,internal combustion engine,FC and battery in this system is 162,150,90,100 and 225 kW,respectively.After modelling the studied system,optimization was done using the imperialist competitive algorithm to minimize production costs and provide maximum thermal and electrical loads.The maximum production power for PVs is equal to 0.6860 MWh and at this time this value for WTs is equal to 0.3812 MWh,in which case the excess electricity produced will be sold to the grid. 展开更多
关键词 MICROGRID energy management system OPTIMIZATION optimal power flow combined heat and power sustainable development
原文传递
Stochastic Accelerated Alternating Direction Method of Multipliers for Hedging Communication Noise in Combined Heat and Power Dispatch
3
作者 Zhigang Li Xinyu Liang +4 位作者 Fan Hu Wen Xiong Renbo Wu J.H.Zheng Q.H.Wu 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第2期696-706,共11页
Combined heat and power dispatch(CHPD)opens a new window for increasing operational flexibility and reducing wind power curtailment.Electric power and district heating systems are independently controlled by different... Combined heat and power dispatch(CHPD)opens a new window for increasing operational flexibility and reducing wind power curtailment.Electric power and district heating systems are independently controlled by different system operators;therefore,a decentralized solution paradigm is necessary for CHPD,in which only minor boundary information is required to be exchanged via a communication network.However,a nonideal communication environment with noise could lead to divergence or incorrect solutions of decentralized algorithms.To bridge this gap,this paper proposes a stochastic accelerated alternating direction method of multipliers(SA-ADMM)for hedging communication noise in CHPD.This algorithm provides a general framework to address more types of constraint sets and separable objective functions than the existing stochastic ADMM.Different from the single noise sources considered in the existing stochastic approximation methods,communication noise from multiple sources is addressed in both the local calculation and the variable update stages.Case studies of two test systems validate the effectiveness and robustness of the proposed SAADMM. 展开更多
关键词 Alternating direction method of multipliers combined heat and power dispatch communication noise decentralized optimization
原文传递
Low-carbon Operation of Combined Heat and Power Integrated Plants Based on Solar-assisted Carbon Capture 被引量:9
4
作者 Xusheng Guo Suhua Lou +1 位作者 Yaowu Wu Yongcan Wang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第5期1138-1151,共14页
Accelerating the development of renewable energy and reducing CO_(2)emissions have become a general consensus and concerted action of all countries in the world. The electric power industry, especially thermal power i... Accelerating the development of renewable energy and reducing CO_(2)emissions have become a general consensus and concerted action of all countries in the world. The electric power industry, especially thermal power industry, is the main source for fossil energy consumption and CO_(2)emissions. Since solvent-based post-combustion carbon capture technology would bring massive extra energy consumption, the application of solar-assisted carbon capture technology has attracted extensive attention. Due to the important role of coal-fired combined heat and power plants for serving residential and industrial heating districts, in this paper, the low-carbon operation benefits of combined heat and power integrated plants based on solar-assisted carbon capture(CHPIP-SACC) are fully evaluated in heat and power integrated energy system with a high proportion of wind power. Based on the selected integration scheme, a linear operation model of CHPIP-SACC is developed considering energy flow characteristics and thermal coupling interaction of its internal modules. From the perspective of system-level operation optimization, the day-ahead economic dispatch problem based on a mix-integer linear programming model is presented to evaluate the low-carbon benefits of CHPIP-SACC during annual operation simulation. The numerical simulations on a modified IEEE 39-bus system demonstrate the effectiveness of CHPIP-SACC for reducing CO_(2)emissions as well as increasing the downward flexibility. The impact of different solar field areas and unit prices of coal on the low-carbon operation benefits of CHPIP-SACC is studied in the section of sensitivity analysis. 展开更多
关键词 Solar-assisted carbon capture CO_(2)emission reduction combined heat and power integrated plant heat and power integrated energy system wind power
原文传递
Dispatch Model for Integrated Heat and Power Systems Considering Internal Composition of CHP Plants 被引量:2
5
作者 Tuo Jiang Yong Min +3 位作者 Guiping Zhou Lei Chen Qun Chen Fei Xu 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2021年第2期396-407,共12页
An integrated heat and power system(IHPS)is a promising approach for alleviating wind curtailment problems.In an IHPS,the combined heat and power(CHP)plant is the key component,which supplies both heat and electric lo... An integrated heat and power system(IHPS)is a promising approach for alleviating wind curtailment problems.In an IHPS,the combined heat and power(CHP)plant is the key component,which supplies both heat and electric loads,and couples the thermal system and power system.However,existing research commonly ignores or simplifies the internal composition of CHP plants,which could lead to some unavoidable errors.This paper focuses on the internal composition of CHP plants,and models the physical processes in different components and flexible resources in the CHP plant.Furthermore,a joint dispatch problem of an IHPS with the above CHP plant models is formulated,and an iterative algorithm is developed to handle the nonlinearity in this problem.Case studies are performed based on a real CHP plant in Northern China,and the results indicate that the synergistic effect of different energy resources in the CHP plant is realized by the joint dispatch model,which promotes wind power accommodation and reduces fossil fuel consumption. 展开更多
关键词 Combined heat and power(CHP)plant CHP unit economic dispatch Integrated heat and power system wind power integration
原文传递
Distributed energy management for interconnected operation of combined heat and power-based microgrids with demand response 被引量:12
6
作者 Nian LIU Jie WANG Lingfeng WANG 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2017年第3期478-488,共11页
From the perspective of transactive energy, the energy trading among interconnected microgrids(MGs) is promising to improve the economy and reliability of system operations. In this paper, a distributed energy managem... From the perspective of transactive energy, the energy trading among interconnected microgrids(MGs) is promising to improve the economy and reliability of system operations. In this paper, a distributed energy management method for interconnected operations of combined heat and power(CHP)-based MGs with demand response(DR) is proposed. First, the system model of operational cost including CHP, DR, renewable distributed sources, and diesel generation is introduced, where the DR is modeled as a virtual generation unit. Second, the optimal scheduling model is decentralized as several distributed scheduling models in accordance with the number of associated MGs. Moreover, a distributed iterative algorithm based on subgradient with dynamic search direction is proposed. During the iterative process, the information exchange between neighboring MGs is limited to Lagrange multipliers and expected purchasing energy. Finally,numerical results are given for an interconnected MGs system consisting of three MGs, and the effectiveness of the proposed method is verified. 展开更多
关键词 Interconnected microgrids Energy management Distributed optimization Demand response Combined heat and power(CHP)
原文传递
Distributed Real-time State Estimation for Combined Heat and Power Systems 被引量:6
7
作者 Tingting Zhang Wen Zhang +3 位作者 Qi Zhao Yaxin Du Jian Chen Junbo Zhao 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第2期316-327,共12页
This paper proposes a distributed real-time state estimation(RTSE)method for the combined heat and power systems(CHPSs).First,a difference-based model for the heat system is established considering the dynamics of hea... This paper proposes a distributed real-time state estimation(RTSE)method for the combined heat and power systems(CHPSs).First,a difference-based model for the heat system is established considering the dynamics of heat systems.This heat system model is further used along with the power system steady-state model for holistic CHPS state estimation.A cubature Kalman filter(CKF)-based RTSE is developed to deal with the system nonlinearity while integrating both the historical and present measurement information.Finally,a multi-timescale asynchronous distributed computation scheme is designed to enhance the scalability of the proposed method for largescale systems.This distributed implementation requires only a small amount of information exchange and thus protects the privacy of different energy systems.Simulations carried out on two CHPSs show that the proposed method can significantly improve the estimation efficiency of CHPS without loss of accuracy compared with other existing models and methods. 展开更多
关键词 Combined heat and power system(CHPS) cubature Kalman filter(CKF) heat dynamics multi-time-scale asynchronous distributed scheme real-time state estimation(RTSE)
原文传递
Combined heat and power economic dispatch problem using firefly algorithm 被引量:5
8
作者 Afshin YAZDANI T. JAYABARATHI V. RAMESH T. RAGHUNATHAN 《Frontiers in Energy》 SCIE CSCD 2013年第2期133-139,共7页
Cogeneration units, which produce both heat and electric power, are found in many process industries. These industries also consume heat directly in addition to electricity. The cogeneration units operate only within ... Cogeneration units, which produce both heat and electric power, are found in many process industries. These industries also consume heat directly in addition to electricity. The cogeneration units operate only within a feasible zone. Each point within the feasible zone consists of a specific value of heat and electric power. These units are used along with other units, which produce either heat or power exclusively. Hence, the economic dispatch problem for these plants to optimize the fuel cost is quite complex and several classical and meta-heuristic algo- rithms have been proposed earlier. This paper applies the firefly algorithm, which is inspired by the behavior of fireflies which attract each other based on their luminosity. The results obtained have been compared with those obtained by other methods earlier and showed a marked improvement over the earlier methods. 展开更多
关键词 combined heat and power (CHP) economicdispatch meta-heuristic algorithm firefly algorithm cogen-eration
原文传递
Combined heat and power economic dispatch problem using the invasive weed optimization algorithm 被引量:4
9
作者 T. JAYABARATHI Afshin YAZDANI V. RAMESI T. RAGHUNATHAN 《Frontiers in Energy》 SCIE CSCD 2014年第1期25-30,共6页
Cogeneration units which produce both heat and electric power are found in many process industries. These industries also consume heat directly in addition to electricity. The cogeneration units operate only within a ... Cogeneration units which produce both heat and electric power are found in many process industries. These industries also consume heat directly in addition to electricity. The cogeneration units operate only within a feasible zone. Each point within the feasible zone consists of a specific value of heat and electric power. These units are used along with other units which produce either heat or power exclusively. Hence the economic dispatch problem for these plants optimizing the fuel cost is quite complex and several classical and meta-heuristic algo- rithms have been proposed earlier. This paper applies the invasive weed optimization algorithm which is inspired by the ecological process of weed colonization and distribu- tion. The results obtained have been compared with those obtained by other methods earlier and showed a marked improvement over earlier ones. 展开更多
关键词 combined heat and power (CHP) economicdispatch meta-heuristic algorithm invasive weed optimiza-tion COGENERATION
原文传递
Optimal Combined Heat and Power Economic Dispatch Using Stochastic Fractal Search Algorithm 被引量:3
10
作者 Muwaffaq I.Alomoush 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2020年第2期276-286,共11页
Combined heat and power(CHP)generation is a valuable scheme for concurrent generation of electrical and thermal energies.The interdependency of power and heat productions in CHP units introduces complications and non-... Combined heat and power(CHP)generation is a valuable scheme for concurrent generation of electrical and thermal energies.The interdependency of power and heat productions in CHP units introduces complications and non-convexities in their modeling and optimization.This paper uses the stochastic fractal search(SFS)optimization technique to treat the highly non-linear CHP economic dispatch(CHPED)problem,where the objective is to minimize the total operation cost of both power and heat from generation units while fulfilling several operation interdependent limits and constraints.The CHPED problem has bounded feasible operation regions and many local minima.The SFS,which is a recent metaheuristic global optimization solver,outranks many current reputable solvers.Handling constraints of the CHPED is achieved by employing external penalty parameters,which penalize infeasible solution during the iterative process.To confirm the strength of this algorithm,it has been tested on two different test systems that are regularly used.The obtained outcomes are compared with former outcomes achieved by many different methods reported in literature of CHPED.The results of this work affirm that the SFS algorithm can achieve improved near-global solution and compare favorably with other commonly used global optimization techniques in terms of the quality of solution,handling of constraints and computation time. 展开更多
关键词 Combined heat and power(CHP) economic dispatch global optimization metaheuristic algorithms non-convex optimization problem power systems stochastic fractal search
原文传递
Integrated Heat and Power Dispatch Model for Wind-CHP System with Solid Heat Storage Device Based on Robust Stochastic Theory 被引量:2
11
作者 LI Huanhuan TAN Zhongfu +1 位作者 CHEN Hongtao GUO Hongwu 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2018年第1期31-42,共12页
This paper built a combined heat and power(CHP) dispatch model for wind-CHP system with solid heat storage device(SHS) aiming at minimizing system coal consumption, and set system demand-supply balance and units'... This paper built a combined heat and power(CHP) dispatch model for wind-CHP system with solid heat storage device(SHS) aiming at minimizing system coal consumption, and set system demand-supply balance and units' operation conditions as the operation constraints. Furthermore, robust stochastic optimization theory was used to describe wind power output uncertainty. The simulation result showed that SHS increased CHP peak-valley shifting capability and reduced abandoned wind rate from 12% to 6%, and reduced 5% coal consumption, compared with the original system operation by flexible charging electric power and heating. The payback period of employing SHS in wind-CHP system is far shorter than SHS expected service life. 展开更多
关键词 wind power abandoned wind solid electric heatstorage device combined heat and power (CHP) heat storage robust stochastic optimization theory
原文传递
Hierarchical Dispatch Method for Integrated Heat and Power Systems Based on a Feasible Region of Boundary Variables 被引量:2
12
作者 Tuo Jiang Yong Min +5 位作者 Weichun Ge Lei Chen Qun Chen Fei Xu Huanhuan Luo Guiping Zhou 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2020年第3期543-553,共11页
Fully utilizing the flexibility provided by a district heating system(DHS)can promote wind power accommodation for an electric power system(EPS).However,for privacy or communication reasons,existing power and heat dis... Fully utilizing the flexibility provided by a district heating system(DHS)can promote wind power accommodation for an electric power system(EPS).However,for privacy or communication reasons,existing power and heat dispatch methods are not suitable for practical application.In this paper,a general math formulation of the hierarchical dispatch method is proposed to coordinate EPS and DHS operators based on the feasible region of boundary variables(FRBV),and a method based on the simplicial approximation approach is proposed to obtain a conservative FRBV approximation of a DHS.A simulation based on a real 41-node DHS is constructed to determine the factors that may impact the boundaries of the FRBV,and then the performance of the simplicial approximation approach is displayed by visualizing the approximation process for the FRBV,and finally three dispatch methods are compared to show the advantages of the proposed hierarchical dispatch method. 展开更多
关键词 District heating system feasible region hierarchical dispatch method integrated heat and power system simplicial approximation approach
原文传递
CO_(2)Plume Geothermal(CPG)Systems for Combined Heat and Power Production:an Evaluation of Various Plant Configurations 被引量:1
13
作者 SCHIFFLECHNER Christopher WIELAND Christoph SPLIETHOFF Hartmut 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第5期1266-1278,共13页
CO_(2) Plume Geothermal(CPG)systems are a promising concept for utilising petrothermal resources in the context of a future carbon capture utilisation and sequestration economy.Petrothermal geothermal energy has a tre... CO_(2) Plume Geothermal(CPG)systems are a promising concept for utilising petrothermal resources in the context of a future carbon capture utilisation and sequestration economy.Petrothermal geothermal energy has a tremendous worldwide potential for decarbonising both the power and heating sectors.This paper investigates three potential CPG configurations for combined heating and power generation(CHP).The present work examines scenarios with reservoir depths of 4 km and 5 km,as well as required district heating system(DHS)supply temperatures of 70℃ and 90℃.The results reveal that a two-staged serial CHP concept eventuates in the highest achievable net power output.For a thermosiphon system,the relative net power reduction by the CHP option compared with a sole power generation system is significantly lower than for a pumped system.The net power reduction for pumped systems lies between 62.6%and 22.9%.For a thermosiphon system with a depth of 5 km and a required DHS supply temperature of 70℃,the achievable net power by the most beneficial CHP option is even 9.2%higher than for sole power generation systems.The second law efficiency for the sole power generation concepts are in a range between 33.0%and 43.0%.The second law efficiency can increase up to 63.0%in the case of a CHP application.Thus,the combined heat and power generation can significantly increase the overall second law efficiency of a CPG system.The evaluation of the achievable revenues demonstrates that a CHP application might improve the economic performance of both thermosiphon and pumped CPG systems.However,the minimum heat revenue required for compensating the power reduction increases with higher electricity revenues.In summary,the results of this work provide valuable insights for the potential development of CPG systems for CHP applications and their economic feasibility. 展开更多
关键词 deep geothermal energy combined heat and power generation CO_(2)plume geothermal systems petrothermal resources carbon capture utilisation and storage
原文传递
Decentralized State Estimation of Combined Heat and Power System Considering Communication Packet Loss 被引量:1
14
作者 Wenjian Zheng Zhigang Li +3 位作者 Xinyu Liang Jiehui Zheng Q.H.Wu Fan Hu 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2020年第4期646-656,共11页
In order to obtain an accurate state estimation of the operation in the combined heat and power system,it is necessary to carry out state estimation.Due to the limited information sharing among various energy systems,... In order to obtain an accurate state estimation of the operation in the combined heat and power system,it is necessary to carry out state estimation.Due to the limited information sharing among various energy systems,it is practical to perform state estimation in a decentralized manner.However,the possible communication packet loss is seldomly considered among various energy systems.This paper bridges this gap by proposing a relaxed alternating direction method of multiplier algorithm.It can also improve the computation efficiency compared with the conventional alternating direction of the multiplier algorithm.Case studies of two test systems are carried out to show the validity and superiority of the proposed algorithm. 展开更多
关键词 Alternating direction of multiplier algorithm combined heat and power system communication packet loss decentralized optimization state estimation
原文传递
Biomass-fuelled combined heat and power: integration in district heating and thermal-energy storage 被引量:1
15
作者 Masoud Rezaei Mohammad Sameti Fuzhan Nasiri 《Clean Energy》 EI 2021年第1期44-56,共13页
Conventional approaches towards energy-system modelling and operation are based upon the system design and performance optimization.In system-design optimization,the thermal or mechanical characteristics of the system... Conventional approaches towards energy-system modelling and operation are based upon the system design and performance optimization.In system-design optimization,the thermal or mechanical characteristics of the systems providing for the heat or electricity demands were derived separately without integration with the energy source and without interaction with demand,which results in low-efficiency energy performance.This paper presents a key review on the integration of biomass-powered combined heat and power(BCHP)systems in district-heating systems as well as coupling with thermal-energy storage.In BCHP design,the appropriate sizing of the associated components as part of the district-heating system is very important to provide the optimal dispatch strategy as well as minimized cost and environmental impact while it co-operates with thermal-energy storage.Future strategies for the feasibility,evaluation and integration of biomass-powered energy systems in the context of district systems are also studied. 展开更多
关键词 energy storage BIOMASS combined heat and power(CHP) district heating mathematical programming optimization
原文传递
Fuel poverty and low carbon emissions: a comparative study of the feasibility of the hybrid renewable energy systems incorporating combined heat and power technology
16
作者 Dorota RZETELSKA Madeleine COMBRINCK 《Frontiers in Energy》 SCIE CSCD 2022年第2期336-356,共21页
Fuel poverty is most prevalent in North East England with 14.4%of fuel poor households in Newcastle upon Tyne.The aim of this paper was to identify a grid connected renewable energy system coupled with natural gas rec... Fuel poverty is most prevalent in North East England with 14.4%of fuel poor households in Newcastle upon Tyne.The aim of this paper was to identify a grid connected renewable energy system coupled with natural gas reciprocating combined heat and power unit,that is cost-effective and technically feasible with a potential to generate a profit from selling energy excess to the grid to help alleviate fuel poverty.The system was also aimed at low carbon emissions.Fourteen models were designed and optimized with the aid of the HOMER Pro software.Models were compared with respect to their economic,technical,and environmental performance.A solution was proposed where restrictions were placed on the size of renewable energy components.This configuration consists of 150 kW CHP,300 kW PV cells,and 30 kW wind turbines.The renewable fraction is 5.10%and the system yields a carbon saving of 7.9%in comparison with conventional systems.The initial capital investment is$1.24 million which enables the system to have grid sales of 582689 kWh/a.A conservative calculation determined that 40%of the sales can be used to reduce the energy cost of fuel poor households by$706 per annum.This solution has the potential to eliminate fuel poverty at the site analyzed. 展开更多
关键词 greenhouse gas control low carbon target grid connected renewable fraction fuel poverty combined heat and power HOMER Pro
原文传递
Initiative Optimization Operation Strategy and Multi-objective Energy Management Method for Combined Cooling Heating and Power 被引量:4
17
作者 Feng Zhao Chenghui Zhang Bo Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第4期385-393,共9页
This paper proposed an initiative optimization operation strategy and multi-objective energy management method for combined cooling heating and power(CCHP) with storage systems.Initially,the initiative optimization op... This paper proposed an initiative optimization operation strategy and multi-objective energy management method for combined cooling heating and power(CCHP) with storage systems.Initially,the initiative optimization operation strategy of CCHP system in the cooling season,the heating season and the transition season was formulated.The energy management of CCHP system was optimized by the multi-objective optimization model with maximum daily energy efficiency,minimum daily carbon emissions and minimum daily operation cost based on the proposed initiative optimization operation strategy.Furthermore,the pareto optimal solution set was solved by using the niche particle swarm multi-objective optimization algorithm.Ultimately,the most satisfactory energy management scheme was obtained by using the technique for order preference by similarity to ideal solution(TOPSIS) method.A case study of CCHP system used in a hospital in the north of China validated the effectiveness of this method.The results showed that the satisfactory energy management scheme of CCHP system was obtained based on this initiative optimization operation strategy and multi-objective energy management method.The CCHP system has achieved better energy efficiency,environmental protection and economic benefits. 展开更多
关键词 Multi-objective optimization energy management initiative optimization distributed energy sources combined cooling heating and power(CCHP) operation strategy
下载PDF
Performance of Gas-Steam Combined Cycle Cogeneration Units Influenced by Heating Network Terminal Steam Parameters
18
作者 Guanglu Xie Zhimin Xue +5 位作者 Bo Xiong Yaowen Huang Chaoming Chen Qing Liao Cheng Yang Xiaoqian Ma 《Energy Engineering》 EI 2024年第6期1495-1519,共25页
The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and p... The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and power system multidimensionally based on the operating characteristics of the cogeneration units,the hydraulic and thermodynamic characteristics of the heating network,and the energy loads.Taking a steam network supported by a gas-steam combined cycle cogeneration system as the research case,the interaction effect among the source-side prime movers,the heating networks,and the terminal demand thermal parameters were investigated based on the designed values,the plant testing data,and the validated simulation.The operating maps of the gas-steam combined cycle cogeneration units were obtained using THERMOFLEX,and the minimum source-side steam parameters of the steam network were solved using an inverse solution procedure based on the hydro-thermodynamic coupling model.The cogeneration operating maps indicate that the available operating domain considerably narrows with the rise of the extraction steam pressure and flow rate.The heating network inverse solution demonstrates that the source-side steam pressure and temperature can be optimized from the originally designed 1.11 MPa and 238.8°C to 1.074 MPa and 191.15°C,respectively.Under the operating strategy with the minimum source-side heating parameters,the power peak regulation depth remarkably increases to 18.30%whereas the comprehensive thermal efficiency decreases.The operation under the minimum source-side heating steam parameters can be superior to the originally designed one in the economy at a higher price of the heating steam.At a fuel price of$0.38/kg and the power to fuel price of 0.18 kg/(kW·h),the critical price ratio of heating steam to fuel is 119.1 kg/t.The influence of the power-fuel price ratio on the economic deviation appears relatively weak. 展开更多
关键词 Gas-steam combined cycle cogeneration of heating and power steam network inverse problem operating performance
下载PDF
Thermo-economic Investigation of an Enhanced Geothermal System Organic Rankine Cycle and Combined Heating and Power System
19
作者 WANG Lingbao BU Xianbiao LI Huashan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第6期1958-1966,共9页
As a potentially viable renewable energy, Enhanced Geothermal Systems(EGSs) extract heat from hot dry rock(HDR) reservoirs to produce electricity and heat, which promotes the progress towards carbon peaking and carbon... As a potentially viable renewable energy, Enhanced Geothermal Systems(EGSs) extract heat from hot dry rock(HDR) reservoirs to produce electricity and heat, which promotes the progress towards carbon peaking and carbon neutralization. The main challenge for EGSs is to reduce the investment cost. In the present study, thermo-economic investigations of EGS projects are conducted. The effects of geofluid mass flow rate, wellhead temperature and loss rate on the thermo-economic performance of the EGS organic Rankine cycle(ORC) are studied. A performance comparison between EGS-ORC and the EGS combined heating and power system(CHP) is presented. Considering the CO_(2)emission reduction benefits, the influence of carbon emission trading price on the levelized cost of energy(LCOE) is also presented. It is indicated that the geofluid mass flow rate is a critical parameter in dictating the success of a project. Under the assumed typical working conditions, the LCOE of EGS-ORC and EGS-CHP systems are 24.72 and 16.1 cents/k Wh, respectively. Compared with the EGS-ORC system, the LCOE of the EGS-CHP system is reduced by 35%. EGS-CHP systems have the potential to be economically viable in the future. With carbon emission trading prices of 12.76 USD/ton, the LCOE can be reduced by approximately 8.5%. 展开更多
关键词 enhanced geothermal system organic Rankine cycle combined heating and power system thermo-economic investigation carbon emission reduction
下载PDF
Diesel generator exhaust heat recovery fully-coupled with intake air heating for off-grid mining operations:An experimental,numerical,and analytical evaluation
20
作者 Durjoy Baidya Marco Antonio Rodrigues de Brito +1 位作者 Agus PSasmito Seyed Ali Ghoreishi-Madiseh 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第1期155-169,共15页
The customarily discarded exhaust from the fossil fuel-based power plants of the off-grid mines holds the thermal potential to fulfill the heating requirement of the underground operation.This present research fills i... The customarily discarded exhaust from the fossil fuel-based power plants of the off-grid mines holds the thermal potential to fulfill the heating requirement of the underground operation.This present research fills in an important research gap by investigating the coupling effect between a diesel exhaust heat recovery and an intake air heating system employed in a remote mine.An integrative approach comprising analytical,numerical,and experimental assessment has been adapted.The novel analytical model developed here establishes the reliability of the proposed mine heating system by providing comparative analysis between a coupled and a decoupled system.The effect of working fluid variation has been examined by the numerical analysis and the possible improvement has been identified.Experimental investigations present a demonstration of the successful lab-scale implementation of the concept and validate the numerical and analytical models developed.Successful deployment of the fully coupled mine heating system proposed here will assist the mining industry on its journey towards energy-efficient,and sustainable mining practices through nearly 70%reduction in fossil fuel consumption for heating intentions. 展开更多
关键词 Remote mines Waste heat utilization Diesel exhaust Combined heat and power generation Clean energy in mining Coupled heating system
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部