期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Experimental Investigation on Solution Regeneration Performance and Coefficients in Full-Open System for Heat and Water Recovery of Flue Gas
1
作者 WEI Hongyang HUANG Shifang +3 位作者 MA Yuxin CHEN Bo SUN Li ZHANG Xiaosong 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第3期1094-1108,共15页
The recovery of heat and water from low-grade flue gas is of considerable importance for energy conservation and environmental preservation.While the full-open absorption heat pump shows promise as a means of achievin... The recovery of heat and water from low-grade flue gas is of considerable importance for energy conservation and environmental preservation.While the full-open absorption heat pump shows promise as a means of achieving heat and water recovery,the lack of research on heat and mass transfer performance of open-type solution evaporation regeneration represents a significant impediment to its design and operation.This paper experimentally investigates the regeneration performance of an open-type spaying tower equipped with ceramic structured packings.Two different regeneration modes are proposed,namely ambient air receiver mode and flue gas receiver mode,to utilize air or low-grade flue gas as a driving source.The impact of different input parameters on the regeneration characteristics,including heat transfer capacity,water removal rate,thermal efficiency,and humidity effectiveness,are demonstrated.The findings indicate that the enhancement of regeneration can be achieved through the increase of solution flow rate,solution temperature,and flue gas flow rate in both regeneration modes.However,high solution concentration and flue gas humidity ratio can weaken water removal rates and reduce thermal efficiency.For the regeneration of CaCl_(2)-H_(2)O with a concentration of55%,flue gas around 200℃with a humidity ratio below 44 g/kg can successfully drive the solution regeneration process.When the solution concentration or flue gas humidity ratio continues to rise,additional energy is necessary for regeneration.Furthermore,the coupled heat and mass transfer coefficients are fitted,which can contribute to the design and optimization of the open-type regenerator. 展开更多
关键词 heat and water recovery solution regeneration flue gas regeneration performance coefficient
原文传递
A moving boundary problem derived from heat and water transfer processes in frozen and thawed soils and its numerical simulation 被引量:4
2
作者 XIE ZhengHui SONG LiYe FENG XiaoBing 《Science China Mathematics》 SCIE 2008年第8期1510-1521,共12页
The seasonal change in depths of the frozen and thawed soils within their active layer is reduced to a moving boundary problem, which describes the dynamics of the total ice content using an independent mass balance e... The seasonal change in depths of the frozen and thawed soils within their active layer is reduced to a moving boundary problem, which describes the dynamics of the total ice content using an independent mass balance equation and treats the soil frost/thaw depths as moving (sharp) interfaces governed by some Stefan-type moving boundary conditions, and hence simultaneously describes the liquid water and solid ice states as well as the positions of the frost/thaw depths in soil. An adaptive mesh method for the moving boundary problem is adopted to solve the relevant equations and to determine frost/thaw depths, water content and temperature distribution. A series of sensitivity experiments by the numerical model under the periodic sinusoidal upper boundary condition for temperature are conducted to validate the model, and to investigate the effects of the model soil thickness, ground surface temperature, annual amplitude of ground surface temperature and thermal conductivity on frost/thaw depths and soil temperature. The simulated frost/thaw depths by the model with a periodical change of the upper boundary condition have the same period as that of the upper boundary condition, which shows that it can simulate the frost/thaw depths reasonably for a periodical forcing. 展开更多
关键词 frost and thaw depth moving boundary Stefan problem heat and water transfer numerical solution 80A22
原文传递
Optimization of heat source side technical scheme of combined heat and water system based on a coal-fired power plant 被引量:1
3
作者 Xiaolin Yang Zhaoyang Liu +3 位作者 Jiayang Chen Ying Kong Wen Zheng Jianjun Xia 《Building Simulation》 SCIE EI CSCD 2022年第8期1455-1473,共19页
Recovering the waste heat(WH)of a power plant can conserve energy and reduce emissions.Scholars have proposed utilizing the WH of power plants in a combined heat and water(CHW)system,which is considered an economical,... Recovering the waste heat(WH)of a power plant can conserve energy and reduce emissions.Scholars have proposed utilizing the WH of power plants in a combined heat and water(CHW)system,which is considered an economical,energy-saving,and environment-friendly way to integrate water and heat supply into long-distance transportation in urban areas of northern China.However,to date,a detailed design of the case on the heat source side of the CHW has not been developed.Therefore,in this study,the heat source side of a CHW system was divided into two cases:a single-generator set and a double-generator set,and both cases were optimized.The parameters of a multi-effect desalination(MED)process were examined;the optimal number of evaporation stages during the MED process was 12,and the optimal heat source temperature during the first stage was 700C.Then,by matching the extraction and exhaust steam flows,the WH of the exhaust steam in the heating season was finally utilized.Further,under each case optimal conditions,energy,exergy,and cost were analyzed.The results showed that the exergy efficiency in the heating season for each case was approximately 50%,whereas that in the non-heating season was approximately 3.5%.The economy and water quality of the single-generator case were better than those of the double-generator case.However,the absorption heat pump required in the single-generator case is difficult to realize because it operates under two working conditions. 展开更多
关键词 waste heat of power plant-combined heat and water seawater desalination optimal case thermal economic analysis
原文传递
Modelling plant canopy effects on water-heat exchange in the freezingthawing processes of active layer on the Qinghai-Tibet Plateau 被引量:2
4
作者 GUO Lin-mao CHANG Juan +1 位作者 XU Hong-liang SUN Wen-jun 《Journal of Mountain Science》 SCIE CSCD 2021年第6期1564-1579,共16页
The effect of vegetation on the water-heat exchange in the freezing-thawing processes of active layer is one of the key issues in the study of land surface processes and in predicting the response of alpine ecosystems... The effect of vegetation on the water-heat exchange in the freezing-thawing processes of active layer is one of the key issues in the study of land surface processes and in predicting the response of alpine ecosystems to climate change in permafrost regions. In this study, we used the simultaneous heat and water model to investigate the effects of plant canopy on surface and subsurface hydrothermal dynamics in the Fenghuoshan area of the QinghaiTibet Plateau by changing the leaf area index(LAI) and keeping other variables constant. Results showed that the sensible heat, latent heat and net radiation are increased with an increase in the LAI. However, the ground heat flux decreased with an increasing LAI. The annual total evapotranspiration and vegetation transpiration ranged from-16% to 9% and-100% to 15%, respectively, in response to extremes of doubled and zero LAI, respectively. There was a negative feedback between vegetation and the volumetric unfrozen water content at 0.2 m through changing evapotranspiration. The simulation results of soil temperature and moisture suggest that better vegetation conditions are conducive to maintaining the thermal stability of the underlying permafrost, and the advanced initial thawing time and increasing thawing rate of soil ice with the increase in the LAI may have a great influence on the timing and magnitude of supra-permafrost groundwater. This study quantifies the impact of vegetation change on surface and subsurface hydrothermal processes and provides a basic understanding for evaluating the impact of vegetation degradation on the water-heat exchange in permafrost regions under climate change. 展开更多
关键词 PERMAFROST Simultaneous heat and water model Leaf area index water-heat exchange Thermal-moisture dynamics
下载PDF
Thermal and hydrological processes in permafrost slope wetlands affect thermosyphon embankment stability
5
作者 Bo-Wen TAI Qing-Bai WU Xiao-Ming XU 《Advances in Climate Change Research》 SCIE CSCD 2024年第4期680-694,共15页
To ensure the long-term service performance of infrastructure such as railways,highways,airports and oil pipelines built on permafrost slope wetland sites,it is imperative to systematically uncover the long-term heat-... To ensure the long-term service performance of infrastructure such as railways,highways,airports and oil pipelines built on permafrost slope wetland sites,it is imperative to systematically uncover the long-term heat-water changes of soil in slope wetlands environment under climate warming.More specifically,considering valuable field data from 2001 to 2019,the long-term heat and water changes in active layers of the slope wetland site along the Qinghai-Xizang Railway(QXR)are illustrated,the effect of thermosyphon measures in protecting the permafrost environment is evaluated,and the influences of climate warming and hydrological effects on the stability of slope wetland embankments are systematically discussed.The permafrost at the slope wetland site is rapidly degrading,demonstrating a reduction in active layer thickness of>3.7 cm per year and a permafrost temperature warming of>0.006℃ per year.The thermosiphon embankment developed by QXR has a specific cooling period;thus,to mitigate the long-term impacts of climate warming on the thermal stability of permafrost foundation,it is essential to implement strengthening measures for the thermosiphon embankment,such as adding a crushed-rock layer or sunshade board on the slope of thermosiphon embankment to creating a composite cooling embankment.Short-term seasonal groundwater seepage intensifies frost damage to the slope wetland embankment,while long-term seasonal supra-permafrost water and groundwater seepage exacerbates uneven transverse deformation of slope wetland embankment.Long-term climate warming and slope effects have altered the surface water and groundwater hydrological processes of slope wetlands,potentially leading to an increased occurrence of slope embankment instability.These results are crucial for improving our understanding of heat and water variation processes in the active layer of slope wetland sites located in permafrost regions and ensuring long-term service safety for the QXR. 展开更多
关键词 heat and water process Active layer Slope wetland Permafrost environment Thermosyphon embankment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部