Grain-oriented silicon steels were prepared at different heating rates during high temperature annealing,in which the evolution of magnetic properties,grain orientations and precipitates were studied.To illustrate the...Grain-oriented silicon steels were prepared at different heating rates during high temperature annealing,in which the evolution of magnetic properties,grain orientations and precipitates were studied.To illustrate the Zener factor,the diameter and number density of precipitates of interrupted testing samples were statistically calculated.The effect of precipitate ripening on the Goss texture and magnetic property was investigated.Data indicated that the trend of Zener factor was similar under different heating rates,first increasing and then decreasing,and that the precipitate maturing was greatly inhibited as the heating rate increased.Secondary recrystallization was developed at the temperature of 1010℃when a heating rate of 5℃/h was used,resulting in Goss,Brass and{110}<227>oriented grains growing abnormally and a magnetic induction intensity of 1.90T.Furthermore,increasing the heating rate to 20℃/h would inhibit the development of undesirable oriented grains and obtain a sharp Goss texture.However,when the heating rate was extremely fast,such as 40℃/h,poor secondary recrystallization was developed with many island grains,corresponding to a decrease in magnetic induction intensity to 1.87 T.At a suitable heating rate of 20℃/h,the sharpest Goss texture and the highest magnetic induction of 1.94 T with an onset secondary recrystallization temperature of 1020℃were found among the experimental variables in this study.The heating rate affected the initial temperature of secondary recrystallization by controlling the maturation of precipitates,leading to the deviation and dispersion of Goss texture,thereby reducing the magnetic properties.展开更多
Due to the complex high-temperature characteristics of hydrocarbon fuel,the research on the long-term working process of parallel channel structure under variable working conditions,especially under high heat-mass rat...Due to the complex high-temperature characteristics of hydrocarbon fuel,the research on the long-term working process of parallel channel structure under variable working conditions,especially under high heat-mass ratio,has not been systematically carried out.In this paper,the heat transfer and flow characteristics of related high temperature fuels are studied by using typical engine parallel channel structure.Through numeri⁃cal simulation and systematic experimental verification,the flow and heat transfer characteristics of parallel chan⁃nels under typical working conditions are obtained,and the effectiveness of high-precision calculation method is preliminarily established.It is known that the stable time required for hot start of regenerative cooling engine is about 50 s,and the flow resistance of parallel channel structure first increases and then decreases with the in⁃crease of equivalence ratio(The following equivalence ratio is expressed byΦ),and there is a flow resistance peak in the range ofΦ=0.5~0.8.This is mainly caused by the coupling effect of high temperature physical proper⁃ties,flow rate and pressure of fuel in parallel channels.At the same time,the cooling and heat transfer character⁃istics of parallel channels under some conditions of high heat-mass ratio are obtained,and the main factors affect⁃ing the heat transfer of parallel channels such as improving surface roughness and strengthening heat transfer are mastered.In the experiment,whenΦis less than 0.9,the phenomenon of local heat transfer enhancement and deterioration can be obviously observed,and the temperature rise of local structures exceeds 200℃,which is the risk of structural damage.Therefore,the reliability of long-term parallel channel structure under the condition of high heat-mass ratio should be fully considered in structural design.展开更多
We report on commissioning experiments at the high-energy,high-temperature(HHT)target area at the GSI Helmholtzzentrum für Schwerionenforschung GmbH,Darmstadt,Germany,combining for the first time intense pulses o...We report on commissioning experiments at the high-energy,high-temperature(HHT)target area at the GSI Helmholtzzentrum für Schwerionenforschung GmbH,Darmstadt,Germany,combining for the first time intense pulses of heavy ions from the SIS18 synchrotron with high-energy laser pulses from the PHELIX laser facility.We demonstrate the use of X-ray diagnostic techniques based on intense laserdriven X-ray sources,which will allow probing of large samples volumetrically heated by the intense heavy-ion beams.A new target chamber as well as optical diagnostics for ion-beam characterization and fast pyrometric temperature measurements complement the experimental capabilities.This platform is designed for experiments at the future Facility for Antiproton and Ion Research in Europe GmbH(FAIR),where unprecedented ion-beam intensities will enable the generation of millimeter-sized samples under high-energy-density conditions.展开更多
The behavior of single-phase flow and conjugate heat transfer in micro-channel heat sinks(MCHS)subjected to auniform heat flux is investigated by means of numerical simulations.Various geometrical configurations areex...The behavior of single-phase flow and conjugate heat transfer in micro-channel heat sinks(MCHS)subjected to auniform heat flux is investigated by means of numerical simulations.Various geometrical configurations areexamined,particularly,the combinations of rectangular solid and perforated blocks,used to create a disturbancein the flow.The analysis focuses on several key aspects and related metrics,including the temperature distribution,the mean Fanning friction factor,the pressure drop,the Nusselt number,and the overall heat transfer coefficientacross a range of Reynolds numbers(80–870).It is shown that the introduction of such blocks significantlyenhances the heat transfer performances of the MCHS compared to the straight-through flow channel.Specifically,a case is found where the Nusselt number increases by 2.3 times relative to the reference case.The integrationof perforated blocks facilitates the generation of vorticity within the channel,promoting the mixing of coldand hot fluids.Notably,MCHS incorporating perforated rectangular blocks exhibit more pronounced heat transferbenefits at Reynolds numbers smaller than 400.展开更多
Tomato(Solanum lycopersicum)is an important fruit and vegetable crop in worldwide.The fertility of tomato reproductive organs can be dramatically decreased when ambient temperatures rise above 35°C,reducing tomat...Tomato(Solanum lycopersicum)is an important fruit and vegetable crop in worldwide.The fertility of tomato reproductive organs can be dramatically decreased when ambient temperatures rise above 35°C,reducing tomato fruit yield.It is necessary to identify transcription factors(TFs)and target genes involved in heat stress response(HSR)signaling cascades in tomato flower buds to improve tomato plant thermotolerance.In this study,we profiled genes expressed in three developmental stages of tomato flower buds.Red and turquoise modules for heat stress(HS)were identified through gene co-expression network analysis,and the genes within these modules were enriched in HS-related pathways.By focusing on the TFs in the two modules,we identified several novel HSR-related TFs,including SlWRKY75,SlMYB117,and SlNAM.Furthermore,homology analysis illustrated a conserved signaling cascade in tomato.Lastly,we identified and experimentally validated four HSF-regulated genes,namely SlGrpE,SlERDJ3A,SlTIL,and SlPOM1,that likely modulate thermotolerance in plants.These results provide a high-resolution atlas of gene expression during tomato flower bud development under HS conditions,which is a valuable resource for uncovering potential regulatory networks associated with the HSR in tomato.展开更多
Extremely high temperatures resulting from climate change have become a major challenge for increasing rice production.Therefore,our objective was to develop heat-tolerant aromatic rice varieties using the pedigree me...Extremely high temperatures resulting from climate change have become a major challenge for increasing rice production.Therefore,our objective was to develop heat-tolerant aromatic rice varieties using the pedigree method,focusing on selecting for seed-setting ability under extremely high temperatures along with the use of single nucleotide polymorphism/insertion and deletion(SNP/InDel)markers to improve aromatic properties and grain quality.Furthermore,the QTL-seq approach was utilized to identify QTLs for seed-setting rate in an F2 population subjected to heat stress.The candidate QTL regions were then aligned to confirm SNPs/InDels in synonymous F7 candidate heat-tolerant lines.The results revealed that four promising lines,namely 84-7-1-9,84-7-1-10,159-3-3-1,and 159-3-3-10,were classified as heat-tolerant with low amylose content.In addition,lines 84-7-1-9 and 84-7-1-10 were identified as aromatic rice encompassing the aroma gene(badh2).Regarding the QTL-seq results,the qSF2.1 region ranged from 311051 to 3929422 bp on chromosome 2,was identified based on the highest contrasting SNP index between the heat-susceptible and tolerant bulks.The candidate genes within this region include two genes related to heat shock proteins,three genes associated with pollen fertility,and four genes involved in heat stress and other abiotic stress responses.These genes are proposed as potential candidates for heat tolerance and could serve as targets in rice breeding programs aimed at enhancing heat tolerance.展开更多
Heat stress hinders the growth and productivity of sweetpotato plants,predominantly through oxidative damage to cellular membranes.Therefore,the development of efficient approaches for mitigating heat-related impairme...Heat stress hinders the growth and productivity of sweetpotato plants,predominantly through oxidative damage to cellular membranes.Therefore,the development of efficient approaches for mitigating heat-related impairments is essential for the long-term production of sweetpotatoes.Melatonin has been recognised for its capacity to assist plants in dealing with abiotic stress conditions.This research aimed to investigate how different doses of exogenous melatonin influence heat damage in sweetpotato plants.Heat stress drastically affected shoot and root fresh weight by 31.8 and 44.5%,respectively.This reduction resulted in oxidative stress characterised by increased formation of hydrogen peroxide(H_(2)O_(2))by 804.4%,superoxide ion(O_(2)^(·-))by 211.5%and malondialdehyde(MDA)by 234.2%.Heat stress also reduced chlorophyll concentration,photosystemⅡefficiency(F_v/F_m)by 15.3%and gaseous exchange.However,pre-treatment with 100μmol L^(-1)melatonin increased growth and reduced oxidative damage to sweetpotato plants under heat stress.In particular,melatonin decreased H_(2)O_(2),O_(2)^(·-)and MDA by 64.8%,42.7%and 38.2%,respectively.Melatonin also mitigated the decline in chlorophyll levels and improved stomatal traits,gaseous exchange and F_(v)/F_(m)(13%).Results suggested that the favorable outcomes of melatonin treatment can be associated with elevated antioxidant enzyme activity and an increase in non-enzymatic antioxidants and osmo-protectants.Overall,these findings indicate that exogenous melatonin can improve heat stress tolerance in sweetpotatoes.This stu dy will assist re searchers in further investigating how melatonin makes sweetpotatoes more resistant to heat stress.展开更多
Researches on plasma-facing materials/components(PFMs/PFCs)have become a focus in magnetic confinement fusion studies,particularly for advanced tokamak operation scenarios.Similarly,spacecraft surface materials must m...Researches on plasma-facing materials/components(PFMs/PFCs)have become a focus in magnetic confinement fusion studies,particularly for advanced tokamak operation scenarios.Similarly,spacecraft surface materials must maintain stable performance under relatively high temperatures and other harsh plasma conditions,making studies of their thermal and ablation resistance critical.Recently,a low-cost,low-energy-storage for superconducting magnets,and compact linear device,HIT-PSI,has been designed and constructed at Harbin Institute of Technology(HIT)to investigate the interaction between stable high heat flux plasma and PFMs/PFCs in scrape-off-layer(SOL)and divertor regions,as well as spacecraft surface materials.The parameters of the argon plasma beam of HIT-PSI are diagnosed using a water-cooled planar Langmuir probe and emission spectroscopy.As magnetic field rises to 2 T,the argon plasma beam generated by a cascaded arc source achieves high density exceeding 1.2×10^(21)m^(-3)at a distance of 25 cm from the source with electron temperature surpassing 4 eV,where the particle flux reaches 10^(24)m^(-2)s^(-1),and the heat flux loaded on the graphite target measured by infrared camera reaches 4 MW/m^(2).Combined with probe and emission spectroscopy data,the transport characteristics of the argon plasma beam are analyzed.展开更多
Surface-latent heat(LE)and sensible heat(SH)fluxes play a pivotal role in governing hydrological,biological,geochemical,and ecological processes on the land surface in the Tibetan Plateau.However,to accurately assess ...Surface-latent heat(LE)and sensible heat(SH)fluxes play a pivotal role in governing hydrological,biological,geochemical,and ecological processes on the land surface in the Tibetan Plateau.However,to accurately assess and understand the spatial distribution of LE and SH fluxes across different underlying surfaces,it is crucial to verify the validity and reliability of ERA-5,GLDAS,and MODIS data against ground measurements obtained from the Flux Net micrometeorological tower network.This study analyzed the spatial patterns of LE and SH over the Tibetan Plateau using data from ERA-5,GLDAS,and MODIS.The results were compared with ground measurements from Flux Net tower observations on different underlying surfaces,and five statistical parameters(Pearson's r,LR slope,RMSE,MBE,and MAE)were used to validate the data.The results showed that:(1)MODIS LE data and ERA-5 SH data exhibited the closest agreement with ground observations,as indicated by their lowest root mean square error and mean bias area values.(2)The accuracy of ERA-5 SH was the highest in meadows and steppes,while GLDAS SH performed optimally in shrublands.Notably,MODIS LE consistently outperformed the other datasets across all vegetation types.(3)The spatial distribution of LE and SH displayed considerable heterogeneity,contingent upon the specific data sources and underlying surfaces.Notably,there was a contrasting trend between GLDAS and ERA-5,as well as MODIS,in terms of SH distribution in the shrubland.In shrublands and meadows,MODIS SH and LE exhibited more pronounced changes than ERA-5 and GLDAS.Additionally,ERA-5 SH demonstrated the opposite variation in meadow and steppe regions compared to GLDAS and MODIS.展开更多
Fluid flow through porous spaces with variable porosity has wide-range applications,notably in biomedical and thermal engineering,where it plays a vital role in comprehending blood flow dynamics within cardiovascular ...Fluid flow through porous spaces with variable porosity has wide-range applications,notably in biomedical and thermal engineering,where it plays a vital role in comprehending blood flow dynamics within cardiovascular systems,heat transfer and thermal management systems improve efficiency using porous materials with variable porosity.Keeping these important applications in view,in current study blood-based hybrid nanofluid flow has considered on a convectively heated sheet.The sheet exhibits the properties of a porous medium with variable porosity and extends in both the x and y directions.Blood has used as base fluid in which the nanoparticles of Cu and Cu O have been mixed.Thermal radiation,space-dependent,and thermal-dependent heat sources have been incorporated into the energy equation,while magnetic effects have been integrated into the momentum equations.Dimensionless variables have employed to transform the modeled equations into dimensionless form and facilitating their solution using bvp4c approach.It has concluded in this study that,both the primary and secondary velocities augmented with upsurge in variable porous factor and declined with escalation in stretching ratio,Casson,magnetic,and slip factors along x-and y-axes.Thermal distribution has grown up with upsurge in Casson factor,magnetic factor,thermal Biot number,and thermal/space-dependent heat sources while has retarded with growth in variable porous and stretching ratio factors.The findings of this investigation have been compared with the existing literature,revealing a strong agreement among present and established results that ensured the validation of the model and method used in this work.展开更多
The heat generation of electronic devices is increasing dramatically,which causes a serious bottleneck in the thermal management of electronics,and overheating will result in performance deterioration and even device ...The heat generation of electronic devices is increasing dramatically,which causes a serious bottleneck in the thermal management of electronics,and overheating will result in performance deterioration and even device damage.With the development of micro-machining technologies,the microchannel heat sink(MCHS)has become one of the best ways to remove the considerable amount of heat generated by high-power electronics.It has the advantages of large specific surface area,small size,coolant saving and high heat transfer coefficient.This paper comprehensively takes an overview of the research progress in MCHSs and generalizes the hotspots and bottlenecks of this area.The heat transfer mechanisms and performances of different channel structures,coolants,channel materials and some other influencing factors are reviewed.Additionally,this paper classifies the heat transfer enhancement technology and reviews the related studies on both the single-phase and phase-change flow and heat transfer.The comprehensive review is expected to provide a theoretical reference and technical guidance for further research and application of MCHSs in the future.展开更多
Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.Howe...Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.However,the as-built part usually exhibits undesirable microstructure and unsatisfactory performance.In this work,WE43 parts were firstly fabricated by PBF-LB and then subjected to heat treatment.Although a high densification rate of 99.91%was achieved using suitable processes,the as-built parts exhibited anisotropic and layeredmicrostructure with heterogeneously precipitated Nd-rich intermetallic.After heat treatment,fine and nano-scaled Mg24Y5particles were precipitated.Meanwhile,theα-Mg grainsunderwent recrystallization and turned coarsened slightly,which effectively weakened thetexture intensity and reduced the anisotropy.As a consequence,the yield strength and ultimate tensile strength were significantly improved to(250.2±3.5)MPa and(312±3.7)MPa,respectively,while the elongation was still maintained at a high level of 15.2%.Furthermore,the homogenized microstructure reduced the tendency of localized corrosion and favoredthe development of uniform passivation film.Thus,the degradation rate of WE43 parts was decreased by an order of magnitude.Besides,in-vitro cell experiments proved their favorable biocompatibility.展开更多
GTs(Glycosyltransferases)are important in plant growth and abiotic stresses.However,its role in maize heat response is far from clear.Here,we describe the constitutively expressed UDP-glycosyltransferase ZmUGT92A1,whi...GTs(Glycosyltransferases)are important in plant growth and abiotic stresses.However,its role in maize heat response is far from clear.Here,we describe the constitutively expressed UDP-glycosyltransferase ZmUGT92A1,which has a highly conserved PSPG box and is localized in chloroplasts,is induced under heat stress.Functional disruption of ZmUGT92A1 leads to heat sensitivity and reactive oxygen species accumulation in maize.Metabolomics analysis revealed that ZmUGT92A1 affected multiple metabolic pathways and altered the metabolic homeostasis of flavonoids under heat stress.In vitro assay showed ZmUGT92A1 exhibits glycosyltransferase activity on flavonoids and hormones.Additionally,we identified a rapidly heat-induced transcription factor,ZmHSF08,which can directly bind and repress the promoter region of ZmUGT92A1.The ZmHSF08 overexpression line exhibits heat sensitivity and reactive oxygen species accumulation.These findings reveal that the ZmHSF08-ZmUGT92A1 module plays a role in heat tolerance in maize and provide candidate strategies for the development of heat-tolerant varieties.展开更多
Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building hea...Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building heating,ventilation,and air-conditioning systems.In recent years,there has been a surge in advancements in personal thermal management(PTM),aiming to regulate heat and moisture transfer within our immediate surroundings,clothing,and skin.The advent of PTM is driven by the rapid development in nano/micro-materials and energy science and engineering.An emerging research area in PTM is personal radiative thermal management(PRTM),which demonstrates immense potential with its high radiative heat transfer efficiency and ease of regulation.However,it is less taken into account in traditional textiles,and there currently lies a gap in our knowledge and understanding of PRTM.In this review,we aim to present a thorough analysis of advanced textile materials and technologies for PRTM.Specifically,we will introduce and discuss the underlying radiation heat transfer mechanisms,fabrication methods of textiles,and various indoor/outdoor applications in light of their different regulation functionalities,including radiative cooling,radiative heating,and dual-mode thermoregulation.Furthermore,we will shine a light on the current hurdles,propose potential strategies,and delve into future technology trends for PRTM with an emphasis on functionalities and applications.展开更多
Background High environmental temperatures induce heat stress in broiler chickens,affecting their health and pro-duction performance.Several dietary,managerial,and genetics strategies have been tested with some succes...Background High environmental temperatures induce heat stress in broiler chickens,affecting their health and pro-duction performance.Several dietary,managerial,and genetics strategies have been tested with some success in mitigating heat stress(HS)in broilers.Developing novel HS mitigation strategies for sustaining broiler production is critically needed.This study investigated the effects of pre-hatch thermal manipulation(TM)and post-hatch baica-lein supplementation on growth performance and health parameters in heat-stressed broilers.Results Six hundred fertile Cobb 500 eggs were incubated for 21 d.After candling on embryonic day(ED)10,238 eggs were thermally manipulated at 38.5℃ with 55%relative humidity(RH)from ED 12 to 18,then transferred to the hatcher(ED 19 to 21,standard temperature)and 236 eggs were incubated at a controlled temperature(37.5℃)till hatch.After hatch,180-day-old chicks from both groups were raised in 36 pens(n=10 birds/pen,6 replicates per treatment).The treatments were:1)Control,2)TM,3)control heat stress(CHS),4)thermal manipulation heat stress(TMHS),5)control heat stress supplement(CHSS),and 6)thermal manipulation heat stress supplement(TMHSS).All birds were raised under the standard environment for 21 d,followed by chronic heat stress from d 22 to 35(32–33℃ for 8 h)in the CHS,TMHS,CHSS,and TMHSS groups.A thermoneutral(22–24℃)environment was maintained in the Control and TM groups.RH was constant(50%±5%)throughout the trial.All the data were analyzed using one-way ANOVA in R and GraphPad software at P<0.05 and are presented as mean±SEM.Heat stress significantly decreased(P<0.05)the final body weight and ADG in CHS and TMHS groups compared to the other groups.Embryonic TM significantly increased(P<0.05)the expression of heat shock protein-related genes(HSP70,HSP90,and HSPH1)and antioxidant-related genes(GPX1 and TXN).TMHS birds showed a significant increment(P<0.05)in total cecal volatile fatty acid(VFA)concentration compared to the CHS birds.The cecal microbial analysis showed significant enrichment(P<0.05)in alpha and beta diversity and Coprococcus in the TMHSS group.Conclusions Pre-hatch TM and post-hatch baicalein supplementation in heat-stressed birds mitigate the detrimental effects of heat stress on chickens’growth performance,upregulate favorable gene expression,increase VFA produc-tion,and promote gut health by increasing beneficial microbial communities.展开更多
Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplish...Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplished by steady-state numerical hydrodynamics and deep knowledge of the field of flow.Because of the interaction between mainstream and purge flow contributing supplementary losses in the stage,non-axisymmetric endwalls are highly susceptible to the inception of purge flow exit compared to the flat and any advantage rapidly vanishes.The conclusions reveal that the supreme endwall pattern could yield a lowering of the gross pressure loss at the design stage and is related to the size of the top-loss location being productively lowered.This has led to diminished global thermal exchange lowered in the passage of the vane alone.The reverse flow adjacent to the suction side corner of the endwall is migrated farther from the vane surface,as the deviated pressure spread on the endwall accelerates the flow and progresses the reverse flow core still downstream.The depleted association between the tornado-like vortex and the corner vortex adjacent to the suction side corner of the endwall is the dominant mechanism of control in the contoured end wall.In this publication,we show that the non-axisymmetric endwall contouring by selective numerical shape change method at most prominent locations is advantageous in lowering the thermal load in turbines to augment the net heat flux reduction as well as the aerodynamic performance using multi-objective optimization.展开更多
In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocol...In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocolumn configuration.However,this approach frequently necessitates tedious enumeration procedures,resulting in a considerable computational burden.To surmount this formidable challenge,the present study introduces an innovative remedy:The proposition of a superstructure that encompasses both single-column and multiple two-column configurations.Additionally,a simultaneous optimization algorithm is applied to optimize both the process parameters and heat integration structures of the twocolumn configurations.The effectiveness of this approach is demonstrated through a case study focusing on industrial organosilicon separation.The results underscore that the superstructure methodology not only substantially mitigates computational time compared to exhaustive enumeration but also furnishes solutions that exhibit comparable performance.展开更多
Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative coo...Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative cooling and solar heating for the uptake of CO_(2) on commercial activated carbons(CACs).During adsorption,the adsorbents are coated with a layer of hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene)[P(VdF-HFP)HP],which cools the adsorbents to a low temperature under sunlight through radiative cooling.For desorption,CACs with broad absorption of the solar spectrum are exposed to light irradiation for heating.The heating and cooling processes are completely driven by solar energy.Adsorption tests under mimicked sunlight using the CACs show that the performance of this system is comparable to that of the traditional ones.Furthermore,under real sunlight irradiation,the adsorption capacity of the CACs can be well maintained after multiple cycles.The present work may inspire the development of new temperature swing procedures with little energy consumption.展开更多
The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in N...The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in Northeast China(NEC)remains unknown.The connection between spring TP AHS and subsequent summer precipitation over NEC from 1961 to 2020 is analyzed in this study.Results illustrate that stronger spring TP AHS can enhance subsequent summer NEC precipitation,and higher soil moisture in the Yellow River Valley-North China region(YRVNC)acts as a bridge.During spring,the strong TP AHS could strengthen the transportation of water vapor to East China and lead to excessive rainfall in the YRVNC.Thus,soil moisture increases,which regulates local thermal conditions by decreasing local surface skin temperature and sensible heat.Owing to the memory of soil moisture,the lower spring sensible heat over the YRVNC can last until mid-summer,decrease the land–sea thermal contrast,and weaken the southerly winds over the East Asia–western Pacific region and convective activities over the South China Sea and tropical western Pacific.This modulates the East Asia–Pacific teleconnection pattern,which leads to a cyclonic anomaly and excessive summer precipitation over NEC.展开更多
During air injection into an oil reservoir,an oxidation reaction generates some heat to raise the reservoir temperature.When the reservoir temperature reaches an ignition temperature,spontaneous ignition occurs.There ...During air injection into an oil reservoir,an oxidation reaction generates some heat to raise the reservoir temperature.When the reservoir temperature reaches an ignition temperature,spontaneous ignition occurs.There is a time delay from the injection to ignition.There are mixed results regarding the feasibility of spontaneous ignition in real-field projects and in laboratory experiments.No analytical model is available in the literature to estimate the oxidation time required to reach spontaneous ignition with heat loss.This paper discusses the feasibility of spontaneous ignition from theoretical points and experimental and field project observations.An analytical model considering heat loss is proposed.Analytical models with and without heat loss investigate the factors that affect spontaneous ignition.Based on the discussion and investigations,we find that it is more difficult for spontaneous ignition to occur in laboratory experiments than in oil reservoirs;spontaneous ignition is strongly affected by the initial reservoir temperature,oil activity,and heat loss;spontaneous ignition is only possible when the initial reservoir temperature is high,the oil oxidation rate is high,and the heat loss is low.展开更多
文摘Grain-oriented silicon steels were prepared at different heating rates during high temperature annealing,in which the evolution of magnetic properties,grain orientations and precipitates were studied.To illustrate the Zener factor,the diameter and number density of precipitates of interrupted testing samples were statistically calculated.The effect of precipitate ripening on the Goss texture and magnetic property was investigated.Data indicated that the trend of Zener factor was similar under different heating rates,first increasing and then decreasing,and that the precipitate maturing was greatly inhibited as the heating rate increased.Secondary recrystallization was developed at the temperature of 1010℃when a heating rate of 5℃/h was used,resulting in Goss,Brass and{110}<227>oriented grains growing abnormally and a magnetic induction intensity of 1.90T.Furthermore,increasing the heating rate to 20℃/h would inhibit the development of undesirable oriented grains and obtain a sharp Goss texture.However,when the heating rate was extremely fast,such as 40℃/h,poor secondary recrystallization was developed with many island grains,corresponding to a decrease in magnetic induction intensity to 1.87 T.At a suitable heating rate of 20℃/h,the sharpest Goss texture and the highest magnetic induction of 1.94 T with an onset secondary recrystallization temperature of 1020℃were found among the experimental variables in this study.The heating rate affected the initial temperature of secondary recrystallization by controlling the maturation of precipitates,leading to the deviation and dispersion of Goss texture,thereby reducing the magnetic properties.
文摘Due to the complex high-temperature characteristics of hydrocarbon fuel,the research on the long-term working process of parallel channel structure under variable working conditions,especially under high heat-mass ratio,has not been systematically carried out.In this paper,the heat transfer and flow characteristics of related high temperature fuels are studied by using typical engine parallel channel structure.Through numeri⁃cal simulation and systematic experimental verification,the flow and heat transfer characteristics of parallel chan⁃nels under typical working conditions are obtained,and the effectiveness of high-precision calculation method is preliminarily established.It is known that the stable time required for hot start of regenerative cooling engine is about 50 s,and the flow resistance of parallel channel structure first increases and then decreases with the in⁃crease of equivalence ratio(The following equivalence ratio is expressed byΦ),and there is a flow resistance peak in the range ofΦ=0.5~0.8.This is mainly caused by the coupling effect of high temperature physical proper⁃ties,flow rate and pressure of fuel in parallel channels.At the same time,the cooling and heat transfer character⁃istics of parallel channels under some conditions of high heat-mass ratio are obtained,and the main factors affect⁃ing the heat transfer of parallel channels such as improving surface roughness and strengthening heat transfer are mastered.In the experiment,whenΦis less than 0.9,the phenomenon of local heat transfer enhancement and deterioration can be obviously observed,and the temperature rise of local structures exceeds 200℃,which is the risk of structural damage.Therefore,the reliability of long-term parallel channel structure under the condition of high heat-mass ratio should be fully considered in structural design.
基金support by the Federal Ministry of Education and Research(BMBF)under Grant No.05P21RFFA2.O.HD.K.were supported by the Helmholtz Association under Grant No.ERC-RA-0041The HHT target chamber and vacuum pumping system have been financed via the BMBF ErUM-APPA collaborative research scheme(contract numbers 05P19RFFA1-Goethe-Universität Frankfurt,05P19SJFA1 and 05P21SJFA2-Friedrich-Schiller-Universität Jena).。
文摘We report on commissioning experiments at the high-energy,high-temperature(HHT)target area at the GSI Helmholtzzentrum für Schwerionenforschung GmbH,Darmstadt,Germany,combining for the first time intense pulses of heavy ions from the SIS18 synchrotron with high-energy laser pulses from the PHELIX laser facility.We demonstrate the use of X-ray diagnostic techniques based on intense laserdriven X-ray sources,which will allow probing of large samples volumetrically heated by the intense heavy-ion beams.A new target chamber as well as optical diagnostics for ion-beam characterization and fast pyrometric temperature measurements complement the experimental capabilities.This platform is designed for experiments at the future Facility for Antiproton and Ion Research in Europe GmbH(FAIR),where unprecedented ion-beam intensities will enable the generation of millimeter-sized samples under high-energy-density conditions.
基金funded by the Project of the Hubei Provincial Department of Science and Technology(Grant No.2022CFB957)the Project of Hubei Engineering University of Teaching Research(Grant No.JY2024032)+1 种基金Ministry of Education University-Industry Cooperation Collaborative Education Project(Grant No.220903584161245)College Students’Innovation and Entrepreneurship Training Program(Grant Nos.DC2024031,DC2024032).
文摘The behavior of single-phase flow and conjugate heat transfer in micro-channel heat sinks(MCHS)subjected to auniform heat flux is investigated by means of numerical simulations.Various geometrical configurations areexamined,particularly,the combinations of rectangular solid and perforated blocks,used to create a disturbancein the flow.The analysis focuses on several key aspects and related metrics,including the temperature distribution,the mean Fanning friction factor,the pressure drop,the Nusselt number,and the overall heat transfer coefficientacross a range of Reynolds numbers(80–870).It is shown that the introduction of such blocks significantlyenhances the heat transfer performances of the MCHS compared to the straight-through flow channel.Specifically,a case is found where the Nusselt number increases by 2.3 times relative to the reference case.The integrationof perforated blocks facilitates the generation of vorticity within the channel,promoting the mixing of coldand hot fluids.Notably,MCHS incorporating perforated rectangular blocks exhibit more pronounced heat transferbenefits at Reynolds numbers smaller than 400.
基金supported by grants from the National Natural Science Foundation of China(Grant No.32072571)the 111 Project(Grant No.B17043)the Construction of Beijing Science,and Technology Innovation and Service Capacity in Top Subjects(Grant No.CEFF-PXM2019_014207_000032)。
文摘Tomato(Solanum lycopersicum)is an important fruit and vegetable crop in worldwide.The fertility of tomato reproductive organs can be dramatically decreased when ambient temperatures rise above 35°C,reducing tomato fruit yield.It is necessary to identify transcription factors(TFs)and target genes involved in heat stress response(HSR)signaling cascades in tomato flower buds to improve tomato plant thermotolerance.In this study,we profiled genes expressed in three developmental stages of tomato flower buds.Red and turquoise modules for heat stress(HS)were identified through gene co-expression network analysis,and the genes within these modules were enriched in HS-related pathways.By focusing on the TFs in the two modules,we identified several novel HSR-related TFs,including SlWRKY75,SlMYB117,and SlNAM.Furthermore,homology analysis illustrated a conserved signaling cascade in tomato.Lastly,we identified and experimentally validated four HSF-regulated genes,namely SlGrpE,SlERDJ3A,SlTIL,and SlPOM1,that likely modulate thermotolerance in plants.These results provide a high-resolution atlas of gene expression during tomato flower bud development under HS conditions,which is a valuable resource for uncovering potential regulatory networks associated with the HSR in tomato.
基金Agricultural Research Development Agency in Thailand for financing the study and the provision of this research.
文摘Extremely high temperatures resulting from climate change have become a major challenge for increasing rice production.Therefore,our objective was to develop heat-tolerant aromatic rice varieties using the pedigree method,focusing on selecting for seed-setting ability under extremely high temperatures along with the use of single nucleotide polymorphism/insertion and deletion(SNP/InDel)markers to improve aromatic properties and grain quality.Furthermore,the QTL-seq approach was utilized to identify QTLs for seed-setting rate in an F2 population subjected to heat stress.The candidate QTL regions were then aligned to confirm SNPs/InDels in synonymous F7 candidate heat-tolerant lines.The results revealed that four promising lines,namely 84-7-1-9,84-7-1-10,159-3-3-1,and 159-3-3-10,were classified as heat-tolerant with low amylose content.In addition,lines 84-7-1-9 and 84-7-1-10 were identified as aromatic rice encompassing the aroma gene(badh2).Regarding the QTL-seq results,the qSF2.1 region ranged from 311051 to 3929422 bp on chromosome 2,was identified based on the highest contrasting SNP index between the heat-susceptible and tolerant bulks.The candidate genes within this region include two genes related to heat shock proteins,three genes associated with pollen fertility,and four genes involved in heat stress and other abiotic stress responses.These genes are proposed as potential candidates for heat tolerance and could serve as targets in rice breeding programs aimed at enhancing heat tolerance.
基金supported jointly by the earmarked fund for CARS-10-GW2the key research and development program of Hainan Province(Grant No.ZDYF2020226)+1 种基金Collaborative innovation center of Nanfan and high-efficiency tropical agriculture,Hainan University(Grant No.XTCX2022NYC21)funding of Hainan University[Grant No.KYQD(ZR)22123]。
文摘Heat stress hinders the growth and productivity of sweetpotato plants,predominantly through oxidative damage to cellular membranes.Therefore,the development of efficient approaches for mitigating heat-related impairments is essential for the long-term production of sweetpotatoes.Melatonin has been recognised for its capacity to assist plants in dealing with abiotic stress conditions.This research aimed to investigate how different doses of exogenous melatonin influence heat damage in sweetpotato plants.Heat stress drastically affected shoot and root fresh weight by 31.8 and 44.5%,respectively.This reduction resulted in oxidative stress characterised by increased formation of hydrogen peroxide(H_(2)O_(2))by 804.4%,superoxide ion(O_(2)^(·-))by 211.5%and malondialdehyde(MDA)by 234.2%.Heat stress also reduced chlorophyll concentration,photosystemⅡefficiency(F_v/F_m)by 15.3%and gaseous exchange.However,pre-treatment with 100μmol L^(-1)melatonin increased growth and reduced oxidative damage to sweetpotato plants under heat stress.In particular,melatonin decreased H_(2)O_(2),O_(2)^(·-)and MDA by 64.8%,42.7%and 38.2%,respectively.Melatonin also mitigated the decline in chlorophyll levels and improved stomatal traits,gaseous exchange and F_(v)/F_(m)(13%).Results suggested that the favorable outcomes of melatonin treatment can be associated with elevated antioxidant enzyme activity and an increase in non-enzymatic antioxidants and osmo-protectants.Overall,these findings indicate that exogenous melatonin can improve heat stress tolerance in sweetpotatoes.This stu dy will assist re searchers in further investigating how melatonin makes sweetpotatoes more resistant to heat stress.
基金supported by National Natural Science Foundation of China(No.12105067)the ITER Organization and China Domestic Agency for the support of this work(No.ITER5.5.P01.CN.05)。
文摘Researches on plasma-facing materials/components(PFMs/PFCs)have become a focus in magnetic confinement fusion studies,particularly for advanced tokamak operation scenarios.Similarly,spacecraft surface materials must maintain stable performance under relatively high temperatures and other harsh plasma conditions,making studies of their thermal and ablation resistance critical.Recently,a low-cost,low-energy-storage for superconducting magnets,and compact linear device,HIT-PSI,has been designed and constructed at Harbin Institute of Technology(HIT)to investigate the interaction between stable high heat flux plasma and PFMs/PFCs in scrape-off-layer(SOL)and divertor regions,as well as spacecraft surface materials.The parameters of the argon plasma beam of HIT-PSI are diagnosed using a water-cooled planar Langmuir probe and emission spectroscopy.As magnetic field rises to 2 T,the argon plasma beam generated by a cascaded arc source achieves high density exceeding 1.2×10^(21)m^(-3)at a distance of 25 cm from the source with electron temperature surpassing 4 eV,where the particle flux reaches 10^(24)m^(-2)s^(-1),and the heat flux loaded on the graphite target measured by infrared camera reaches 4 MW/m^(2).Combined with probe and emission spectroscopy data,the transport characteristics of the argon plasma beam are analyzed.
基金funded by the West Light Scholar of the Chinese Academy of Sciences(xbzg-zdsys-202202)the Natural Science Foundation of Henan(Grant No.232300420165)Integrated Scientific Investigation of the North-South Transitional Zone of China(2017FY100900)。
文摘Surface-latent heat(LE)and sensible heat(SH)fluxes play a pivotal role in governing hydrological,biological,geochemical,and ecological processes on the land surface in the Tibetan Plateau.However,to accurately assess and understand the spatial distribution of LE and SH fluxes across different underlying surfaces,it is crucial to verify the validity and reliability of ERA-5,GLDAS,and MODIS data against ground measurements obtained from the Flux Net micrometeorological tower network.This study analyzed the spatial patterns of LE and SH over the Tibetan Plateau using data from ERA-5,GLDAS,and MODIS.The results were compared with ground measurements from Flux Net tower observations on different underlying surfaces,and five statistical parameters(Pearson's r,LR slope,RMSE,MBE,and MAE)were used to validate the data.The results showed that:(1)MODIS LE data and ERA-5 SH data exhibited the closest agreement with ground observations,as indicated by their lowest root mean square error and mean bias area values.(2)The accuracy of ERA-5 SH was the highest in meadows and steppes,while GLDAS SH performed optimally in shrublands.Notably,MODIS LE consistently outperformed the other datasets across all vegetation types.(3)The spatial distribution of LE and SH displayed considerable heterogeneity,contingent upon the specific data sources and underlying surfaces.Notably,there was a contrasting trend between GLDAS and ERA-5,as well as MODIS,in terms of SH distribution in the shrubland.In shrublands and meadows,MODIS SH and LE exhibited more pronounced changes than ERA-5 and GLDAS.Additionally,ERA-5 SH demonstrated the opposite variation in meadow and steppe regions compared to GLDAS and MODIS.
基金supported via funding from Prince Sattam bin Abdulaziz University(Grant No.PSAU/2024/R/1446)。
文摘Fluid flow through porous spaces with variable porosity has wide-range applications,notably in biomedical and thermal engineering,where it plays a vital role in comprehending blood flow dynamics within cardiovascular systems,heat transfer and thermal management systems improve efficiency using porous materials with variable porosity.Keeping these important applications in view,in current study blood-based hybrid nanofluid flow has considered on a convectively heated sheet.The sheet exhibits the properties of a porous medium with variable porosity and extends in both the x and y directions.Blood has used as base fluid in which the nanoparticles of Cu and Cu O have been mixed.Thermal radiation,space-dependent,and thermal-dependent heat sources have been incorporated into the energy equation,while magnetic effects have been integrated into the momentum equations.Dimensionless variables have employed to transform the modeled equations into dimensionless form and facilitating their solution using bvp4c approach.It has concluded in this study that,both the primary and secondary velocities augmented with upsurge in variable porous factor and declined with escalation in stretching ratio,Casson,magnetic,and slip factors along x-and y-axes.Thermal distribution has grown up with upsurge in Casson factor,magnetic factor,thermal Biot number,and thermal/space-dependent heat sources while has retarded with growth in variable porous and stretching ratio factors.The findings of this investigation have been compared with the existing literature,revealing a strong agreement among present and established results that ensured the validation of the model and method used in this work.
基金supported by the National Natural Science Foundation of China(Grant Nos.U20A20301,51825601)。
文摘The heat generation of electronic devices is increasing dramatically,which causes a serious bottleneck in the thermal management of electronics,and overheating will result in performance deterioration and even device damage.With the development of micro-machining technologies,the microchannel heat sink(MCHS)has become one of the best ways to remove the considerable amount of heat generated by high-power electronics.It has the advantages of large specific surface area,small size,coolant saving and high heat transfer coefficient.This paper comprehensively takes an overview of the research progress in MCHSs and generalizes the hotspots and bottlenecks of this area.The heat transfer mechanisms and performances of different channel structures,coolants,channel materials and some other influencing factors are reviewed.Additionally,this paper classifies the heat transfer enhancement technology and reviews the related studies on both the single-phase and phase-change flow and heat transfer.The comprehensive review is expected to provide a theoretical reference and technical guidance for further research and application of MCHSs in the future.
基金supported by the following funds:National Natural Science Foundation of China(51935014,52165043)Jiangxi Provincial Cultivation Program for Academic and Technical Leaders of Major Subjects(20225BCJ23008)+1 种基金Jiangxi Provincial Natural Science Foundation(20224ACB204013,20224ACB214008)Scientific Research Project of Anhui Universities(KJ2021A1106)。
文摘Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.However,the as-built part usually exhibits undesirable microstructure and unsatisfactory performance.In this work,WE43 parts were firstly fabricated by PBF-LB and then subjected to heat treatment.Although a high densification rate of 99.91%was achieved using suitable processes,the as-built parts exhibited anisotropic and layeredmicrostructure with heterogeneously precipitated Nd-rich intermetallic.After heat treatment,fine and nano-scaled Mg24Y5particles were precipitated.Meanwhile,theα-Mg grainsunderwent recrystallization and turned coarsened slightly,which effectively weakened thetexture intensity and reduced the anisotropy.As a consequence,the yield strength and ultimate tensile strength were significantly improved to(250.2±3.5)MPa and(312±3.7)MPa,respectively,while the elongation was still maintained at a high level of 15.2%.Furthermore,the homogenized microstructure reduced the tendency of localized corrosion and favoredthe development of uniform passivation film.Thus,the degradation rate of WE43 parts was decreased by an order of magnitude.Besides,in-vitro cell experiments proved their favorable biocompatibility.
基金supported by the National Key Research and Development Program of China (2021YFF1000301)the National Natural Science Foundation of China (31771805)。
文摘GTs(Glycosyltransferases)are important in plant growth and abiotic stresses.However,its role in maize heat response is far from clear.Here,we describe the constitutively expressed UDP-glycosyltransferase ZmUGT92A1,which has a highly conserved PSPG box and is localized in chloroplasts,is induced under heat stress.Functional disruption of ZmUGT92A1 leads to heat sensitivity and reactive oxygen species accumulation in maize.Metabolomics analysis revealed that ZmUGT92A1 affected multiple metabolic pathways and altered the metabolic homeostasis of flavonoids under heat stress.In vitro assay showed ZmUGT92A1 exhibits glycosyltransferase activity on flavonoids and hormones.Additionally,we identified a rapidly heat-induced transcription factor,ZmHSF08,which can directly bind and repress the promoter region of ZmUGT92A1.The ZmHSF08 overexpression line exhibits heat sensitivity and reactive oxygen species accumulation.These findings reveal that the ZmHSF08-ZmUGT92A1 module plays a role in heat tolerance in maize and provide candidate strategies for the development of heat-tolerant varieties.
基金support from the Research Grants Council of the Hong Kong Special Administrative Region,China(PolyU152052/21E)Green Tech Fund of Hong Kong(Project No.:GTF202220106)+1 种基金Innovation and Technology Fund of the Hong Kong Special Administrative Region,China(ITP/018/21TP)PolyU Endowed Young Scholars Scheme(Project No.:84CC).
文摘Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building heating,ventilation,and air-conditioning systems.In recent years,there has been a surge in advancements in personal thermal management(PTM),aiming to regulate heat and moisture transfer within our immediate surroundings,clothing,and skin.The advent of PTM is driven by the rapid development in nano/micro-materials and energy science and engineering.An emerging research area in PTM is personal radiative thermal management(PRTM),which demonstrates immense potential with its high radiative heat transfer efficiency and ease of regulation.However,it is less taken into account in traditional textiles,and there currently lies a gap in our knowledge and understanding of PRTM.In this review,we aim to present a thorough analysis of advanced textile materials and technologies for PRTM.Specifically,we will introduce and discuss the underlying radiation heat transfer mechanisms,fabrication methods of textiles,and various indoor/outdoor applications in light of their different regulation functionalities,including radiative cooling,radiative heating,and dual-mode thermoregulation.Furthermore,we will shine a light on the current hurdles,propose potential strategies,and delve into future technology trends for PRTM with an emphasis on functionalities and applications.
基金The research was funded by a USDA Multistate(2052R)grant from the CTAHR University of Hawaii at Manoa to B.M.
文摘Background High environmental temperatures induce heat stress in broiler chickens,affecting their health and pro-duction performance.Several dietary,managerial,and genetics strategies have been tested with some success in mitigating heat stress(HS)in broilers.Developing novel HS mitigation strategies for sustaining broiler production is critically needed.This study investigated the effects of pre-hatch thermal manipulation(TM)and post-hatch baica-lein supplementation on growth performance and health parameters in heat-stressed broilers.Results Six hundred fertile Cobb 500 eggs were incubated for 21 d.After candling on embryonic day(ED)10,238 eggs were thermally manipulated at 38.5℃ with 55%relative humidity(RH)from ED 12 to 18,then transferred to the hatcher(ED 19 to 21,standard temperature)and 236 eggs were incubated at a controlled temperature(37.5℃)till hatch.After hatch,180-day-old chicks from both groups were raised in 36 pens(n=10 birds/pen,6 replicates per treatment).The treatments were:1)Control,2)TM,3)control heat stress(CHS),4)thermal manipulation heat stress(TMHS),5)control heat stress supplement(CHSS),and 6)thermal manipulation heat stress supplement(TMHSS).All birds were raised under the standard environment for 21 d,followed by chronic heat stress from d 22 to 35(32–33℃ for 8 h)in the CHS,TMHS,CHSS,and TMHSS groups.A thermoneutral(22–24℃)environment was maintained in the Control and TM groups.RH was constant(50%±5%)throughout the trial.All the data were analyzed using one-way ANOVA in R and GraphPad software at P<0.05 and are presented as mean±SEM.Heat stress significantly decreased(P<0.05)the final body weight and ADG in CHS and TMHS groups compared to the other groups.Embryonic TM significantly increased(P<0.05)the expression of heat shock protein-related genes(HSP70,HSP90,and HSPH1)and antioxidant-related genes(GPX1 and TXN).TMHS birds showed a significant increment(P<0.05)in total cecal volatile fatty acid(VFA)concentration compared to the CHS birds.The cecal microbial analysis showed significant enrichment(P<0.05)in alpha and beta diversity and Coprococcus in the TMHSS group.Conclusions Pre-hatch TM and post-hatch baicalein supplementation in heat-stressed birds mitigate the detrimental effects of heat stress on chickens’growth performance,upregulate favorable gene expression,increase VFA produc-tion,and promote gut health by increasing beneficial microbial communities.
文摘Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplished by steady-state numerical hydrodynamics and deep knowledge of the field of flow.Because of the interaction between mainstream and purge flow contributing supplementary losses in the stage,non-axisymmetric endwalls are highly susceptible to the inception of purge flow exit compared to the flat and any advantage rapidly vanishes.The conclusions reveal that the supreme endwall pattern could yield a lowering of the gross pressure loss at the design stage and is related to the size of the top-loss location being productively lowered.This has led to diminished global thermal exchange lowered in the passage of the vane alone.The reverse flow adjacent to the suction side corner of the endwall is migrated farther from the vane surface,as the deviated pressure spread on the endwall accelerates the flow and progresses the reverse flow core still downstream.The depleted association between the tornado-like vortex and the corner vortex adjacent to the suction side corner of the endwall is the dominant mechanism of control in the contoured end wall.In this publication,we show that the non-axisymmetric endwall contouring by selective numerical shape change method at most prominent locations is advantageous in lowering the thermal load in turbines to augment the net heat flux reduction as well as the aerodynamic performance using multi-objective optimization.
文摘In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocolumn configuration.However,this approach frequently necessitates tedious enumeration procedures,resulting in a considerable computational burden.To surmount this formidable challenge,the present study introduces an innovative remedy:The proposition of a superstructure that encompasses both single-column and multiple two-column configurations.Additionally,a simultaneous optimization algorithm is applied to optimize both the process parameters and heat integration structures of the twocolumn configurations.The effectiveness of this approach is demonstrated through a case study focusing on industrial organosilicon separation.The results underscore that the superstructure methodology not only substantially mitigates computational time compared to exhaustive enumeration but also furnishes solutions that exhibit comparable performance.
基金supported by the National Science Fund for Distinguished Young Scholars(22125804)the National Natural Science Foundation of China(21808110,22078155,and 21878149).
文摘Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative cooling and solar heating for the uptake of CO_(2) on commercial activated carbons(CACs).During adsorption,the adsorbents are coated with a layer of hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene)[P(VdF-HFP)HP],which cools the adsorbents to a low temperature under sunlight through radiative cooling.For desorption,CACs with broad absorption of the solar spectrum are exposed to light irradiation for heating.The heating and cooling processes are completely driven by solar energy.Adsorption tests under mimicked sunlight using the CACs show that the performance of this system is comparable to that of the traditional ones.Furthermore,under real sunlight irradiation,the adsorption capacity of the CACs can be well maintained after multiple cycles.The present work may inspire the development of new temperature swing procedures with little energy consumption.
基金supported by the Open Research Fund of TPESER(Grant No.TPESER202205)the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0101)。
文摘The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in Northeast China(NEC)remains unknown.The connection between spring TP AHS and subsequent summer precipitation over NEC from 1961 to 2020 is analyzed in this study.Results illustrate that stronger spring TP AHS can enhance subsequent summer NEC precipitation,and higher soil moisture in the Yellow River Valley-North China region(YRVNC)acts as a bridge.During spring,the strong TP AHS could strengthen the transportation of water vapor to East China and lead to excessive rainfall in the YRVNC.Thus,soil moisture increases,which regulates local thermal conditions by decreasing local surface skin temperature and sensible heat.Owing to the memory of soil moisture,the lower spring sensible heat over the YRVNC can last until mid-summer,decrease the land–sea thermal contrast,and weaken the southerly winds over the East Asia–western Pacific region and convective activities over the South China Sea and tropical western Pacific.This modulates the East Asia–Pacific teleconnection pattern,which leads to a cyclonic anomaly and excessive summer precipitation over NEC.
基金supported by the National Natural Science Foundation of China (No.51974334)Hainan Province Science and Technology Special Fund (ZDYF2022SHFZ107)local efficient reform and development funds for personnel training projects supported by the central government,Heilongjiang Postdoctoral Scientific Research Fund (LBH-Q21012)。
文摘During air injection into an oil reservoir,an oxidation reaction generates some heat to raise the reservoir temperature.When the reservoir temperature reaches an ignition temperature,spontaneous ignition occurs.There is a time delay from the injection to ignition.There are mixed results regarding the feasibility of spontaneous ignition in real-field projects and in laboratory experiments.No analytical model is available in the literature to estimate the oxidation time required to reach spontaneous ignition with heat loss.This paper discusses the feasibility of spontaneous ignition from theoretical points and experimental and field project observations.An analytical model considering heat loss is proposed.Analytical models with and without heat loss investigate the factors that affect spontaneous ignition.Based on the discussion and investigations,we find that it is more difficult for spontaneous ignition to occur in laboratory experiments than in oil reservoirs;spontaneous ignition is strongly affected by the initial reservoir temperature,oil activity,and heat loss;spontaneous ignition is only possible when the initial reservoir temperature is high,the oil oxidation rate is high,and the heat loss is low.