期刊文献+
共找到130篇文章
< 1 2 7 >
每页显示 20 50 100
Improving Heat Transfer in Parabolic Trough Solar Collectors by Magnetic Nanofluids
1
作者 Ritesh Singh Abhishek Gupta +2 位作者 Akshoy Ranjan Paul Bireswar Paul Suvash C.Saha 《Energy Engineering》 EI 2024年第4期835-848,共14页
A parabolic trough solar collector(PTSC)converts solar radiation into thermal energy.However,low thermal efficiency of PTSC poses a hindrance to the deployment of solar thermal power plants.Thermal performance of PTSC... A parabolic trough solar collector(PTSC)converts solar radiation into thermal energy.However,low thermal efficiency of PTSC poses a hindrance to the deployment of solar thermal power plants.Thermal performance of PTSC is enhanced in this study by incorporating magnetic nanoparticles into the working fluid.The circular receiver pipe,with dimensions of 66 mm diameter,2 mm thickness,and 24 m length,is exposed to uniform temperature and velocity conditions.The working fluid,Therminol-66,is supplemented with Fe3O4 magnetic nanoparticles at concentrations ranging from 1%to 4%.The findings demonstrate that the inclusion of nanoparticles increases the convective heat transfer coefficient(HTC)of the PTSC,with higher nanoparticle volume fractions leading to greater heat transfer but increased pressure drop.The thermal enhancement factor(TEF)of the PTSC is positively affected by the volume fraction of nanoparticles,both with and without a magnetic field.Notably,the scenario with a 4%nanoparticle volume fraction and a magnetic field strength of 250 G exhibits the highest TEF,indicating superior thermal performance.These findings offer potential avenues for improving the efficiency of PTSCs in solar thermal plants by introducing magnetic nanoparticles into the working fluid. 展开更多
关键词 Parabolic trough solar collector(PTSC) magnetic nanofluid(MNF) heat transfer convective heat transfer coefficient(HTC) thermal enhancement factor(TEF)
下载PDF
Numerical Studies on Thermal and Hydrodynamic Characteristics of LNG in Helically Coiled Tube-in-Tube Heat Exchangers
2
作者 Fayi Yan Xuejian Pei +1 位作者 He Lu Shuzhen Zong 《Frontiers in Heat and Mass Transfer》 EI 2024年第1期287-304,共18页
As compact and efficient heat exchange equipment,helically coiled tube-in-tube heat exchangers(HCTT heat exchangers)are widely used in many industrial processes.However,the thermal-hydraulic research of liquefied natu... As compact and efficient heat exchange equipment,helically coiled tube-in-tube heat exchangers(HCTT heat exchangers)are widely used in many industrial processes.However,the thermal-hydraulic research of liquefied natural gas(LNG)as the working fluid inHCTT heat exchangers is rarely reported.In this paper,the characteristics of HCTT heat exchangers,in which LNG flows in the inner tube and ethylene glycol-water solution flows in the outer tube,are studied by numerical simulations.The influences of heat transfer characteristics and pressure drops of the HCTT heat transfers are studied by changing the initial flow velocity,the helical middle diameter,and the helical pitch.The results indicate that different initial flow velocities in the inner tube and the outer tube of the HCTT heat exchanger have little influence on the secondary flow of the fluid in the helical tubes,and the overall flow characteristics tend to be stable.The smaller helical middle diameter of the HCTT heat exchanger leads to the shorter fluid flow length,the smaller resistance along the tubes and the increase of initial pressure under the condition of constant inlet velocity,which promotes the occurrence of secondary flow.The axial flow of fluid promotes the destruction of heat transfer boundary layer and gains strength of the turbulence and heat transfer efficiency.With the increase of the helical pitch of the HCTT heat exchanger,the turbulent intensity and the heat transfer efficiency are also increased.Moreover,the improvement of the flow state of the HCTT exchanger in a longer helical pitch also enhances the heat exchange efficiency. 展开更多
关键词 HCTT heat exchanger LNG helically coil heat transfer coefficient pressure drop
下载PDF
The Effect of Water Flow Velocity on Heat Collection Performance of Active Heat Storage and Release System for Solar Greenhouses
3
作者 Wei Lu Lirui Liang +8 位作者 Dawei Shi Wenjun Peng Yangxia Zheng In-bok Lee Mengyao Li Qichang Yang Jiangtao Hu Xiaopei Tang Chengyao Jiang 《Journal of Electronic Research and Application》 2024年第6期79-88,共10页
In order to explore the influence of water velocity on the heat collection performance of the active heat storage and release system for solar greenhouses,six different flow rates were selected for treatment in this e... In order to explore the influence of water velocity on the heat collection performance of the active heat storage and release system for solar greenhouses,six different flow rates were selected for treatment in this experiment.The comprehensive heat transfer coefficient of the active heat storage and release system at the heat collection stage was calculated by measuring the indoor solar radiation intensity,indoor air temperature and measured water tank temperature.The prediction model of water temperature in the heat collection stage was established,and the initial value of water temperature and the comprehensive heat transfer coefficient were input through MATLAB software.The simulated value of water temperature was compared with the measured value and the results showed that the best heat transfer effect could be achieved when the water flow speed was 1.0 m3h-1.The average relative error between the simulated water tank temperature and the measured value is 2.70-6.91%.The results indicate that the model is established correctly,and the variation trend of water temperature can be predicted according to the model in the heat collection stage. 展开更多
关键词 Active heat storage and release Water velocity coefficient of heat transfer Modeling Solar energy
下载PDF
A Numerical Method on Inverse Determination of Heat Transfer Coefficient Based on Thermographic Temperature Measurement 被引量:6
4
作者 范春利 孙丰瑞 杨立 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第6期901-908,共8页
The heat transfer coefficient in a multidimensional heat conduction problem is obtained from the solution of the inverse heat conduction problem based on the thermographic temperature measurement. The modified one-dim... The heat transfer coefficient in a multidimensional heat conduction problem is obtained from the solution of the inverse heat conduction problem based on the thermographic temperature measurement. The modified one-dimensional correction method (MODCM), along with the finite volume method, is employed for both two- and three-dimensional inverse problems. A series of numerical experiments are conducted in order to verify the effectiveness of the method. In addition, the effect of the temperature measurement error, the ending criterion of the iteration, etc. on the result of the inverse problem is investigated. It is proved that the method is a simple, stable and accurate one that can solve successfully the inverse heat conduction problem. 展开更多
关键词 inverse heat conduction problem heat transfer coefficient finite volume method modified one-dimensional correction method measurement error
下载PDF
Thermal Conductivity and Heat Transfer Coefficient of Concrete 被引量:5
5
作者 郭利霞 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第4期791-796,共6页
A very simple model for predicting thermal conductivity based on its definiensis was presented. The thermal conductivity obtained using the model provided a good coincidence to the investigations performed by other au... A very simple model for predicting thermal conductivity based on its definiensis was presented. The thermal conductivity obtained using the model provided a good coincidence to the investigations performed by other authors. The heat transfer coefficient was determined by inverse analysis using the temperature measurements. From experimental results, it is noted that heat transfer coefficient increases with the increase of wind velocity and relative humidity, a prediction equation on heat transfer coefficient about wind velocity and relative humidity is given. 展开更多
关键词 thermal conductivity heat transfer coefficient relative humidity wind velocity
下载PDF
Determination of interfacial heat transfer coefficient and its application in high pressure die casting process 被引量:6
6
作者 Cao Yongyou Guo Zhipeng Xiong Shoumei 《China Foundry》 SCIE CAS 2014年第4期314-321,共8页
In this paper,the research progress of the interfacial heat transfer in high pressure die casting(HPDC)is reviewed.Results including determination of the interfacial heat transfer coefficient(IHTC),influence of castin... In this paper,the research progress of the interfacial heat transfer in high pressure die casting(HPDC)is reviewed.Results including determination of the interfacial heat transfer coefficient(IHTC),influence of casting thickness,process parameters and casting alloys on the IHTC are summarized and discussed.A thermal boundary condition model was developed based on the two correlations:(a)IHTC and casting solid fraction and(b)IHTC peak value and initial die surface temperature.The boundary model was then applied during the determination of the temperature field in HPDC and excellent agreement was found. 展开更多
关键词 high pressure die casting interfacial heat transfer coefficient inverse method
下载PDF
Computation of synthetic surface heat transfer coefficient of 7B50 ultra-high-strength aluminum alloy during spray quenching 被引量:6
7
作者 Lei KANG Gang ZHAO +1 位作者 Ni TIAN Hai-tao ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第5期989-997,共9页
According to inverse heat transfer theory, the evolutions of synthetic surface heat transfer coefficient(SSHTC) of the quenching surface of 7B50 alloy during water-spray quenching were simulated by the Pro CAST soft... According to inverse heat transfer theory, the evolutions of synthetic surface heat transfer coefficient(SSHTC) of the quenching surface of 7B50 alloy during water-spray quenching were simulated by the Pro CAST software based on accurate cooling curves measured by the modified Jominy specimen and temperature-dependent thermo-physical properties of 7 B50 alloy calculated using the JMat Pro software. Results show that the average cooling rate at 6 mm from the quenching surface and 420-230 ℃(quench sensitive temperature range) is 45.78℃/s. The peak-value of the SSHTC is 69 kW/(m^2·K) obtained at spray quenching for 0.4 s and the corresponding temperature of the quenching surface is 160 ℃. In the initial stage of spray quenching, the phenomenon called "temperature plateau" appears on the cooling curve of the quenching surface. The temperature range of this plateau is 160-170℃ with the duration about 3 s. During the temperature plateau, heat transfer mechanism of the quenching surface transforms from nucleate boiling regime to single-phase convective regime. 展开更多
关键词 7B50 aluminum alloy water-spray quenching inverse heat transfer theory synthetic surface heat transfer coefficient cooling curve
下载PDF
Measurement of temperature inside die and estimation of interfacial heat transfer coefficient in squeeze casting 被引量:3
8
作者 Fei-fan Wang Ke-yan Wu +1 位作者 Xu-yang Wang Zhi-qiang Han 《China Foundry》 SCIE 2017年第5期327-332,共6页
As an advanced near-net shape technology, squeeze casting is an excellent method for producing high integrity castings. Numerical simulation is a very effective method to optimize squeeze casting process, and the inte... As an advanced near-net shape technology, squeeze casting is an excellent method for producing high integrity castings. Numerical simulation is a very effective method to optimize squeeze casting process, and the interfacial heat transfer coefficient(IHTC) is an important boundary condition in numerical simulation. Therefore, the study of the IHTC is of great significance. In the present study, experiments were conducted and a "plate shape" aluminum alloy casting was cast in H13 steel die. In order to obtain accurate temperature readings inside the die, a special temperature sensor units(TSU) was designed. Six 1 mm wide and 1 mm deep grooves were machined in the sensor unit for the placement of the thermocouples whose tips were welded to the end wall. Each groove was machined to terminate at a particular distance(1, 3, and 6 mm) from the front end of the sensor unit. Based on the temperature measurements inside the die, the interfacial heat transfer coefficient(IHTC) at the metal-die interface was determined by applying an inverse approach. The acquired data were processed by a low pass filtering method based on Fast Fourier Transform(FFT). The feature of the IHTC at the metal-die interface was discussed. 展开更多
关键词 squeeze casting interfacial heat transfer coefficient temperature sensor unit inverse approach
下载PDF
Study on interfacial heat transfer coefficient at metal/die interface during high pressure die casting process of AZ91D alloy 被引量:4
9
作者 GUO Zhi-peng XIONG Shou-mei +2 位作者 M. Murakami Y. Matsumoto S. Ikeda 《China Foundry》 SCIE CAS 2007年第1期5-9,共5页
The high pressure die casting (HPDC) process is one of the fastest growing and most efficient methods for the production of complex shape castings of magnesium and aluminum alloys in today's manufacturing industry... The high pressure die casting (HPDC) process is one of the fastest growing and most efficient methods for the production of complex shape castings of magnesium and aluminum alloys in today's manufacturing industry. In this study, a high pressure die casting experiment using AZ91D magnesium alloy was conducted, and the temperature profiles inside the die were measured. By using a computer program based on solving the inverse heat problem, the metal/die interfacial heat transfer coefficient (IHTC) was calculated and studied. The results show that the IHTC between the metal and die increases right after the liquid metal is brought into the cavity by the plunger, and decreases as the solidification process of the liquid metal proceeds until the liquid metal is completely solidified, when the IHTC tends to be stable. The interfacial heat transfer coefficient shows different characteristics under different casting wall thicknesses and varies with the change of solidification behavior. 展开更多
关键词 high pressure die casting (HPDC) magnesium alloy interfacial heat transfer coefficient(IHTC)
下载PDF
Establishment and Application of UFC-ACC Heat Transfer Coefficient Model 被引量:3
10
作者 Tian-Liang Fu Zhao-Dong Wang +2 位作者 Yong Li Jia-Dong Li Guo-Dong Wang 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2014年第2期57-62,共6页
Based on medium plate runout table ultra-fast cooling( UFC)-accelerated cooling equipment( ACC) system,a heat transfer coefficient model was constructed. Firstly,according to the measured data,heat transfer coefficien... Based on medium plate runout table ultra-fast cooling( UFC)-accelerated cooling equipment( ACC) system,a heat transfer coefficient model was constructed. Firstly,according to the measured data,heat transfer coefficients under different roll speed and water volume were calculated by using an inverse heat conduction method. Secondly,a monofactorial heat transfer coefficient calculation formula was obtained. Finally,the heat transfer coefficient model based on medium plate runout table UFC-ACC system was constructed by intercept function,slope function,interaction influence function and linear or nonlinear influencing factors. The precision of these models was validated by comparing model prediction value with measured data,and the results were in good agreement with practical needs,and the average deviation was less than 5%. 展开更多
关键词 medium plate ultra-fast cooling heat transfer coefficient mathematical model
下载PDF
High-Resolution Heat Transfer Coefficients Measurement for Jet Impingement Using Thermochromic Liquid Crystals 被引量:2
11
作者 张靖周 李立国 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2001年第4期205-209,共5页
A high-resolution testing technique named liquid crystal thermography is used for the experimental study on jet array impingement to map out the distribution of heat transfer coefficients on the cooling surface. Effec... A high-resolution testing technique named liquid crystal thermography is used for the experimental study on jet array impingement to map out the distribution of heat transfer coefficients on the cooling surface. Effects of the impingement distance, the impinging hole arrangement and the initial crossflow on heat transfer characteristics are investigated. The thermal images show truly the features of local heat transfer for each jet impingement cooling. The applications of thermochromic liquid crystal are successful in the qualitative and quantitative measurement for heat transfer coefficients distribution. 展开更多
关键词 COOLING Flow visualization heat transfer coefficients Jets Liquid crystals Thermography (imaging)
下载PDF
Influence of nanoparticle concentrations on flow boiling heat transfer coefficients of Al_2O_3/R141b in micro heat exchanger by direct metal laser sintering 被引量:4
12
作者 Jianyang Zhou Xiaoping Luo +4 位作者 Cong Deng Mingyu Xie Lin Zhang Di Wu Feng Guo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第12期1714-1726,共13页
Al2O3/R141b + Span-80 nanorefrigerant for 0.05 wt.% to 0.4 wt.% is prepared by ultrasonic vibration to investigate the influence of nanoparticle concentrations on flow boiling heat transfer of Al2O3/R141b + Span-80... Al2O3/R141b + Span-80 nanorefrigerant for 0.05 wt.% to 0.4 wt.% is prepared by ultrasonic vibration to investigate the influence of nanoparticle concentrations on flow boiling heat transfer of Al2O3/R141b + Span-80 in micro heat exchanger by direct metal laser sintering. Experimental results show that nanoparticle concentrations have significantly impact on heat transfer coefficients by homogeneity test of variances according to mathematical statistics. The heat transfer performance of Al2O3/R141b + Span-80 nanorefrigerant is enhanced after adding nanoparticles in the pure refrigerant R141b. The heat transfer coefficients of 0.05 wt.%, 0.1 wt.%, 0.2 wt.%, 0.3 wt.% and 0.4 wt.% Al2O3/R141 b + Span-80 nanorefrigerant respectively increase by 55.0% 72.0%, 53.0% 42.3% and 39.9% compared with the pure refrigerant R141b. The particle fluxes from viscosity gradient, non-uniform shear rate and Brownian motion cause particles to migrate in fluid especially in the process of flow boiling. This migration motion enhances heat transfer between nanoparticles and fluid. Therefore, the heat transfer performance of nanofluid is enhanced. It is important to note that the heat transfer coefficients nonlinearly increase with nanoparticle concentrations increasing. The heat transfer coefficients reach its maximum value at the mass concentration of 0.1% and then it decreases slightly. There exists an optimal mass concentration corresponding to the best heat transfer enhancement. The reason for the above phenomenon is attributed to nanoparticles deposition on the minichannel wall by Scanning Electron Microscopy observation. The channel surface wettability increases during the flow boiling experiment in the mass concentration range from 0.2 wt.% to 0.4 wt.%. The channel surface with wettability increasing needs more energy to produce a bubble. Therefore, the heat transfer coefficients decrease with nanopartide concentrations in the range from 0.2 wt.% to 0.4 wt.%. In addition, a new correlation has been proposed by fitting the experimental data considering the influence of mass concentrations on the heat trans- fer performance. The new correlation can effectively predict the heat transfer coefficient. 展开更多
关键词 Nanoparticle Concentration Minichannel Sintering Flow boiling heat transfer coefficient
下载PDF
The test device for heat friction coefficient of high strength steel 被引量:1
13
作者 Sun Zhifu Ma Mingtu +3 位作者 Ma Fangwu Guo Yihui Song Leifeng Yao Zaiqi 《Engineering Sciences》 EI 2012年第6期75-78,共4页
Using high strength steel and ultra-high strength steel in hot stamping and automobile parts is one of the most important ways of the automobile lightweight,which is the development trend of automobiles currently.In t... Using high strength steel and ultra-high strength steel in hot stamping and automobile parts is one of the most important ways of the automobile lightweight,which is the development trend of automobiles currently.In this paper, the development of test device for heat friction coefficient by high strength steel can provide important technical parameters for hot stamping process,making the right selection of equipment types,mold design,technology optimization,and research and development of lubrication medium of press forming.At the same time,the experiments indicate that the instrument has not only accurate test result but also good repeatability. 展开更多
关键词 automobile lightweight modern automobile heat friction coefficient
下载PDF
One-Dimensional Study of Thermal Behavior of Typha Panel: Spectroscopy Characterization of Heat Exchange Coefficient on Front Face 被引量:1
14
作者 Sokhna Khadidiatou Ben Thiam Alassane Ba +7 位作者 Mamadou Babacar Ndiaye Issa Diagne Youssou Traore Seydou Faye Cheikh Thiam Pape Touty Traore Ablaye Fame Gregoire Sissoko 《Journal of Sustainable Bioenergy Systems》 2020年第2期52-61,共10页
Convective heat transfer coefficients, materializing exchanges between solid wall (here typha) and its environment, influence its behavior under excitation pulse. Temperature of wall and its density of flow vary with ... Convective heat transfer coefficients, materializing exchanges between solid wall (here typha) and its environment, influence its behavior under excitation pulse. Temperature of wall and its density of flow vary with these coefficients according to its thickness (in depth). This study therefore focuses on the evaluation of convective heat transfer coefficient on front face and the optimal insulation thickness. 展开更多
关键词 TYPHA heat Transfer coefficients SPECTROSCOPY Optimal Insulation Thickness
下载PDF
Optimization of Heat Flux Coefficient Determination for Laminar Cooling Control
15
作者 CAI Xiao-hui LUO Zong-an +1 位作者 WANG Guo-dong LIU Xiang-hua 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2004年第1期26-28,共3页
A new heat flux coefficient model and improved refreshing rules were introduced for optimizing coiling temperature model.The off-line simulation of the new strategy was performed by laminar cooling intelligent softwar... A new heat flux coefficient model and improved refreshing rules were introduced for optimizing coiling temperature model.The off-line simulation of the new strategy was performed by laminar cooling intelligent software,and the on-line application shows that the control of coiling temperature has been improved significantly. 展开更多
关键词 heat flux laminar cooling heat flux coefficient model optimization
下载PDF
Optimal Experiment Design for the Identification of the Interfacial Heat Transfer Coefficient in Sand Casting
16
作者 Dorsaf Khalifa Foued Mzali 《Fluid Dynamics & Materials Processing》 EI 2022年第6期1841-1852,共12页
The interfacial heat transfer coefficient(IHTC)is one of the main input parameters required by casting simulation software.It plays an important role in the accurate modeling of the solidification process.However,its ... The interfacial heat transfer coefficient(IHTC)is one of the main input parameters required by casting simulation software.It plays an important role in the accurate modeling of the solidification process.However,its value is not easily identifiable by means of experimental methods requiring temperature measurements during the solidification process itself.For these reasons,an optimal experiment design was performed in this study to determine the optimal position for the temperature measurement and the optimal thickness of the rectangular cast iron part.This parameter was identified using an inverse technique.In particular,two different algorithms were used:Levenberg Marquard(LM)and Monte Carlo(MC).A numerical model of the solidification process was associated with the optimization algorithm.The temperature was measured at different positions from the mould/metal interface at d=0 mm(mould/metal interface),30 mm,60 mm and 90 mm.the thicknesses of the cast part were:L1=40 mm,60 mm and 80 mm.A comparative study on the IHTC identification was then carried out by varying the initial value of the IHTC between 500 Wm^(-2)K^(-1) and 1050 Wm^(-2)K^(-1).Results showed that the MC algorithm used for estimating the IHTC gives the best results,and the optimal position was at d=30 mm,the position closest to the mould/metal interface,for the lowest thickness L1=40 mm. 展开更多
关键词 Monte Carlo interfacial heat transfer coefficient Levenberg Marquard optimal experiment design sand casting
下载PDF
Analysis and calculating for preheat temperature and average convection heat change coefficient in the continue annealing furnace
17
作者 WAN Fei and JIN Min Baosteel Engineering &Technologies Group Ltd.,Co.,Shanghai 201900,China 《Baosteel Technical Research》 CAS 2010年第S1期117-,共1页
The aim of the thesis is to utilize essential theory of heat transfer,to use correlative expressions to calculate average convection heat change coefficient and heating temperature of strip in Jet Preheat Furnace (JPF... The aim of the thesis is to utilize essential theory of heat transfer,to use correlative expressions to calculate average convection heat change coefficient and heating temperature of strip in Jet Preheat Furnace (JPF),make the calculating results accordant with production data,and make the calculation to be used the process of production.The method is to collect:entry temperature and speed of strip,temperature and speed of N_2 - H_2,to analyse heat transfer according to length and thickness of strip,jet hole and mutual position of jet piping in JPF,to analyse heat transfer and built the physical model.In mathematic model, Martin correlative expressions are tried to calculate using the data from production,and are modified in part properly.At the same time,heat boundary condition is analysed with theory of impact jet and production data.The conclusion is obtained that boundary condition is rarely average numerical value of temperature of strip and N_2 - H_2 with impact jet condition,instead of a relation of function of temperature of strip, temperature and speed of N_2- H_2,array of jet holes,diameter of hole,distance between hole and strip,and acquired a calculating expression.In calculation of examples,the thesis collected and calculated 15 kinds of strips.The thickness of strips are 2=0.51~1.41 mm,material DQ - IF、DDQ,EDDQ,SEDDQ and 340DDQ.Main assess numerical value is temperature value after strip is heated with certain speed and within section of time.Maximum error in 9 groups of numerical value in the thesis is 3.36%comparing with production data.The correlative expressions can be used in production to adjust temperature of strip through changing speed and temperature of N_2 - H_2 and speed of strip.The correlative expressions are compiled computer process.The process can be applied in on line control of production by rapid calculating speed. 展开更多
关键词 preheat jet impact convection convection heat change coefficient
下载PDF
Laminar Heat Transfer Modeling and Investigation of Thermal Dispersion in a Flat Plate Heat Exchanger: Estimating Heat Transfer Coefficient, Heat Flux and Nusselt Number
18
作者 Saeedeh Imani Moqadam Mojtaba Mirdrikvand Behrooz Roozbehani Amirali Rezazadeh 《Journal of Chemistry and Chemical Engineering》 2012年第7期613-618,共6页
PHEs (plate heat exchangers) are among the most common thermal equipments in diverse industries particularly in oil and gas companies. This wide usage is obviously due to significant benefits of these heat exchanger... PHEs (plate heat exchangers) are among the most common thermal equipments in diverse industries particularly in oil and gas companies. This wide usage is obviously due to significant benefits of these heat exchangers over other types. In this article, a behavioral analysis of heat transfer in fiat plates of these heat exchangers in laminar flow situation through CFD (computational fluid dynamics) simulation using FLUENT 6.3.26 software is done. The study reveals results graphically based on fluid's behavior in co-current and counter current flows and discusses thermal indexes consisting of heat transfer coefficient, Nusslet and total heat flux in both conditions. Eventually, a comparison via the graphical results is presented between the two types of flow directions. 展开更多
关键词 Flat plate heat exchanger nusslet heat flux heat transfer coefficient FLUENT CFD.
下载PDF
A NEW COMPUTATION METHOD FOR THE UNSTEADY HEAT TRANSFER COEFFICIENT IN A DEEP MINE 被引量:2
19
作者 孙培德 《Journal of Coal Science & Engineering(China)》 1999年第2期57-61,共5页
In mine geothermal prediction, the unsteady heat transfer coefficient is an important parameter for heat transfer computation between country rock and mine airflow. In this paper, the rock temperature distributions in... In mine geothermal prediction, the unsteady heat transfer coefficient is an important parameter for heat transfer computation between country rock and mine airflow. In this paper, the rock temperature distributions in the geothermal fields have been derived in mathematics, the unsteady heat transfer coefficients that can expound the relation between its nature and influencing factors have been derived also based on this analytic formula. It is shown both by numerical simulations and through in situ measurernents that the new computation method for determining the unsteady heat transfer cofeeicient is accurate, rapid and simple. 展开更多
关键词 unsteady heat transfer coefficient new computation method numerical simulation prediction of geothermal temperature
全文增补中
On the Effect of Mist Flow on the Heat Transfer Performances of a Three-Copper- Sphere Configuration
20
作者 Karema A.Hamad Yasser A.Mahmood 《Fluid Dynamics & Materials Processing》 EI 2023年第11期2863-2875,共13页
The cooling of a(pebble bed)spent fuel in a high-temperature gas-cooled reactor(HTGR)is adversely affected by an increase in the temperature of the used gas(air).To investigate this problem,a configuration consisting ... The cooling of a(pebble bed)spent fuel in a high-temperature gas-cooled reactor(HTGR)is adversely affected by an increase in the temperature of the used gas(air).To investigate this problem,a configuration consisting of three copper spheres arranged in tandem subjected to a forced mistflow inside a cylindrical channel is considered.The heat transfer coefficients and related variations as a function of Reynolds number are investigated accord-ingly.The experimental results show that when compared to those with only airflow,the heat transfer coefficient of the spherical elements with mistflow(j=112 kg/m2 hr,Re=55000)increases by 180%,75%,and 20%,respec-tively for thefirst,second,and third spherical element(the corresponding heat transfer enhancement ratio being 2.3,1.4,and 1.1).Additional numerical simulations reveal that the presence of stagnant zones with intense vortex formation around each spherical element contributes significantly to determine the heat transfer behavior. 展开更多
关键词 Mistflow mist irrigation density heat transfer coefficient vortex zone water droplet settling
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部