期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Effect of Counter-Gradient in the Computation of Turbulent Fluxes of Heat and Moisture in a Regional Model 被引量:2
1
作者 S. S. Vaidya V. N. Lykossov S. S. Singh 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1993年第1期85-94,共10页
The counter-gradient terms in the computations of turbulent fluxes of heat and moisture have been included in the PBL parameterization of a regional model for monsoon prediction. Results show that inclusion of counter... The counter-gradient terms in the computations of turbulent fluxes of heat and moisture have been included in the PBL parameterization of a regional model for monsoon prediction. Results show that inclusion of counter-gradient terms has a marginal impact in the prediction of large scale monsoon circulation and rainfall rates. 展开更多
关键词 Effect of Counter-Gradient in the computation of Turbulent Fluxes of heat and Moisture in a Regional Model
下载PDF
A code-independent technique for computational verification of fluid mechanics and heat transfer problems
2
作者 M.Garbey C.Picard 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第4期387-397,共11页
The goal of this paper is to present a versatile framework for solution verification of PDE's. We first generalize the Richardson Extrapolation technique to an optimized extrapolation solution procedure that construc... The goal of this paper is to present a versatile framework for solution verification of PDE's. We first generalize the Richardson Extrapolation technique to an optimized extrapolation solution procedure that constructs the best consistent solution from a set of two or three coarse grid solution in the discrete norm of choice. This technique generalizes the Least Square Extrapolation method introduced by one of the author and W. Shyy. We second establish the conditioning number of the problem in a reduced space that approximates the main feature of the numerical solution thanks to a sensitivity analysis. Overall our method produces an a posteriori error estimation in this reduced space of approximation. The key feature of our method is that our construction does not require an internal knowledge of the software neither the source code that produces the solution to be verified. It can be applied in principle as a postprocessing procedure to off the shelf commercial code. We demonstrate the robustness of our method with two steady problems that are separately an incompressible back step flow test case and a heat transfer problem for a battery. Our error estimate might be ultimately verified with a near by manufactured solution. While our pro- cedure is systematic and requires numerous computation of residuals, one can take advantage of distributed computing to get quickly the error estimate. 展开更多
关键词 Solution verification PDE's Navier Stokes ·heat transfer. Aposteriori estimate·Distributed Computing
下载PDF
AXIAL HEAT CONDUCTION MODEL TO PREDICT MAXIMUM HEAT REMOVE OF MINIATURE HEAT PIPE BASED ON GREY MODEL THEORY 被引量:3
3
作者 Tsai Mengchang Chang Shinhsing Kang Shungwen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第4期477-481,共5页
Computer chip is always accompanied by the increase of heat dissipation and miniaturization. The miniature heat pipes are widely used in notebook computer to resolve the heat dissipation problems. Maximum heat removed... Computer chip is always accompanied by the increase of heat dissipation and miniaturization. The miniature heat pipes are widely used in notebook computer to resolve the heat dissipation problems. Maximum heat removed model of miniature heat pipes building by grey model is presented. In order to know the foundation for modeling, the smooth grade of error examination is inquired and the accuracy of grey relational grade is verified. The model can be used to select a suitable heat pipes to solve electric heat problems in the future. Final results show that the grey model only needs four experiment data and its error value is less than 10%, further, it is better than computational fluid dynamics (CFD) model. 展开更多
关键词 Maximum heat removed model Miniature heat pipe Grey model theory computational fluid dynamics (CFD) Grey relational grade
下载PDF
A new algorithm of global tightly-coupled transient heat transfer based on quasi-steady flow to the conjugate heat transfer problem
4
作者 Fanchao Meng Sujun Dong +1 位作者 Jun Wang Dechun Guo 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2016年第5期233-235,共3页
Concerning the specific demand on solving the long-term conjugate heat transfer (CHT) problem, a new algorithm of the global tightly-coupled transient heat transfer based on the quasi-steady flow field is further pu... Concerning the specific demand on solving the long-term conjugate heat transfer (CHT) problem, a new algorithm of the global tightly-coupled transient heat transfer based on the quasi-steady flow field is further put forward. Compared to the traditional loosely-coupled algorithm, the computational efficiency is further improved with the greatly reduced update frequency of the flow field, and moreover the update step of the flow field can be reasonably determined by using the engineering empirical formula of the Nusselt number based on the changes of the inlet and outlet boundary conditions. Taking a duct heated by inner forced air flow heating process as an example, the comparing results to the tightly-coupled transient calculation by Fluent software shows that the new algorithm can significantly improve the computational efficiency with a reasonable accuracy on the transient temperature distribution, such as the computing time is reduced to 22,8% and 40% while the duct wall temperature deviation are 7% and 5% respectively using two flow update time step of 100 s and 50 s on the variable inlet-flow rate conditions. 展开更多
关键词 Conjugate heat transfer Loosely-coupledQuasi-steady computational fluid dynamics
下载PDF
Best Practices for Thermal Modeling in Microelectronics with Natural Convection Cooling: Sensitivity Analysis
5
作者 Mamadou Kabirou Touré Papa Momar Souaré Julien Sylvestre 《Journal of Electronics Cooling and Thermal Control》 2021年第2期15-33,共19页
A detailed sensitivity study was carried out on various key parameters from a high precision numerical model of a microelectronic package cooled by natural convection, to provide rules for the thermal modeling of micr... A detailed sensitivity study was carried out on various key parameters from a high precision numerical model of a microelectronic package cooled by natural convection, to provide rules for the thermal modeling of microelectronic packages subjected to natural convection heat transfer. An accurate estimate of the junction temperature, with an error of less than 1˚C, was obtained compared to the experimental data for the vertical and horizontal orientations of the test vehicle in the JEDEC Still Air configuration. The sensitivity study showed that to have an accurate estimate of the temperature, the following elements should be present in the thermal model: radiation heat transfer in natural convection cooling;a computational fluid dynamics analysis to find realistic convection coefficients;detailed models of the high conductivity elements in the direction of the heat flow towards the environment;and finally precise values for the thicknesses of layers and the thermal properties of the substrate and the printed circuit board. 展开更多
关键词 computational Fluid Dynamics computational heat Transfer Microelectronic Packaging Natural Convection RADIATION Thermal Analysis Thermal Management
下载PDF
CFD Study on Local Fluid-to-Wall Heat Transfer in Packed Beds and Field Synergy Analysis 被引量:4
6
作者 PENG Wenping XU Min +1 位作者 HUAI Xiulan LIU Zhigang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2016年第2期161-170,共10页
To reach the target of smaller pressure drop and better heat transfer performance, packed beds with small tube-to-particle diameter ratio(D/dp<10) have now been considered in many areas. Fluid-to-wall heat transfer... To reach the target of smaller pressure drop and better heat transfer performance, packed beds with small tube-to-particle diameter ratio(D/dp<10) have now been considered in many areas. Fluid-to-wall heat transfer coefficient is an important factor determining the performance of this type of beds. In this work, local fluid-to-wall heat transfer characteristic in packed beds was studied by Computational Fluid Dynamics(CFD) at different Reynolds number for D/dp=1.5, 3.0 and 5.6. The results show that the fluid-to-wall heat transfer coefficient is oscillating along the bed with small tube-to-particle diameter ratio. Moreover, this phenomenon was explained by field synergy principle in detail. Two arrangement structures of particles in packed beds were recommended based on the synergy characteristic between flow and temperature fields. This study provides a new local understanding of fluid-to-wall heat transfer in packed beds with small tube-to-particle diameter ratio. 展开更多
关键词 Packed bed Fluid-to-wall heat transfer Field synergy principle computational fluid dynamics heat transfer intensification
原文传递
Analysis on capabilities of density-based solvers within OpenFOAM to distinguish aerothermal variables in difusion boundary layer 被引量:4
7
作者 Shen Chun Sun Fengxian Xia Xinlin 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第6期1370-1379,共10页
Open source feld operation and manipulation(OpenFOAM)is one of the most prevalent open source computational fluid dynamics(CFD)software.It is very convenient for researchers to develop their own codes based on the... Open source feld operation and manipulation(OpenFOAM)is one of the most prevalent open source computational fluid dynamics(CFD)software.It is very convenient for researchers to develop their own codes based on the class library toolbox within OpenFOAM.In recent years,several density-based solvers within OpenFOAM for supersonic/hypersonic compressible flow are coming up.Although the capabilities of these solvers to capture shock wave have already been verifed by some researchers,these solvers still need to be validated comprehensively as commercial CFD software.In boundary layer where diffusion is the dominant transportation manner,the convective discrete schemes'capability to capture aerothermal variables,such as temperature and heat flux,is different from each other due to their own numerical dissipative characteristics and from viewpoint of this capability,these compressible solvers within OpenFOAM can be validated further.In this paper,frstly,the organizational architecture of density-based solvers within OpenFOAM is analyzed.Then,from the viewpoint of the capability to capture aerothermal variables,the numerical results of several typical geometrical felds predicted by these solvers are compared with both the outcome obtained from the commercial software Fastran and the experimental data.During the computing process,the Roe,AUSM+(Advection Upstream Splitting Method),and HLLC(Harten-Lax-van Leer-Contact)convective discrete schemes of which the spatial accuracy is 1st and 2nd order are utilized,respectively.The compared results show that the aerothermal variables are in agreement with results generated by Fastran and the experimental data even if the1st order spatial precision is implemented.Overall,the accuracy of these density-based solvers can meet the requirement of engineering and scientifc problems to capture aerothermal variables in diffusion boundary layer. 展开更多
关键词 Aerothermal variables Boundary layer computational fluid dynamics(CFD) heat flux Open source Supersonic
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部