期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Variational Approach to 2D and 3D Heat Conduction Modeling
1
作者 Slavko Đurić Ivan Aranđelović Milan Milotić 《Journal of Applied Mathematics and Physics》 2024年第4期1383-1400,共18页
The paper proposes an approximate solution to the classical (parabolic) multidimensional 2D and 3D heat conduction equation for a 5 × 5 cm aluminium plate and a 5 × 5 × 5 cm aluminum cube. An approximat... The paper proposes an approximate solution to the classical (parabolic) multidimensional 2D and 3D heat conduction equation for a 5 × 5 cm aluminium plate and a 5 × 5 × 5 cm aluminum cube. An approximate solution of the generalized (hyperbolic) 2D and 3D equation for the considered plate and cube is also proposed. Approximate solutions were obtained by applying calculus of variations and Euler-Lagrange equations. In order to verify the correctness of the proposed approximate solutions, they were compared with the exact solutions of parabolic and hyperbolic equations. The paper also presents the research on the influence of time parameters τ as well as the relaxation times τ ∗ to the variation of the profile of the temperature field for the considered aluminum plate and cube. 展开更多
关键词 Classical equation of heat Conduction Generalized equation of heat Conduction Calculus of Variations Approximate Solution
下载PDF
Analytical solution for the time-fractional heat conduction equation in spherical coordinate system by the method of variable separation 被引量:2
2
作者 Ting-Hui Ning Xiao-Yun Jiang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第6期994-1000,共7页
In this paper,using the fractional Fourier law,we obtain the fractional heat conduction equation with a time-fractional derivative in the spherical coordinate system.The method of variable separation is used to solve ... In this paper,using the fractional Fourier law,we obtain the fractional heat conduction equation with a time-fractional derivative in the spherical coordinate system.The method of variable separation is used to solve the timefractional heat conduction equation.The Caputo fractional derivative of the order 0 〈 α≤ 1 is used.The solution is presented in terms of the Mittag-Leffler functions.Numerical results are illustrated graphically for various values of fractional derivative. 展开更多
关键词 Fractional Fourier law Fractional heat conduction equation - Spherical coordinate system - The separation of variables Mittag-Leffler function
下载PDF
A CLASS OF TWO-LEVEL EXPLICIT DIFFERENCE SCHEMES FOR SOLVING THREE DIMENSIONAL HEAT CONDUCTION EQUATION 被引量:1
3
作者 曾文平 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2000年第9期1071-1078,共8页
A class of two-level explicit difference schemes are presented for solving three-dimensional heat conduction equation. When the order of truncation error is 0(Deltat + (Deltax)(2)), the stability condition is mesh rat... A class of two-level explicit difference schemes are presented for solving three-dimensional heat conduction equation. When the order of truncation error is 0(Deltat + (Deltax)(2)), the stability condition is mesh ratio r = Deltat/(Deltax)(2) = Deltat/(Deltay)(2) = Deltat/(Deltaz)(2) less than or equal to 1/2, which is better than that of all the other explicit difference schemes. And when the order of truncation error is 0((Deltat)(2) + (Deltax)(4)), the stability condition is r less than or equal to 1/6, which contains the known results. 展开更多
关键词 three-dimensional heat conduction equation explicit difference scheme truncation error stability condition
下载PDF
3D Radiative Transfer Equation Coupled with Heat Conduction Equation with Realistic Boundary Conditions Applied on Complex Geometries
4
作者 D. Le Hardy Y. Favennec +1 位作者 G. Domingues B. Rousseau 《Journal of Applied Mathematics and Physics》 2016年第8期1488-1493,共6页
This paper presents the solution of coupled radiative transfer equation with heat conduction equation in complex three-dimensional geometries. Due to very different time scales for both physics, the radiative problem ... This paper presents the solution of coupled radiative transfer equation with heat conduction equation in complex three-dimensional geometries. Due to very different time scales for both physics, the radiative problem is considered steady-state but solved at each time iteration of the transient conduction problem. The discrete ordinate method along with the decentered streamline-upwind Petrov-Galerkin method is developed. Since specular reflection is considered on borders, a very accurate algorithm has been developed for calculation of partition ratio coefficients of incident solid angles to the several reflected solid angles. The developed algorithms are tested on a paraboloid-shaped geometry used for example on concentrated solar power technologies. 展开更多
关键词 Radiative Transfer equation heat Conduction equation Finite Element Methods SUPG DOM Specular Reflection Complex Geometry
下载PDF
Thermal stresses induced by a point heat source in a circular plate by quasi-static approach
5
作者 K.C.Deshmukh Y.I.Quazi +1 位作者 S.D.Warbhe V.S.Kulkarni 《Theoretical & Applied Mechanics Letters》 CAS 2011年第3期36-38,共3页
The present paper deals with the determination of quasi-static thermal stresses due to an instantaneous point heat source of strength g_(pi) situated at certain circle along the radial direction of the circular plate ... The present paper deals with the determination of quasi-static thermal stresses due to an instantaneous point heat source of strength g_(pi) situated at certain circle along the radial direction of the circular plate and releasing its heat spontaneously at time t=τ.A circular plate is considered having arbitrary initial temperature and subjected to time dependent heat flux at the fixed circular boundary of r=b.The governing heat conduction equation is solved by using the integral transform method,and results are obtained in series form in terms of Bessel functions.The mathematical model has been constructed for copper material and the thermal stresses are discussed graphically. 展开更多
关键词 thermoelastic problem thermal stresses non-homogeneous heat conduction equation heat generation
下载PDF
EQ^(rot)_1 Nonconforming Finite Element Method for Nonlinear Dual Phase Lagging Heat Conduction Equations 被引量:6
6
作者 Yan-min Zhao Fen-ling Wang Dong-yang Shi 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2013年第1期201-214,共14页
EQrot nonconforming finite element approximation to a class of nonlinear dual phase lagging heat conduction equations is discussed for semi-discrete and fully-discrete schemes. By use of a special property, that is, t... EQrot nonconforming finite element approximation to a class of nonlinear dual phase lagging heat conduction equations is discussed for semi-discrete and fully-discrete schemes. By use of a special property, that is, the consistency error of this element is of order O(h2) one order higher than its interpolation error O(h), the superclose results of order O(h2) in broken Hi-norm are obtained. At the same time, the global superconvergence in broken Hi-norm is deduced by interpolation postprocessing technique. Moreover, the extrapolation result with order O(h4) is derived by constructing a new interpolation postprocessing operator and extrapolation scheme based on the known asymptotic expansion formulas of EQrot element. Finally, optimal error estimate is gained for a proposed fully-discrete scheme by different approaches from the previous literature. 展开更多
关键词 nonlinear dual phase lagging heat conduction equations EQrot nonconforming finite element superclose and superconvergence EXTRAPOLATION semi-discrete and fully-discrete schemes
原文传递
An analytical model for estimating soil temperature profiles on the Qinghai-Tibet Plateau of China 被引量:4
7
作者 HU Guojie ZHAO Lin +6 位作者 WU Xiaodong LI Ren WU Tonghua XIE Changwei QIAO Yongping SHI Jianzong CHENG Guodong 《Journal of Arid Land》 SCIE CSCD 2016年第2期232-240,共9页
Soil temperature is a key variable in the control of underground hydro-thermal processes. To estimate soil temperature more accurately, this study proposed a solution method of the heat conduction equation of soil tem... Soil temperature is a key variable in the control of underground hydro-thermal processes. To estimate soil temperature more accurately, this study proposed a solution method of the heat conduction equation of soil temperature (improved heat conduction model) by applying boundary conditions that incorporate the annual and diurnal variations of soil surface temperature and the temporal variation of daily temperature amplitude, as well as the temperature difference between two soil layers in the Tanggula observation site of the Qinghai-Tibet Plateau of China. We employed both the improved heat conduction model and the classical heat conduction model to fit soil temperature by using the 5 cm soil layer as the upper boundary for soil depth. The results indicated that the daily soil temperature amplitude can be better described by the sinusoidal function in the improved model, which then yielded more accurate soil temperature simulating effect at the depth of 5 cm. The simulated soil temperature values generated by the improved model and classical heat conduction model were then compared to the observed soil temperature values at different soil depths. Statistical analyses of the root mean square error (RMSE), the normalized standard error (NSEE) and the bias demonstrated that the improved model showed higher accuracy, and the average values of RMSE, bias and NSEE at the soil depth of 10-105 cm were 1.41℃, 1.15℃ and 22.40%, respectively. These results indicated that the improved heat conduction model can better estimate soil temperature profiles compared to the traditional model. 展开更多
关键词 soil temperature heat conduction equation daily amplitude boundary condition
下载PDF
Solutions of the modification heating conduction equations of a kind of laser thermal effect 被引量:2
8
作者 周凌云 张灿邦 +1 位作者 Yiying Zhou 吴光敏 《Chinese Optics Letters》 SCIE EI CAS CSCD 2003年第10期597-600,共4页
This paper has solved the Chester modified heat conduction equation of the different relaxation time r value under different temperature conditions, different boundary conditions and the different initial conditions b... This paper has solved the Chester modified heat conduction equation of the different relaxation time r value under different temperature conditions, different boundary conditions and the different initial conditions by different means of methods. These solutions can help to obtain temperature field of laser thermal effects. 展开更多
关键词 of on as it Solutions of the modification heating conduction equations of a kind of laser thermal effect that heat for
原文传递
Hlder Stability Estimate for an Inverse Parabolic Problem
9
作者 XU Ding hua 1,2 1. Department of Mathematics, College of Sciences, Shanghai University, Shanghai 200072, China 2. Department of Computational Sciences and Systematic Engineering, East China Geological Institute, Linchuan 344000, Jiangxi Province 《Advances in Manufacturing》 SCIE CAS 2000年第4期284-287,共4页
This paper deals with a parabolic system in a multi dimentional bounded domain ΩR n with the smooth boundary Ω. We discuss an inverse parabolic problem of determining the indirectly measurable internal heat distri... This paper deals with a parabolic system in a multi dimentional bounded domain ΩR n with the smooth boundary Ω. We discuss an inverse parabolic problem of determining the indirectly measurable internal heat distribution at any intermediate moment from the heat distribution measurements in arbitrary accessible subdomain ωΩ at some time interval. Our main result is the Hlder stability estimate in the inverse problem and the proof is completed with a Carleman estimate and a eigenfunction expansion for parabolic equations. 展开更多
关键词 inverse parabolic problems heat conductivity equations Hlder stability Carleman estima
下载PDF
Mathematical Modeling of Heat Transfer Processes of Coal Waste Combustion in a Chamber of Automated Energy Generating Complex 被引量:1
10
作者 Sergey P. Mochalov Sergey N. Kalashnikov +2 位作者 Pavel S. Mochalov Guolin Song Guoyi Tang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2013年第2期174-179,共6页
The automated energy generating complex allows obtaining heat energy from waste coal-water slurry fuel (WCF) that is a mixture of fine coal particles from coal enrichment wastes with water. The mixture is blown into... The automated energy generating complex allows obtaining heat energy from waste coal-water slurry fuel (WCF) that is a mixture of fine coal particles from coal enrichment wastes with water. The mixture is blown into the swirl chamber under the pressure through the special sprayers. The received heat energy is used in different ways. One of the important issues is to estimate the heat losses through the walls of this chamber. In this paper we solved the boundary problem of mathematical physics to estimate the temperature fields in the walls of the swirl chamber. The obtained solution allows us to estimate the heat losses through the waUs of the swid chamber. The task of the mathematical physics has been solved by a numerical finite-difference method. The method for solving this prob- lem can be used in the calculation of temperature fields and evaluation of heat losses in other thermal power units. 展开更多
关键词 heat transfer heat conduction equation boundary conditions the heat transfer coefficient tempera-ture distribution.
原文传递
Simulations of lunar equatorial regolith temperature profile based on measurements of Diviner on Lunar Reconnaissance Orbiter 被引量:1
11
作者 RAN Zhen WANG ZhenZhan 《Science China Earth Sciences》 SCIE EI CAS 2014年第9期2232-2241,共10页
Lunar equatorial regolith temperature profiles were simulated using the half-limited solid heat conduction model. Based on the infrared data measured using the Diviner radiometer on the Lunar Reconnaissance Orbiter la... Lunar equatorial regolith temperature profiles were simulated using the half-limited solid heat conduction model. Based on the infrared data measured using the Diviner radiometer on the Lunar Reconnaissance Orbiter launched by the United Sates in June 2009, three factors influencing temperature profiles were analyzed. The infrared brightness temperature data from Diviner channel 7 were used to retrieve surface temperature. In simulating regolith temperature profiles, the retrieved temperature, rather than temperatures calculated from solar radiance at the lunar surface, were used as the input for surface temperature in solving the heat-conductive equation. The results showed that the bottom-layer temperature at depths of 6 m approached almost 246 K after 10000 iterations. The temperature was different to the temperature of 250 K at the same depth encountered in simulations using solar radiance. Simulations from both methods of surface temperatures over a lunar day gave similar variations. At lunar night, the temperature difference between the two was about 2 K; the main differences occurred when the solar elevation angle was very low when surface temperatures are largely affected by terrain topography. With no certainty in lunar temperature profiles at present, the advantage of the retrieval method using infrared sensor data as input to the boundary conditions in solving the lunar heat conduction equation is that simulations of surface temperature variations are more accurate. This is especially true in areas with large variations in terrain topography, where surface temperatures vary greatly because of shading from the sunlight. 展开更多
关键词 Diviner radiometer equation of heat conduction lunar temperature profile infrared brightness temperature
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部