期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
MODEL OF LASER-TIG HYBRID WELDING HEAT SOURCE 被引量:3
1
作者 ChenYanbin LiLiqun FengXiaosong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第4期511-514,共4页
The welding mechanism of laser-TIG hybrid welding process is analyzed. Withthe variation of arc current, the welding process is divided into two patterns: deep-penetrationwelding and heat conductive welding. The heat ... The welding mechanism of laser-TIG hybrid welding process is analyzed. Withthe variation of arc current, the welding process is divided into two patterns: deep-penetrationwelding and heat conductive welding. The heat flow model of hybrid welding is presented. As todeep-penetration welding, the heat source includes a surface heat flux and a volume heat flux. Theheat source of heat conductive welding is composed of two Gaussian distribute surface heat sources.With this heat source model, a temperature field is calculated. The finite element code MARC isemployed for this purpose. The calculation results show a good agreement with the experimental data. 展开更多
关键词 Laser-TIG hybrid welding Deep-penetration welding heat conductive welding heat source model Temperature field
下载PDF
Effect of laser power on microstructure and mechanical properties of laser heat conduction lap welded joint between AZ31B magnesium alloy and DP780 galvanized steel 被引量:2
2
作者 GAO Ju-ming WANG Dan +2 位作者 ZHUANG Dong-dong ZHAO Xin-yi LEI Yu-cheng 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第10期3463-3475,共13页
In this work, laser heat conduction lap welding(LHCLW) of AZ31B magnesium alloy sheet and DP780galvanized steel sheet was carried out by the defocused laser beam. The effects of laser power on the microstructure and m... In this work, laser heat conduction lap welding(LHCLW) of AZ31B magnesium alloy sheet and DP780galvanized steel sheet was carried out by the defocused laser beam. The effects of laser power on the microstructure and mechanical properties of the joint were studied. The pros and cons of the joint were identified and evaluated by measuring the tensile shear strength, microhardness and microstructure observation. The formation mechanism of various phases at the Mg/steel interface was analyzed. The results indicated that the galvanized layer could promote the metallurgical bonding between magnesium alloy and steel by improving the diffusion ability of molten magnesium alloy at the steel interface and reacting with Mg, so as to enhance the strength of the joint. A continuous dense layered eutectic structure(α-Mg+MgZn) was formed at the interface of the joint, while MgZn_(2)and MgZn phase was formed at the weld edge zone and heat affective zone(HAZ), whereas no reaction layer was generated between the uncoated steel and magnesium alloy. A sound joint could be obtained at 2.5 kW, and the corresponding tensile shear strength reached the maximum value of 42.9 N/mm. The strength was slightly reduced at 2.6 kW due to the existence of microcracks in the eutectic reaction layer. 展开更多
关键词 AZ31B magnesium alloy DP780 galvanized steel laser heat conduction lap welding laser power microstructure mechanical properties
下载PDF
Welding mode transition and process stability in high power laser welding
3
作者 张旭东 任家烈 陈武柱 《China Welding》 EI CAS 1997年第1期64-69,共6页
For high-power CO2 laser welding, besides two well known stable welding processes, i.e. stable deep penetration welding (DPW) and stable heat conduction welding (HCW), the authors have found the third welding process,... For high-power CO2 laser welding, besides two well known stable welding processes, i.e. stable deep penetration welding (DPW) and stable heat conduction welding (HCW), the authors have found the third welding process, i.e. unstable-mode welding (UMW) under the certain condition. UMW has its basic feature that the two welding modes (DPW and HCW) appear intermittently, with jumping of penetration depth and weld width between large and small levels. In this paper, effects of welding parameters (focal position, laser power and traveling speed) on laser welding mode and weld appearance have been comprehensively studied. Double-U curves of laser welding mode transition have been obtained, which indicate the ranges of the three mentioned welding processes. This work affords science foundation for selecting the welding process parameters correctly and obtaining stable laser welding. 展开更多
关键词 laser welding deep penetration welding (DPW) heat conduction welding(HCW) unstable-mode welding (UMW) welding mode transition
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部