In order to solve the heat damages in deep mines, a cool-wall cooling technology and its working model are proposed based on the principles of heat absorption and insulation in this paper. During this process, the dif...In order to solve the heat damages in deep mines, a cool-wall cooling technology and its working model are proposed based on the principles of heat absorption and insulation in this paper. During this process, the differential equation of thermal equilibrium for roadway control unit is built, and the heat adsorption control equation of cool-wall cooling system is derived by an integral method, so as to obtain the quantitative relationship among the heat absorption capacity of cooling system, the heat dissipating capacity of surrounding rock and air temperature change. Then, the heat absorption capacity required by air temperature less than the standard value for safety is figured out by section iterative method with the simultaneous solution of heat absorption control equation and the heat dissipation density equation of surrounding rock. Finally, the results show that as the air temperature at the inlet of roadway is 25 ℃, the roadway wall is covered by heat-absorbing plate up to 39% of the area, as well as the cold water is injected into the heat-absorbing plate with a temperature of 20 ℃ and a mass flow of 113.6 kg/s, the air flow temperature rise per kilometer in the roadway can be less than 3 ℃.展开更多
Aiming at characteristic of time delay, time-varying parameters and much disturb in glass greenhouse heating system, fuzzy smith cascade compound control policy based on typical PID cascade compound control policy is ...Aiming at characteristic of time delay, time-varying parameters and much disturb in glass greenhouse heating system, fuzzy smith cascade compound control policy based on typical PID cascade compound control policy is proposed. Simulation results show that it is effective to overcome the influence of time delay on stability of control system and the system possesses strong robust and good dynamic performance..展开更多
In order to know the character of the heat value control system, determine the influence of natural gas quality and flow on the heat value, and learn how to adjust the parameters of control system, the model of the wh...In order to know the character of the heat value control system, determine the influence of natural gas quality and flow on the heat value, and learn how to adjust the parameters of control system, the model of the whole system is established, and simulation of the system is adopted in Matlab/Simulink. The simulation result shows that the feedback system with feed-forward block controls the heat value very well, and the simulation result can effectively guide the engineering design of the heat value control system, and the efficiency of engineering is improved.展开更多
The article analyses the problem of determining the operating parameters of the district heating substation cooperating with the air heating system in technological air conditioning systems equipped with heat exchange...The article analyses the problem of determining the operating parameters of the district heating substation cooperating with the air heating system in technological air conditioning systems equipped with heat exchangers with high efficiency of heat recovery.Attention was paid to the correct selection of heat exchangers for the heat output balance depending on the heat recovery protection algorithms against a drop in the temperature of the heat transfer surface below 0℃.Critical parameters were determined in Polish climatic conditions,at which the operation of the heat recovery exchanger in the air conditioning system is switched off or limited.It has been proven that the proper functioning of the district heating substation cooperating with the installation of air conditioning with high heat recovery efficiency requires the use of two heat exchangers with different characteristics,equipped with properly selected temperature control systems.The optimal model of cooperation between the technological air conditioning system and the heating substation was also indicated.展开更多
This paper presents a study to optimize the heating energy costs in a residential building with varying electricity price signals based on an Economic Model Predictive Controller (EMPC). The investigated heating syste...This paper presents a study to optimize the heating energy costs in a residential building with varying electricity price signals based on an Economic Model Predictive Controller (EMPC). The investigated heating system consists of an air source heat pump (ASHP) incorporated with a hot water tank as active Thermal Energy Storage (TES), where two optimization problems are integrated together to optimize both the ASHP electricity consumption and the building heating consumption utilizing a heat dynamic model of the building. The results show that the proposed EMPC can save the energy cost by load shifting compared with some reference cases.展开更多
This paper mainly deals with the present situation, characteristics, and countermeasures of cooling in deep mines.Given existing problems in coal mines, a HEMS cooling technology is proposed and has been successfully ...This paper mainly deals with the present situation, characteristics, and countermeasures of cooling in deep mines.Given existing problems in coal mines, a HEMS cooling technology is proposed and has been successfully applied in some mines.Because of long-term exploitation, shallow buried coal seams have become exhausted and most coal mines have had to exploit deep buried coal seams.With the increase in mining depth, the temperature of the surrounding rock also increases, resulting in ever increasing risks of heat hazard during mining operations.At present, coal mines in China can be divided into three groups, i.e., normal temperature mines, middle-to-high temperature mines and high temperature mines, based on our investigation into high temperature coal mines in four provinces and on in-situ studies of several typical mines.The principle of HEMS is to extract cold energy from mine water inrush.Based on the characteristics of strata temperature field and on differences in the amounts of mine water inrush in the Xuzhou mining area, we proposed three models for controlling heat hazard in deep mines:1) the Jiahe model with a moderate source of cold energy;2) the Sanhejian model with a shortage of source of cold energy and a geothermal anomaly and 3) the Zhangshuanglou model with plenty of source of cold energy.The cooling process of HEMS applied in deep coal mine are as follows:1) extract cold energy from mine water inrush to cool working faces;2) use the heat extracted by HEMS to supply heat to buildings and bath water to replace the use of a boiler, a useful energy saving and environmental protection measure.HEMS has been applied in the Jiahe and Sanhejian coal mines in Xuzhou, which enabled the temperature and humidity at the working faces to be well controlled.展开更多
Design and control of pressure-swing distillation(PSD) with different heat integration modes for the separation of methyl acetate/methanol azeotrope are explored using Aspen Plus and Aspen Dynamics. First, an optimum ...Design and control of pressure-swing distillation(PSD) with different heat integration modes for the separation of methyl acetate/methanol azeotrope are explored using Aspen Plus and Aspen Dynamics. First, an optimum steady-state separation configuration conditions are obtained via taking the total annual cost(TAC) or total reboiler heat duty as the objective functions. The results show that about 27.68% and 25.40% saving in TAC can be achieved by the PSD with full and partial heat integration compared to PSD without heat integration. Second,temperature control tray locations are obtained according to the sensitivity criterion and singular value decomposition(SVD) analysis and the single-end control structure is effective based on the feed composition sensitivity analysis. Finally, the comparison of dynamic controllability is made among various control structures for PSD with partial and full heat integration. It is shown that both control structures of composition/temperature cascade and pressure-compensated temperature have a good dynamic response performance for PSD with heat integration facing feed flowrate and composition disturbances. However, PSD with full heat integration performs the poor controllability despite of a little bit of economy.展开更多
The dynamic research of aircraft environmental control system (ECS) is an important step in the advanced ECS design process. Based on the thermodynamics theory, mathematical models for the dynamic performance simulati...The dynamic research of aircraft environmental control system (ECS) is an important step in the advanced ECS design process. Based on the thermodynamics theory, mathematical models for the dynamic performance simulating of aircraft ECS were set up and an ECS simulation toolbox (ECS_1.0) was created with MATLAB language. It consists of main component modules (ducts, valves, heat exchangers, compressor, turbine, etc.). An aircraft environmental control system computer model was developed to assist engineers with the design and development of ECS dynamic optimization. An example simulating an existing ECS was given which shows the satisfactory effects.展开更多
High-voltage power supply (HVPS) of Electron Cyclotron Resonance Heating (ECRH) for HT-7 and HT-7U is presently being constructed. The high voltage (100 kV) energy of HVPS is stored in the capacitor banks, and they ca...High-voltage power supply (HVPS) of Electron Cyclotron Resonance Heating (ECRH) for HT-7 and HT-7U is presently being constructed. The high voltage (100 kV) energy of HVPS is stored in the capacitor banks, and they can power one or two gyrotrons. All the operation of the charging system will be done by the control system, where the field signals are interfaced to programmable logic controller (PLC). The use of PLC not only simplifies the control system, but also enhances the reliability. The software written by using configuration software installed in the master computer allows for remote and multiple operator control, and the status and data information is also remotely available.展开更多
基金Project(2018CXNL08) supported by the Fundamental Research Funds for the Central Universities,China。
文摘In order to solve the heat damages in deep mines, a cool-wall cooling technology and its working model are proposed based on the principles of heat absorption and insulation in this paper. During this process, the differential equation of thermal equilibrium for roadway control unit is built, and the heat adsorption control equation of cool-wall cooling system is derived by an integral method, so as to obtain the quantitative relationship among the heat absorption capacity of cooling system, the heat dissipating capacity of surrounding rock and air temperature change. Then, the heat absorption capacity required by air temperature less than the standard value for safety is figured out by section iterative method with the simultaneous solution of heat absorption control equation and the heat dissipation density equation of surrounding rock. Finally, the results show that as the air temperature at the inlet of roadway is 25 ℃, the roadway wall is covered by heat-absorbing plate up to 39% of the area, as well as the cold water is injected into the heat-absorbing plate with a temperature of 20 ℃ and a mass flow of 113.6 kg/s, the air flow temperature rise per kilometer in the roadway can be less than 3 ℃.
文摘Aiming at characteristic of time delay, time-varying parameters and much disturb in glass greenhouse heating system, fuzzy smith cascade compound control policy based on typical PID cascade compound control policy is proposed. Simulation results show that it is effective to overcome the influence of time delay on stability of control system and the system possesses strong robust and good dynamic performance..
文摘In order to know the character of the heat value control system, determine the influence of natural gas quality and flow on the heat value, and learn how to adjust the parameters of control system, the model of the whole system is established, and simulation of the system is adopted in Matlab/Simulink. The simulation result shows that the feedback system with feed-forward block controls the heat value very well, and the simulation result can effectively guide the engineering design of the heat value control system, and the efficiency of engineering is improved.
文摘The article analyses the problem of determining the operating parameters of the district heating substation cooperating with the air heating system in technological air conditioning systems equipped with heat exchangers with high efficiency of heat recovery.Attention was paid to the correct selection of heat exchangers for the heat output balance depending on the heat recovery protection algorithms against a drop in the temperature of the heat transfer surface below 0℃.Critical parameters were determined in Polish climatic conditions,at which the operation of the heat recovery exchanger in the air conditioning system is switched off or limited.It has been proven that the proper functioning of the district heating substation cooperating with the installation of air conditioning with high heat recovery efficiency requires the use of two heat exchangers with different characteristics,equipped with properly selected temperature control systems.The optimal model of cooperation between the technological air conditioning system and the heating substation was also indicated.
文摘This paper presents a study to optimize the heating energy costs in a residential building with varying electricity price signals based on an Economic Model Predictive Controller (EMPC). The investigated heating system consists of an air source heat pump (ASHP) incorporated with a hot water tank as active Thermal Energy Storage (TES), where two optimization problems are integrated together to optimize both the ASHP electricity consumption and the building heating consumption utilizing a heat dynamic model of the building. The results show that the proposed EMPC can save the energy cost by load shifting compared with some reference cases.
基金Project 2006CB202200 supported by the National Basic Research Program of Chinathe National Major Project of Ministry of Education (304005)the Program for Changjiang Scholars and Innovative Research Team in University of China (NoIRT0656)
文摘This paper mainly deals with the present situation, characteristics, and countermeasures of cooling in deep mines.Given existing problems in coal mines, a HEMS cooling technology is proposed and has been successfully applied in some mines.Because of long-term exploitation, shallow buried coal seams have become exhausted and most coal mines have had to exploit deep buried coal seams.With the increase in mining depth, the temperature of the surrounding rock also increases, resulting in ever increasing risks of heat hazard during mining operations.At present, coal mines in China can be divided into three groups, i.e., normal temperature mines, middle-to-high temperature mines and high temperature mines, based on our investigation into high temperature coal mines in four provinces and on in-situ studies of several typical mines.The principle of HEMS is to extract cold energy from mine water inrush.Based on the characteristics of strata temperature field and on differences in the amounts of mine water inrush in the Xuzhou mining area, we proposed three models for controlling heat hazard in deep mines:1) the Jiahe model with a moderate source of cold energy;2) the Sanhejian model with a shortage of source of cold energy and a geothermal anomaly and 3) the Zhangshuanglou model with plenty of source of cold energy.The cooling process of HEMS applied in deep coal mine are as follows:1) extract cold energy from mine water inrush to cool working faces;2) use the heat extracted by HEMS to supply heat to buildings and bath water to replace the use of a boiler, a useful energy saving and environmental protection measure.HEMS has been applied in the Jiahe and Sanhejian coal mines in Xuzhou, which enabled the temperature and humidity at the working faces to be well controlled.
文摘Design and control of pressure-swing distillation(PSD) with different heat integration modes for the separation of methyl acetate/methanol azeotrope are explored using Aspen Plus and Aspen Dynamics. First, an optimum steady-state separation configuration conditions are obtained via taking the total annual cost(TAC) or total reboiler heat duty as the objective functions. The results show that about 27.68% and 25.40% saving in TAC can be achieved by the PSD with full and partial heat integration compared to PSD without heat integration. Second,temperature control tray locations are obtained according to the sensitivity criterion and singular value decomposition(SVD) analysis and the single-end control structure is effective based on the feed composition sensitivity analysis. Finally, the comparison of dynamic controllability is made among various control structures for PSD with partial and full heat integration. It is shown that both control structures of composition/temperature cascade and pressure-compensated temperature have a good dynamic response performance for PSD with heat integration facing feed flowrate and composition disturbances. However, PSD with full heat integration performs the poor controllability despite of a little bit of economy.
文摘The dynamic research of aircraft environmental control system (ECS) is an important step in the advanced ECS design process. Based on the thermodynamics theory, mathematical models for the dynamic performance simulating of aircraft ECS were set up and an ECS simulation toolbox (ECS_1.0) was created with MATLAB language. It consists of main component modules (ducts, valves, heat exchangers, compressor, turbine, etc.). An aircraft environmental control system computer model was developed to assist engineers with the design and development of ECS dynamic optimization. An example simulating an existing ECS was given which shows the satisfactory effects.
基金supported by National Natural Science Foundation of China(61403149,61573298)Natural Science Foundation of Fujian Province(2015J01261,2016J05165)Foundation of Huaqiao University(Z14Y0002)
基金The project supported by the National Meg-science Engineering Project of the Chinese Government
文摘High-voltage power supply (HVPS) of Electron Cyclotron Resonance Heating (ECRH) for HT-7 and HT-7U is presently being constructed. The high voltage (100 kV) energy of HVPS is stored in the capacitor banks, and they can power one or two gyrotrons. All the operation of the charging system will be done by the control system, where the field signals are interfaced to programmable logic controller (PLC). The use of PLC not only simplifies the control system, but also enhances the reliability. The software written by using configuration software installed in the master computer allows for remote and multiple operator control, and the status and data information is also remotely available.