期刊文献+
共找到203,584篇文章
< 1 2 250 >
每页显示 20 50 100
Optimal synthesis of heat-integrated distillation configurations using the two-column superstructure 被引量:1
1
作者 Xiaodong Zhang Lu Jin Jinsheng Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期238-249,共12页
In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocol... In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocolumn configuration.However,this approach frequently necessitates tedious enumeration procedures,resulting in a considerable computational burden.To surmount this formidable challenge,the present study introduces an innovative remedy:The proposition of a superstructure that encompasses both single-column and multiple two-column configurations.Additionally,a simultaneous optimization algorithm is applied to optimize both the process parameters and heat integration structures of the twocolumn configurations.The effectiveness of this approach is demonstrated through a case study focusing on industrial organosilicon separation.The results underscore that the superstructure methodology not only substantially mitigates computational time compared to exhaustive enumeration but also furnishes solutions that exhibit comparable performance. 展开更多
关键词 SUPERSTRUCTURE Process synthesis heat integration Simulation-based optimization Industrial organosilicon separation
下载PDF
A coupled thermo-mechanical peridynamic model for fracture behavior of granite subjected to heating and water-cooling processes 被引量:1
2
作者 Luming Zhou Zhende Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2006-2018,共13页
Thermal damage and thermal fracture of rocks are two important indicators in geothermal mining projects.This paper investigates the effects of heating and water-cooling on granite specimens at various temperatures.The... Thermal damage and thermal fracture of rocks are two important indicators in geothermal mining projects.This paper investigates the effects of heating and water-cooling on granite specimens at various temperatures.The laboratory uniaxial compression experiments were also conducted.Then,a coupled thermo-mechanical ordinary state-based peridynamic(OSB-PD)model and corresponding numerical scheme were developed to simulate the damage of rocks after the heating and cooling processes,and the change of crack evolution process was predicted.The results demonstrate that elevated heating temperatures exacerbate the thermal damage to the specimens,resulting in a decrease in peak strength and an increase in ductility of granite.The escalating occurrence of thermal-induced cracks significantly affects the crack evolution process during the loading phase.The numerical results accurately reproduce the damage and fracture characteristics of the granite under different final heating temperatures(FHTs),which are consistent with the test results in terms of strength,crack evolution process,and failure mode. 展开更多
关键词 Peridynamics(PD) GRANITE heating and cooling Damage and fracture Uniaxial compression
下载PDF
Low-energy-consumption temperature swing system for CO_(2) capture by combining passive radiative cooling and solar heating 被引量:1
3
作者 Ying-Xi Dang Peng Tan +3 位作者 Bin Hu Chen Gu Xiao-Qin Liu Lin-Bing Sun 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期507-515,共9页
Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative coo... Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative cooling and solar heating for the uptake of CO_(2) on commercial activated carbons(CACs).During adsorption,the adsorbents are coated with a layer of hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene)[P(VdF-HFP)HP],which cools the adsorbents to a low temperature under sunlight through radiative cooling.For desorption,CACs with broad absorption of the solar spectrum are exposed to light irradiation for heating.The heating and cooling processes are completely driven by solar energy.Adsorption tests under mimicked sunlight using the CACs show that the performance of this system is comparable to that of the traditional ones.Furthermore,under real sunlight irradiation,the adsorption capacity of the CACs can be well maintained after multiple cycles.The present work may inspire the development of new temperature swing procedures with little energy consumption. 展开更多
关键词 CO_(2)capture Solar heating Passive radiative cooling Temperature swing adsorption
下载PDF
The regulation of ferrocene-based catalysts on heat transfer in highpressure combustion of ammonium perchlorate/hydroxyl-terminated polybutadiene/aluminum composite propellants 被引量:1
4
作者 Jinchao Han Songqi Hu Linlin Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期174-186,共13页
The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application i... The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application in high-pressure solid rocket motors.In this work,the combustion characteristics of AP/HTPB/Al composite propellants containing ferrocene-based catalysts were investigated,including the burning rate,thermal behavior,the local heat transfer,and temperature profile in the range of 7-28 MPa.The results showed that the exponent breaks were still observed in the propellants after the addition of positive catalysts(Ce-Fc-MOF),the burning rate inhibitor((Ferrocenylmethyl)trimethylammonium bromide,Fc Br)and the mixture of Fc Br/catocene(GFP).However,the characteristic pressure has increased,and the exponent decreased from 1.14 to 0.66,0.55,and 0.48 when the addition of Ce-FcMOF,Fc Br and Fc Br/GFP in the propellants.In addition,the temperature in the first decomposition stage was increased by 7.50℃ and 11.40℃ for the AP/Fc Br mixture and the AP/Fc Br/GFP mixture,respectively,compared to the pure AP.On the other hand,the temperature in the second decomposition stage decreased by 48.30℃ and 81.70℃ for AP/Fc Br and AP/Fc Br/GFP mixtures,respectively.It was also found that Fc Br might generate ammonia to cover the AP surface.In this case,a reaction between the methyl in Fc Br and perchloric acid caused more ammonia to appear at the AP surface,resulting in the suppression of ammonia desorption.In addition,the coarse AP particles on the quenched surface were of a concave shape relative to the binder matrix under low and high pressures when the catalysts were added.In the process,the decline at the AP/HTPB interface was only exhibited in the propellant with the addition of Ce-Fc-MOF.The ratio of the gas-phase temperature gradient of the propellants containing catalysts was reduced significantly below and above the characteristic pressure,rather than 3.6 times of the difference in the blank propellant.Overall,the obtained results demonstrated that the pressure exponent could be effectively regulated and controlled by adjusting the propellant local heat and mass transfer under high and low pressures. 展开更多
关键词 AP/HTPB/Al propellants heat transfer High-pressure combustion Ferrocene-based catalysts Pressure exponent
下载PDF
A particle-resolved heat-particle-fluid coupling model by DEM-IMB-LBM 被引量:1
5
作者 Ming Xia Jinlong Fu +2 位作者 Y.T.Feng Fengqiang Gong Jin Yu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2267-2281,共15页
Multifield coupling is frequently encountered and also an active area of research in geotechnical engineering.In this work,a particle-resolved direct numerical simulation(PR-DNS)technique is extended to simulate parti... Multifield coupling is frequently encountered and also an active area of research in geotechnical engineering.In this work,a particle-resolved direct numerical simulation(PR-DNS)technique is extended to simulate particle-fluid interaction problems involving heat transfer at the grain level.In this extended technique,an immersed moving boundary(IMB)scheme is used to couple the discrete element method(DEM)and lattice Boltzmann method(LBM),while a recently proposed Dirichlet-type thermal boundary condition is also adapted to account for heat transfer between fluid phase and solid particles.The resulting DEM-IBM-LBM model is robust to simulate moving curved boundaries with constant temperature in thermal flows.To facilitate the understanding and implementation of this coupled model for non-isothermal problems,a complete list is given for the conversion of relevant physical variables to lattice units.Then,benchmark tests,including a single-particle sedimentation and a two-particle drafting-kissing-tumbling(DKT)simulation with heat transfer,are carried out to validate the accuracy of our coupled technique.To further investigate the role of heat transfer in particle-laden flows,two multiple-particle problems with heat transfer are performed.Numerical examples demonstrate that the proposed coupling model is a promising high-resolution approach for simulating the heat-particle-fluid coupling at the grain level. 展开更多
关键词 Particle-fluid interaction heat transfer Discrete element method(DEM) Lattice Boltzmann method(LBM) Dirichlet-type thermal boundary Direct numerical simulation
下载PDF
A comprehensive review on microchannel heat sinks for electronics cooling
6
作者 Zhi-Qiang Yu Mo-Tong Li Bing-Yang Cao 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期133-162,共30页
The heat generation of electronic devices is increasing dramatically,which causes a serious bottleneck in the thermal management of electronics,and overheating will result in performance deterioration and even device ... The heat generation of electronic devices is increasing dramatically,which causes a serious bottleneck in the thermal management of electronics,and overheating will result in performance deterioration and even device damage.With the development of micro-machining technologies,the microchannel heat sink(MCHS)has become one of the best ways to remove the considerable amount of heat generated by high-power electronics.It has the advantages of large specific surface area,small size,coolant saving and high heat transfer coefficient.This paper comprehensively takes an overview of the research progress in MCHSs and generalizes the hotspots and bottlenecks of this area.The heat transfer mechanisms and performances of different channel structures,coolants,channel materials and some other influencing factors are reviewed.Additionally,this paper classifies the heat transfer enhancement technology and reviews the related studies on both the single-phase and phase-change flow and heat transfer.The comprehensive review is expected to provide a theoretical reference and technical guidance for further research and application of MCHSs in the future. 展开更多
关键词 microchannel heat sink thermal management of electronics microscale heat transfer heat transfer enhancement
下载PDF
Research on shell-side heat and mass transfer with multi-component in LNG spiral-wound heat exchanger under sloshing conditions
7
作者 Xue-Ping Du Guang-Lei Yu +3 位作者 Ya-Cheng Xu Zhi-Jie Chen Nai-Liang Li Huan-Guang Wang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1333-1345,共13页
The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper stud... The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions. 展开更多
关键词 Spiral-wound heat exchanger Sloshing conditions Two-phase flow MULTI-COMPONENT heat and mass transfer
下载PDF
Ion heat transport in electron cyclotron resonance heated L-mode plasma on the T-10 tokamak
8
作者 V.A.KRUPIN M.R.NURGALIEV +9 位作者 A.R.NEMETS I.A.ZEMTSOV S.D.SUNTSOV T.B.MYALTON D.S.SERGEEV N.A.SOLOVEV D.V.SARYCHEV D.V.RYJAKOV S.N.TUGARINOV N.N.NAUMENKO 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第4期52-60,共9页
Anomalous ion heat transport is analyzed in the T-10 tokamak plasma heated with electron cyclotron resonance heating(ECRH) in second-harmonic extra-ordinary mode. Predictive modeling with empirical scaling for Ohmical... Anomalous ion heat transport is analyzed in the T-10 tokamak plasma heated with electron cyclotron resonance heating(ECRH) in second-harmonic extra-ordinary mode. Predictive modeling with empirical scaling for Ohmical heat conductivity shows that in ECRH plasmas the calculated ion temperature could be overestimated, so an increase of anomalous ion heat transport is required. To study this effect two scans are presented: over the EC resonance position and over the ECRH power. The EC resonance position varies from the high-field side to the low-field side by variation of the toroidal magnetic field. The scan over the heating power is presented with on-axis and mixed ECRH regimes. Discharges with high anomalous ion heat transport are obtained in all considered regimes. In these discharges the power balance ion heat conductivity exceeds the neoclassical level by up to 10 times. The high ion heat transport regimes are distinguished by three parameters: the ratio Te/Ti, the normalized electron density gradient R/■, and the ion–ion collisionality νii~*. The combination of high Te/Ti, high νii~*, and R/■=6-10 results in values of normalized anomalous ion heat fluxes up to 10 times higher than in the low transport scenario. 展开更多
关键词 TOKAMAK L-mode electron cyclotron resonance heating ion heat transport
下载PDF
Web GIS-Based Temporal Analysis of Climatic Factors Impacting Heat Stroke in Karachi
9
作者 Ali Atif Mahnoor Rehman +3 位作者 Muhammad Butt Syed Mahmood Shahid Ghazi Rashid Mehmood 《Journal of Geographic Information System》 2024年第1期61-69,共9页
This study focuses on the impact of climate change, specifically the increasing threat of heatwaves, in Pakistan, with a particular emphasis on the city of Karachi. The Pakistan Meteorological Department (PMD) analyse... This study focuses on the impact of climate change, specifically the increasing threat of heatwaves, in Pakistan, with a particular emphasis on the city of Karachi. The Pakistan Meteorological Department (PMD) analysed a century of climatic data to reveal warming trends, attributing them to human-induced factors. The vulnerability of Pakistan to climate change is highlighted, given its warm climate and location in a region where temperature increases are expected to surpass global averages. The study examines the past three decades, noting a significant rise in the frequency of hot days, especially in Karachi, where heatwaves have become more prevalent. The aims and objectives of the study involve identifying temporal changes in temperature, rainfall, humidity, and wind speed from 1984 to 2014 in Karachi. The literature review emphasizes the health implications of heatwaves, citing increased mortality during such events globally. The study incorporates a comprehensive temporal analysis, addressing gaps in previous research by considering multiple climate indicators responsible for heatwaves. The methodology involves statistical analyses, including linear regression and Pearson correlation, applied to temperature data and urbanization parameters. Results indicate an increasing trend in heat index temperature, with heatwave vulnerability peaking in the last three decades. Heat Index Temperature Anomalies show a clear surge, emphasizing the need for new indices to control critical heat stress conditions. The study concludes that tropical climate variability, particularly heat index, is linked to extreme hot days, urging measures to reduce population vulnerability. The findings underscore the importance of policy strategies, such as integrated coastal zone management, to mitigate the adverse health effects of heatwaves in Karachi’s vulnerable population. 展开更多
关键词 IPCC heat Wave heat Index PMD
下载PDF
Temperature and structure measurements of heavy-ion-heated diamond using in situ X-ray diagnostics
10
作者 J.Lutgert P.Hesselbach +20 位作者 M.Schorner V.Bagnoud R.Belikov P.Drechsel B.Heuser O.SHumphries P.Katrik B.Lindqvist C.Qu R.Redmer D.Riley G.Schaumann S.Schumacher A.Tauschwitz D.Varentsov K.Weyrich X.Yu B.Zielbauer Zs.Major P.Neumayer D.Kraus 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第4期80-89,共10页
We present in situ measurements of spectrally resolved X-ray scattering and X-ray diffraction from monocrystalline diamond samples heatedwith an intense pulse of heavy ions.In this way,we determine the samples’heatin... We present in situ measurements of spectrally resolved X-ray scattering and X-ray diffraction from monocrystalline diamond samples heatedwith an intense pulse of heavy ions.In this way,we determine the samples’heating dynamics and their microscopic and macroscopic structuralintegrity over a timespan of several microseconds.Connecting the ratio of elastic to inelastic scattering with state-of-the-art density functionaltheory molecular dynamics simulations allows the inference of average temperatures around 1300 K,in agreement with predictions fromstopping power calculations.The simultaneous diffraction measurements show no hints of any volumetric graphitization of the material,butdo indicate the onset of fracture in the diamond sample.Our experiments pave the way for future studies at the Facility for Antiproton andIon Research,where a substantially increased intensity of the heavy ion beam will be available. 展开更多
关键词 heatED INTENSE STRUCTURE
下载PDF
Paraffin–CaCl_(2)·6H_(2)O dosage effects on the strength and heat transfer characteristics of cemented tailings backfill
11
作者 Hai Li Aibing Jin +2 位作者 Shuaijun Chen Yiqing Zhao You Ju 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期60-70,共11页
The challenge of high temperatures in deep mining remains harmful to the health of workers and their production efficiency The addition of phase change materials (PCMs) to filling slurry and the use of the cold storag... The challenge of high temperatures in deep mining remains harmful to the health of workers and their production efficiency The addition of phase change materials (PCMs) to filling slurry and the use of the cold storage function of these materials to reduce downhole temperatures is an effective approach to alleviate the aforementioned problem.Paraffin–CaCl_(2)·6H_(2)O composite PCM was prepared in the laboratory.The composition,phase change latent heat,thermal conductivity,and cemented tailing backfill (CTB) compressive strength of the new material were studied.The heat transfer characteristics and endothermic effect of the PCM were simulated using Fluent software.The results showed the following:(1) The new paraffin–CaCl_(2)·6H_(2)O composite PCM improved the thermal conductivity of native paraffin while avoiding the water solubility of CaCl_(2)·6H_(2)O.(2) The calculation formula of the thermal conductivity of CaCl_(2)·6H_(2)O combined with paraffin was deduced,and the reasons were explained in principle.(3) The“enthalpy–mass scale model”was applied to calculate the phase change latent heat of nonreactive composite PCMs.(4)The addition of the paraffin–CaCl_(2)·6H_(2)O composite PCM reduced the CTB strength but increased its heat absorption capacity.This research can give a theoretical foundation for the use of heat storage backfill in green mines. 展开更多
关键词 paraffin–CaCl_(2)·6H_(2)O heat transfer simulation heat calculation phase change material-based backfill latent heat of formula
下载PDF
Impact of Dietary Lactobacillus plantarum Postbiotics on the Performance of Layer Hens under Heat Stress Conditions
12
作者 Mohamad Farran Bouchra El Masry +1 位作者 Zeinab Kaouk Houssam Shaib 《Open Journal of Veterinary Medicine》 CAS 2024年第3期39-55,共17页
This experiment was conducted to determine the performance of heat-stressed layers fed a diet containing the probiotic Lactobacillus plantarum RS5 or its products of fermentation (postbiotics). Twenty-week-old Isa Whi... This experiment was conducted to determine the performance of heat-stressed layers fed a diet containing the probiotic Lactobacillus plantarum RS5 or its products of fermentation (postbiotics). Twenty-week-old Isa White layers, were subdivided into six treatments of 32 individually caged birds. Half of the birds were reared under regular temperature conditions, while the other half was subjected to cyclic daily heat stress. Layers were offered one of three diets: 1) Control;2) Control + Lactobacillus plantarum RS5 probiotic;3) Control + Lactobacillus plantarum RS5 postbiotics. Birds were tested for performance and visceral organ development for 5 months. Heat stress negatively affected the birds’ feed intake, egg weight, shell weight percentage, Haugh unit, shell thickness, yolk color, body weight and spleen weight percentage. Postbiotics significantly increased egg production (p < 0.05) in comparison to the control and the probiotic fed group (94.8% vs 92.6% vs 93.1%, respectively). Birds under probiotic or postbiotic diet showed a significantly higher (p < 0.05) feed intake and egg weight, although the probiotic had a more pronounced and gradual effect. Specific gravity, yolk weight percentage and shell thickness didn’t show differences among dietary groups. The Haugh Unit was significantly higher (p < 0.05) in probiotic group which also showed a significantly lower yolk color index (p < 0.05). The different feed treatments did not impact the bird’s viscera weight percentage, except for the ileum that was significantly lower (p < 0.05) under postbiotic supplementation. Both probiotics and postbiotics could be used as a potential growth promoters and might alleviate heat stress impact in poultry industry. 展开更多
关键词 Lactobacillus plantarum LAYERS heat Stress Postbiotic PROBIOTICS PERFORMANCE
下载PDF
Heating of nanoparticles and their environment by laser radiation and applications
13
作者 Victor K.Pustovalov 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第1期78-115,共38页
This review considers the fundamental dynamic processes involved in the laser heating of metal nanoparticles and their subsequent cooling.Of particular interest are the absorption of laser energy by nanoparticles,the ... This review considers the fundamental dynamic processes involved in the laser heating of metal nanoparticles and their subsequent cooling.Of particular interest are the absorption of laser energy by nanoparticles,the heating of a single nanoparticle or an ensemble thereof,and the dissipation of the energy of nanoparticles due to heat exchange with the environment.The goal is to consider the dependences and values of the temperatures of the nanoparticles and the environment,their time scales,and other parameters that describe these processes.Experimental results and analytical studies on the heating of single metal nanoparticles by laser pulses are discussed,including the laser thresholds for initiating subsequent photothermal processes,how temperature influences the optical properties,and the heating of gold nanoparticles by laser pulses.Experimental studies of the heating of an ensemble of nanoparticles and the results of an analytical study of the heating of an ensemble of nanoparticles and the environment by laser radiation are considered.Nanothermometry methods for nanoparticles under laser heating are considered,including changes in the refractive indices of metals and spectral thermometry of optical scattering of nanoparticles,Raman spectroscopy,the thermal distortion of the refractive index of an environment heated by a nanoparticle,and thermochemical phase transitions in lipid bilayers surrounding a heated nanoparticle.Understanding the sequence of events after radiation absorption and their time scales underlies many applications of nanoparticles.The applicationfields for the laser heating of nanoparticles are reviewed,including thermochemical reactions and selective nanophotothermolysis initiated in the environment by laser-heated nanoparticles,thermal radiation emission by nanoparticles and laser-induced incandescence,electron and ion emission of heated nanoparticles,and optothermal chemical catalysis.Applications of the laser heating of nanoparticles in laser nanomedicine are of particular interest.Significant emphasis is given to the proposed analytical approaches to modeling and calculating the heating processes under the action of a laser pulse on metal nanoparticles,taking into account the temperature dependences of the parameters.The proposed models can be used to estimate the parameters of lasers and nanoparticles in the various applicationfields for the laser heating of nanoparticles. 展开更多
关键词 NANOPARTICLES LASER heatING MODELING Nanothermometry Applications
下载PDF
Research on the Method of Heat Preservation and Heating for the Drilling System of Polar Offshore Drilling Platform
14
作者 Yingkai Dong Chaohe Chen +2 位作者 Guangyan Jia Lidai Wang Jian Bai 《Energy Engineering》 EI 2024年第5期1173-1193,共21页
This study investigates the heat dissipation mechanism of the insulation layer and other plane insulation layers in the polar drilling rig system.Combining the basic theory of heat transfer with the environmental requ... This study investigates the heat dissipation mechanism of the insulation layer and other plane insulation layers in the polar drilling rig system.Combining the basic theory of heat transfer with the environmental requirements of polar drilling operations and the characteristics of polar drilling processes,we analyze the factors that affect the insulation effect of the drilling rig system.These factors include the thermal conductivity of the insulation material,the thickness of the insulation layer,ambient temperature,and wind speed.We optimize the thermal insulation material of the polar drilling rig system using a steady-state method to measure solid thermal conductivity.By analyzing the distribution of temperature in space after heating,we optimize the distribution and air outlet angle of the heater using Fluent hydrodynamics software.The results demonstrate that under polar conditions,polyisocyanurate with stable thermodynamic properties is selected as the thermal insulation material.The selection of thermal insulation material and thickness significantly affects the thermal insulation effect of the system but has little effect on its heating effect.Moreover,when the air outlet angle of the heater is set to 32.5°,the heating efficiency of the system can be effectively improved.According to heat transfer equations and heat balance theory,we determine that the heating power required for the system to reach 5°C is close to numerical simulation. 展开更多
关键词 Polar drilling drilling system fluid dynamics heat preservation and heating numerical simulation
下载PDF
Mathematical Modelling and Design of Helical Coil Heat Exchanger for Production of Hot Air for Fluidized Bed Dryer
15
作者 Iniubong James Uwa Uwem Ekwere Inyang Innocent Oseribho Oboh 《Advances in Chemical Engineering and Science》 CAS 2024年第3期125-136,共12页
In global industrialization, efforts have been made to increase the rate of heat transfer in heat exchanger, minimizing the size of heat exchanger to reduce cost as well as increasing the effectiveness. Helical coil h... In global industrialization, efforts have been made to increase the rate of heat transfer in heat exchanger, minimizing the size of heat exchanger to reduce cost as well as increasing the effectiveness. Helical coil heat exchanger (HCHE) has been proven to be effective in improving heat transfer due to its large surface area. In this study, HCHE was designed to provide hot air needed for fluidized bed drying processes. The HCHE design model was fabricated and evaluated to study the efficiency of the hot air output for a laboratory fluidized bed dryer. The mathematical model for estimation of the final (output) temperature of air, Taf, passing through the HCHE was developed and validated experimentally. The drying of bitter kola particulates was carried out with a drying temperature of 50C 3C and a bed height-to-bed diameter ratio (H/D) of 1.5. The time taken to dry bitter kola particulates to 0.4% moisture content was 1 hour 45 minutes. Hence, HCHE is recommended for use in the production of hot for laboratory-scale fluidized bed dryers. 展开更多
关键词 Helical Coil heat Exchanger Fluidized Bed Dryer heat Transfer Output Air Temperature
下载PDF
Determination of Latent Heats of Vaporization and Fusion
16
作者 Lahbib Abbas Lahcen Bih +3 位作者 Khalid Yamni Abderrahim Elyahyaouy Abdelmalik El Attaoui Zahra Ramzi 《Advances in Chemical Engineering and Science》 CAS 2024年第3期113-124,共12页
Water is the most abundant liquid on the surface of the earth. It is a liquid whose properties are quite surprising, both as a pure liquid and as a solvent. Water is a very cohesive liquid: its melting and vaporizatio... Water is the most abundant liquid on the surface of the earth. It is a liquid whose properties are quite surprising, both as a pure liquid and as a solvent. Water is a very cohesive liquid: its melting and vaporization temperatures are very high for a liquid that is neither ionic nor metallic, and whose molar mass is low. Thus, water remains liquid at atmospheric pressure up to 100C while similar molecules such as H2S, H2Se, H2Te for example would give a vaporization temperature close to 80C. This cohesion is in fact ensured by hydrogen bonds between water molecules. This type of bonds between neighboring molecules, hydrogen bonds, is quite often found in chemistry [1] [2]. Any change in the state of aggregation of a substance occurs with the absorption or release of a certain amount of latent heat of transformation. Latent heat of fusion, vaporization or sublimation is the ratio of the energy supplied as heat to the mass of the substance that is melted, vaporized or sublimated. As a result of the reversibility of the processes, the fusion heat is equal to the heat released in the reverse process: crystallization and solidification heat. And likewise the heat of vaporization is equal to the heat of condensation. This equality of heat is often used to determine experimentally either of these quantities. There are two main measurement methods: 1) Direct measurement using the calorimeter, 2) Indirect measure based on the use of the VantHoff relationship. The objective of this work is to measure the latent heat of water vaporization and verify the compatibility of the experimental values with the values given by the tables using the indirect method. 展开更多
关键词 Latent heat of Vaporization Latent heat of Fusion CALORIMETRY Relationship of Vant’Hoff
下载PDF
Differential expression of miRNAs and mRNAs in the livers of largemouth bass Micropterus salmoides under heat stress
17
作者 Xuqian ZHAO Zijie LIN +4 位作者 Caijuan LI Hao ZHU Lingling LI Wenjia MAO Qufei LING 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第2期594-608,共15页
Global warming threatens freshwater ecosystems and compromises fish survival.To elucidate the role of miRNAs in the livers of heat stressed largemouth bass,juvenile fish was subject to heat stress under 37°C.Both... Global warming threatens freshwater ecosystems and compromises fish survival.To elucidate the role of miRNAs in the livers of heat stressed largemouth bass,juvenile fish was subject to heat stress under 37°C.Both mRNA-seq and miRNA-seq were conducted on the liver tissues under control and heat stress conditions.Differential gene expression analysis and enrichment analysis were performed on mRNA and miRNA expression profiles.A total of 406 differentially expressed genes(DEGs)were discovered,of which 212 were up-regulated and 194 were down-regulated.Most of the DEGs were significantly implicated in the regulation of“protein processing in endoplasmic reticulum”,“proteasome”,“steroid biosynthesis”,and“ornithine decarboxylase inhibitor activity”pathways.In addition,47 differentially expressed miRNAs(DEMs)were identified in largemouth bass livers under heat stress,including 21 up-regulated and 25 down-regulated miRNAs.A negatively regulated miRNA-mRNA network including 12 miRNAs and 19 mRNAs was constructed with DEMs involved in“protein degradation”,“calcium ion regulation”,“cell apoptosis”,and“lipid metabolism”.Moreover,this study indicated novel-miR-144 activated the IRE1 signaling pathway by targeting txndc5 to induce liver apoptosis in largemouth bass under heat stress.This study revealed the involvement of miRNA regulation in largemouth bass in response to heat stress. 展开更多
关键词 heat stress largemouth bass miRNA-mRNA interaction
下载PDF
An improved analysis method for assessing the nuclear-heating impact on the stability of toroidal field magnets in fusion reactors
18
作者 Yu-Dong Lu Jin-Xing Zheng +7 位作者 Xu-Feng Liu Huan Wu Jian Ge Kun Xu Ming Li Hai-Yang Liu Lei Zhu Fei Liu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第6期163-176,共14页
The superconducting magnet system of a fusion reactor plays a vital role in plasma confinement,a process that can be dis-rupted by various operational factors.A critical parameter for evaluating the temperature margin... The superconducting magnet system of a fusion reactor plays a vital role in plasma confinement,a process that can be dis-rupted by various operational factors.A critical parameter for evaluating the temperature margin of superconducting magnets during normal operation is the nuclear heating caused by D-T neutrons.This study investigates the impact of nuclear heat-ing on a superconducting magnet system by employing an improved analysis method that combines neutronics and thermal hydraulics.In the magnet system,toroidal field(TF)magnets are positioned closest to the plasma and bear the highest nuclear-heat load,making them prime candidates for evaluating the influence of nuclear heating on stability.To enhance the modeling accuracy and facilitate design modifications,a parametric TF model that incorporates heterogeneity is established to expedite the optimization design process and enhance the accuracy of the computations.A comparative analysis with a homogeneous TF model reveals that the heterogeneous model improves accuracy by over 12%.Considering factors such as heat load,magnetic-field strength,and cooling conditions,the cooling circuit facing the most severe conditions is selected to calculate the temperature of the superconductor.This selection streamlines the workload associated with thermal-hydraulic analysis.This approach enables a more efficient and precise evaluation of the temperature margin of TF magnets.Moreover,it offers insights that can guide the optimization of both the structure and cooling strategy of superconducting magnet systems. 展开更多
关键词 Superconducting magnet Nuclear heating NEUTRONICS Thermal hydraulics
下载PDF
Interface property of dissimilar Ti-6Al-4V/AA1050 composite laminate made by non-equal channel lateral co-extrusion and heat treatment
19
作者 Juan Liao Mengmeng Tian Xin Xue 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期197-208,共12页
The purpose of this paper is to examine the effect of processing parameters and subsequent heat treatments on the microstructures and bonding strengths of Ti-6Al-4V/AA1050 laminations formed via a non-equal channel la... The purpose of this paper is to examine the effect of processing parameters and subsequent heat treatments on the microstructures and bonding strengths of Ti-6Al-4V/AA1050 laminations formed via a non-equal channel lateral co-extrusion process.The microstructural evolution and growth mechanism in the diffusion layer were discussed further to optimize the bonding quality by appropriately adjusting process parameters.Scanning electron microscopes(SEM),energy dispersive spectrometer(EDS),and X-ray diffraction(XRD)were used to characterize interfacial diffusion layers.The shear test was used to determine the mechanical properties of the interfacial diffusion layer.The experimental results indicate that it is possible to co-extrusion Ti-6Al-4V/AA1050 compound profiles using non-equal channel lateral co-extrusion.Different heat treatment processes affect the thickness of the diffusion layer.When the temperature and time of heat treatment increase,the thickness of the reaction layers increases dramatically.Additionally,the shear strength of the Ti-6Al-4V/AA1050 composite interface is proportional to the diffusion layer thickness.It is observed that a medium interface thickness results in superior mechanical performance when compared to neither a greater nor a lesser interface thickness.Microstructural characterization of all heat treatments reveals that the only intermetallic compound observed in the diffusion layers is TiAl_(3).Due to the inter-diffusion of Ti and Al atoms,the TiAl_(3) layer grows primarily at AA1050/TiAl_(3) interfaces. 展开更多
关键词 Shear strength CO-EXTRUSION heat treatment Microstructure Intermetallic compounds
下载PDF
Effects of heat stress and long photoperiod on the prostate of rats
20
作者 Hamid Reza Ghaffari Javad Poursamimi 《Asian pacific Journal of Reproduction》 CAS 2024年第4期187-196,共10页
Objective:To examine light and heat effects on the morphological,histological,and micrometric structure of the prostate of rats.Methods:Thirty adult male rats were divided into three groups.The control group was kept ... Objective:To examine light and heat effects on the morphological,histological,and micrometric structure of the prostate of rats.Methods:Thirty adult male rats were divided into three groups.The control group was kept under 20℃-22℃ and an artificial 12 h/12 h day/night cycle;the temperature group was under normal light and at(42±1)℃ heat for 4 to 5 h daily,and the light group was exposed to 8 h/16 h day/night cycle with 20℃-22℃.Rats were weighed five times(at the beginning of the study and every seven days).Five milliliters(mL)of their peripheral blood were taken.The tissue staining was performed using the hematoxylin-eosin(H&E)stain and periodic acid-Schiff(PAS).In the following,tissue and cellular reactions to the PAS were examined.Results:Folds were located entirely on the surface of the anterior lobe and periphery of the other lobes.The secretory units in the anterior lobe were more than the lateral lobe.A strong reaction of the secretory cells to the PAS was observed.Testosterone serum levels of the light group also significantly increased compared to the control group(P<0.05).The most histometric changes of the lobes were established in the lateral lobes.Heat stress resulted in a significant decrease in testosterone levels and transformed prostate tissue.The epithelium and parenchyma to scaffold ratio in the temperature group decreased.Conclusions:Maximum and minimum changes in the ventral lobe happened under the ascent of temperature and light,respectively.The ventral lobe in the study of prostatic hyperplasia should be more considered. 展开更多
关键词 PROSTATE heat stress PHOTOPERIOD HISTOLOGY TESTOSTERONE RAT
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部