In global industrialization, efforts have been made to increase the rate of heat transfer in heat exchanger, minimizing the size of heat exchanger to reduce cost as well as increasing the effectiveness. Helical coil h...In global industrialization, efforts have been made to increase the rate of heat transfer in heat exchanger, minimizing the size of heat exchanger to reduce cost as well as increasing the effectiveness. Helical coil heat exchanger (HCHE) has been proven to be effective in improving heat transfer due to its large surface area. In this study, HCHE was designed to provide hot air needed for fluidized bed drying processes. The HCHE design model was fabricated and evaluated to study the efficiency of the hot air output for a laboratory fluidized bed dryer. The mathematical model for estimation of the final (output) temperature of air, Taf, passing through the HCHE was developed and validated experimentally. The drying of bitter kola particulates was carried out with a drying temperature of 50C 3C and a bed height-to-bed diameter ratio (H/D) of 1.5. The time taken to dry bitter kola particulates to 0.4% moisture content was 1 hour 45 minutes. Hence, HCHE is recommended for use in the production of hot for laboratory-scale fluidized bed dryers.展开更多
The article analyses the problem of determining the operating parameters of the district heating substation cooperating with the air heating system in technological air conditioning systems equipped with heat exchange...The article analyses the problem of determining the operating parameters of the district heating substation cooperating with the air heating system in technological air conditioning systems equipped with heat exchangers with high efficiency of heat recovery.Attention was paid to the correct selection of heat exchangers for the heat output balance depending on the heat recovery protection algorithms against a drop in the temperature of the heat transfer surface below 0℃.Critical parameters were determined in Polish climatic conditions,at which the operation of the heat recovery exchanger in the air conditioning system is switched off or limited.It has been proven that the proper functioning of the district heating substation cooperating with the installation of air conditioning with high heat recovery efficiency requires the use of two heat exchangers with different characteristics,equipped with properly selected temperature control systems.The optimal model of cooperation between the technological air conditioning system and the heating substation was also indicated.展开更多
This paper presented an entropy evaluation method for the influences of condense heat recovery system on the environment.Aiming at the damage of the condense heat to the environment,an entropy of resource loss and an ...This paper presented an entropy evaluation method for the influences of condense heat recovery system on the environment.Aiming at the damage of the condense heat to the environment,an entropy of resource loss and an emission entropy from the condense heat recovery system in the air conditioning refrigerating machine were introduced.For the evaluation of the entropies,we developed a new algorithm for the parameter identification,called the composite influence coefficient,based on the Least Squares Support Vector Machine method.By simulation,the numerical experiments shows that the Least Squares Support Vector Machine method is one of the powerful methods for the parameter identification to compute the damage entropy of the condense heat,with the largest training error being-0.025(the relative error being-3.56%),and the biggest test error being 0.015(the relative error being 2.5%).展开更多
A sewage heat pump system and its application based on a project in Chongqing,China,were discussed. Based on the sewage conditions,a feasibility analysis of the sewage heat pump air conditioning system was conducted. ...A sewage heat pump system and its application based on a project in Chongqing,China,were discussed. Based on the sewage conditions,a feasibility analysis of the sewage heat pump air conditioning system was conducted. The theoretical and quantitative calculations indicate that sewage flux in the city sewage main pipe in the project can satisfy heat exchange requirements,and taking water from the pipes has relatively small influence on the pipe net in summer and winter. The sewage heat pump air-conditioning system can save 21.5% operating cost in one year,which is energy efficient and environmentally friendly.展开更多
This work contributes to the improvement of energy-saving in air conditioning systems. The objective is to apply the thermal efficiency of heat exchangers for localized determination of the thermal performance of heat...This work contributes to the improvement of energy-saving in air conditioning systems. The objective is to apply the thermal efficiency of heat exchangers for localized determination of the thermal performance of heat exchangers with individually finned heat pipes. The fundamental parameters used for performance analysis were the number of fins per heat pipe, the number of heat pipes, the inlet temperatures, and the flow rates of hot and cold fluids. The heat exchanger under analysis uses Freon 404A as a working fluid in an air conditioning system for cooling in the Evaporator and energy recovery in the Condenser. The theoretical model is localized and applied individually to the Evaporator, Condenser, and heat exchanger regions. The results obtained through the simulation are compared with experimental results that use a global approach for the heat exchanger. The thermal quantities obtained through the theoretical model in the mentioned regions are air velocity, Nusselt number, thermal effectiveness, heat transfer rate, and outlet temperature. The comparisons made with global experimental results are in excellent agreement, demonstrating that the localized theoretical approach developed is consistent and can be used as a comprehensive analysis tool for heat exchangers using heat pipes.展开更多
This work contributes to the improvement of energy-saving in air conditioning systems. The objective is to apply the thermal efficiency of heat exchangers for localized determination of the thermal performance of heat...This work contributes to the improvement of energy-saving in air conditioning systems. The objective is to apply the thermal efficiency of heat exchangers for localized determination of the thermal performance of heat exchangers with individually finned heat pipes. The fundamental parameters used for performance analysis were the number of fins per heat pipe, the number of heat pipes, the inlet temperatures, and the flow rates of hot and cold fluids. The heat exchanger under analysis uses Freon 404A as a working fluid in an air conditioning system for cooling in the Evaporator and energy recovery in the Condenser. The theoretical model is localized and applied individually to the Evaporator, Condenser, and heat exchanger regions. The results obtained through the simulation are compared with experimental results that use a global approach for the heat exchanger. The thermal quantities obtained through the theoretical model in the mentioned regions are air velocity, Nusselt number, thermal effectiveness, heat transfer rate, and outlet temperature. The comparisons made with global experimental results are in excellent agreement, demonstrating that the localized theoretical approach developed is consistent and can be used as a comprehensive analysis tool for heat exchangers using heat pipes.展开更多
It is well known that one unit of electrical energy saved is equal to more than two units produced. One way of economizing the power is utilization of energy efficient systems at all locations. In the present study, t...It is well known that one unit of electrical energy saved is equal to more than two units produced. One way of economizing the power is utilization of energy efficient systems at all locations. In the present study, the air conditioning system is analysed and an innovative way is suggested. We use natural low temperature of shallow sub surface (1 - 3 m) of the earth—geothermal cooling system. It is known that majority of the households and the apartment complexes in India have two tanks for water storage. One is the underground water sump and the other is the overhead water tank. In our study, we use these two water storage systems for space cooling during summer and also for heating during winter. The main aim of our paper is air-conditioning of the space in an economic way to save electricity. It is based on a simple idea of transferring the low temperature from underground water sump to the room in the house using water as a mode of transport. Since India is a tropical country located at low latitude, most of the year, the air temperature is high and demands space cooling. However, for a couple of months during severe winter months (Dec.-Jan.) at Ahmedabad, heating of the space is required. For heating the space, we suggest to use the well-known solar water heater. Effective use of heat exchanger is shown through computation, modelling schemes and lab experiment. We recommend geothermal cooling for 10 months in a year and solar hot water system during 2 months of winter. It is observed that the ambient air temperature of 35°C - 40°C in the room can be brought down to 26°C without much consumption of electricity. In a similar manner, the room temperature at night (13°C) during winter in Ahmedabad can be increased to 27°C through circulation of water from solar water heater in the heat exchanger.展开更多
Selection of air conditioning(AC) cold/heat sources generally concerns about certain aspects and cannot reveal the whole profile of the problems. Grey relation analysis (GRA) is a data processing method to categor...Selection of air conditioning(AC) cold/heat sources generally concerns about certain aspects and cannot reveal the whole profile of the problems. Grey relation analysis (GRA) is a data processing method to categorize the correlation extent of compared sequences and a certain reference sequence in a system with uncertain information. It is applied to evaluating and selecting AC cold/heat sources from four main aspects, which are technology, economy, reliability, and operation and management. Case study shows that the result for selecting AC cold/heat sources with the GRA method can be more reasonable and convincible. Thus it offers a new approach for designers in heating, ventilating and air conditioning field to compare and evaluate different AC cold/heat sou rces.展开更多
An explosion-proof dual throttling air-conditioning system was put forward to solve the heat dissipation and internal dewing problems of explosion-proof frequency converter in the underground coal mine. This study inv...An explosion-proof dual throttling air-conditioning system was put forward to solve the heat dissipation and internal dewing problems of explosion-proof frequency converter in the underground coal mine. This study investigated the feasibility and benefits of explosion-proof dual throttling cooling and dehumidification air-conditioning system applied to the explosion-proof frequency converter. The physical model of dual throttling air-conditioning system was established and its performance parameter was described by mathematical method. The design calculation of the system has also been done. The experimental result showed that the system reached the steady state at the refrigeration mode after running 45 min, and the maximum internal temperature of the flame-proof cavity was 31.0 ℃. The system reached the steady state at the dehumidification mode after running 37 min. The maximum internal relative humidity and temperature of the flame-proof cavity were 33.4% and 36.3 ℃, respectively. Therefore, the proposed system had excellent ability of heat dissipation and avoided internal dewing. Compared with water cooling system, it was more energy-saving and economical. The airflow field of dual throttling air-conditioning system was also studied by CFD simulation. It was found that the result of CFD numerical simulation was highly consistent with the experimental data.展开更多
The building sector consumes much energy either for cooling or heating and is associated to greenhouse gas emissions. To meet energy and environmental challenges, the use of ground-to-air heat exchangers for preheatin...The building sector consumes much energy either for cooling or heating and is associated to greenhouse gas emissions. To meet energy and environmental challenges, the use of ground-to-air heat exchangers for preheating and cooling buildings has recently received considerable attention. They provide substantial energy savings and contribute to the improvement of thermal comfort in buildings. For these systems, the ground temperature plays the main role. The present work aims to investigate numerically the influence of the nature of soil on the thermal behavior of the ground-to-air heat exchanger used for building passive cooling. We have taken into account in this work the influence of the soil nature by considering three types of dry soil: clay soil, sandy-clay soil and sandy soil. The mixed convection equations governing the heat transfers in the earth-to-air heat exchanger have been presented and discretized using the finite difference method with an Alternate Direction Implicit (ADI) scheme. The resulting algebraic equations are then solved using the algorithm of Thomas combined with an iterative Gauss-Seidel procedure. The results show that the flow is dominated by forced convection. The examination of the sensitivity of the model to the type of soil shows that the distributions of contours of streamlines, isotherms, isovalues of moisture are less affected by the variations of the nature of soil through the variation of the diffusivity of the soil. However, it is observed that the temperature values obtained for the clay soil are higher while the sandy soil shows lower temperature values. The values of the ground-to-air heat exchanger efficiency are only slightly influenced by the nature of the soil. Nevertheless, we note a slightly better efficiency for the sandy soil than for the sandy-clayey silt and clayey soils. This result shows that a sandy soil would be more suitable for geothermal system installations.展开更多
This paper is based on the rainwater collection project in the retrofit of the Dongyi teaching block in Zhejiang University Xixi Campus.The analysis incorporates the local meteorological data, recycling water utilizat...This paper is based on the rainwater collection project in the retrofit of the Dongyi teaching block in Zhejiang University Xixi Campus.The analysis incorporates the local meteorological data, recycling water utilization, and precipitation adjustment.The rainwater collection system in this program also adds the condensation water from the heating, ventilation and air conditioning ( HVAC) system and the concentration from the reverse-osmosis system used for watering greens and supplying waterscapes.By calculating, the quantity of the HVAC condensation water in summer is 3.48 m3/d, and the quantity of the reverse-osmosis concentrated water is 198 to 396 L/d.This method solves the water shortage caused by high evaporation in summer and low precipitation in winter.Supported by empirical monitoring data, the proposed method significantly increases the economic efficiency of the system during the summer period.展开更多
The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper stud...The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions.展开更多
Numerical computation models of air cooling heat transfer and flow behaviors in triangular wavy fin channels(TWFC) were established with structural parameters of fins considered.The air side properties of heat transfe...Numerical computation models of air cooling heat transfer and flow behaviors in triangular wavy fin channels(TWFC) were established with structural parameters of fins considered.The air side properties of heat transfer coefficient and pressure drop are displayed with variable structural parameters of fins and inlet velocities of cooling air.Within the range of simulation,TWFC has the best comprehensive performance when inlet velocity vin=4-10 m/s.Compared with those of straight fins,the simulation results reveal that the triangular wavy fin channels are of higher heat transfer performances especially with the fin structural parameters of fin-height Fh=9.0 mm,fin-pitch Fp=2.5-3.0 mm,fin-wavelength λ=14.0-17.5 mm and fin-wave-amplitude A=1.0-1.2 mm.The correlations of both heat transfer factor and friction factor are presented,and the deviations from the experimental measurements are within 20%.展开更多
Earth tempering of stable air has attracted great attention as a sustainable air conditioning method in pig houses. At summer time air cooling of income air strongly reduces heat stress and required ventilation rate. ...Earth tempering of stable air has attracted great attention as a sustainable air conditioning method in pig houses. At summer time air cooling of income air strongly reduces heat stress and required ventilation rate. At winter time heating costs can be reduced. The effect of air condition using geothermal energy was investigated in a farrowing house. Underneath the foundation of the farrowing house 88 non perforated ribbed tubes (diameter: 20 cm) were piped in a depth of 1.6-2.0 m. Over a period of 12 month following data were recorded at hourly intervals and analyzed: outside air temperature, as well as air temperature in the air supply duct and in the compartments. Incoming air (supply duct) was heated up to 20 ℃ during winter time and in summer time cooled by up to 15 ℃ compared to the outside air temperature. In contrast to the outside air diurnal variation, temperature fluctuations of the incoming air were reduced by 90%. Due to cooling of the incoming air at summer time the stable inside temperature could be limited to maximal 29 ℃(maximum outside temperature was 35℃). Earth-tube heat exchangers with non perforated ribbed tubes were very efficient for air conditioning in farrowing houses. They were a cost effective supplement for sustainable cooling and heating of farrowing houses.展开更多
As the key equipment of floating liquefied natural gas(FLNG)process,the performance of spiral wound heat exchanger(SWHE)influences operation costs and reliability of the whole system.The sea conditions destroy the fal...As the key equipment of floating liquefied natural gas(FLNG)process,the performance of spiral wound heat exchanger(SWHE)influences operation costs and reliability of the whole system.The sea conditions destroy the falling film flow state of the refrigeration and then affect the heat transfer performance of FLNG SWHE.In order to design and optimize the SWHE,a cryogenic experimental device of FLNG process and a numerical model of falling film flow have been constructed to study the effects of sea conditions on the falling film flow and heat transfer characteristics of SWHE.The cryogenic experimental results show that the pitching conditions have larger effects on the heat transfer performance than yawing.Under the pitching angle of 7°,the natural gas temperature and gaseous refrigerant temperature increase by 3.22°C and 7.42°C,respectively.The flow rates of refrigerant and feed natural gas have a great impact on the heat transfer performance of SWHE under pitching and compound sloshing conditions.When the tilt angle increases to 9°,the tube structure with outer diameter D=8 mm and pipe spacing S=4 mm is recommended to reduce the drying area of the pipe wall surface.展开更多
The thesis has changed the heat and moisture exchange curves of Swiss Luwa air washer into double efficiency formulas which are widely used in our country with a computer, and also worked out the regression formula of...The thesis has changed the heat and moisture exchange curves of Swiss Luwa air washer into double efficiency formulas which are widely used in our country with a computer, and also worked out the regression formula of heat transfer efficiency(X). This has created favourable condition for us to use computer in our calculation of Luwa air washer.展开更多
To realize the industrialization of the novel single-column air separation process proposed in previous work,steady-state simulation for four different configurations of the single-column process with ternary(nitrogen...To realize the industrialization of the novel single-column air separation process proposed in previous work,steady-state simulation for four different configurations of the single-column process with ternary(nitrogen,oxygen and argon)is developed.Then,exergy analysis of the single-column processes is also carried out and compared with the conventional double-column air separation process at the same capacity.Furthermore,based on the steady-state simulation of single-column processes,the different heat exchanger networks(HENs)for the main heat exchanger and subcooler in each process are designed.To obtain better performance for this novel process,optimization of process configuration and operation is investigated.The optimal condition and configuration for this process is consisted as:feedstock is divided into two streams and the reflux nitrogen is compressed at the approximate temperature of 301 K.In addition,HEN is optimized to minimize the utilities.HENs without utilities are obtained for the four different configurations of single-column process.Furthermore,capital costs of the HEN for different cases are estimated and compared.展开更多
In order to calculate the air temperature of the near surface layer in urban environment,the surface layer air was divided into several layers in the vertical direction,and some energy balance equations were developed...In order to calculate the air temperature of the near surface layer in urban environment,the surface layer air was divided into several layers in the vertical direction,and some energy balance equations were developed for each air layer,in which the heat exchange due to vertical turbulence and horizontal air flow was taken into account.Then,the vertical temperature distribution of the surface layer air was obtained through the coupled calculation using the energy balance equations of underlying surfaces and building walls.Moreover,the measured air temperatures in a small area(with a horizontal scale of less than 500 m)and a large area(with a horizontal scale of more than 1 000 m)in Guangzhou in summer were used to validate the proposed model.The calculated results agree well with the measured ones,with a maximum relative error of 4.18%.It is thus concluded that the proposed model is a high-accuracy method to theoretically analyze the urban heat island and the thermal environment.展开更多
An air source heat pump(ASHP)with refrigerant injection is proposed for the air conditioning system of electric vehicles(EVs),especially for efficient heating in cold winter,when there is no wasted heat of engines.The...An air source heat pump(ASHP)with refrigerant injection is proposed for the air conditioning system of electric vehicles(EVs),especially for efficient heating in cold winter,when there is no wasted heat of engines.The simulation model is built with the framework of two-phase fluid network,where the compressor is separated as two compressors and the economizer is treated as two heat exchangers in the injection path and the main refrigerant path.With the validated simulation model,the heating performance is analyzed,and the results show that the coefficient of performance(COP)of ASHP with refrigerant injection is higher than 1.4 and the discharge temperature is less than 100℃ when the outdoor temperature is-20℃.The above performance ensures that the air conditioning system and EVs can operate normally with high efficiency even in the cold winter,which is much helpful for the practicability of EVs.展开更多
文摘In global industrialization, efforts have been made to increase the rate of heat transfer in heat exchanger, minimizing the size of heat exchanger to reduce cost as well as increasing the effectiveness. Helical coil heat exchanger (HCHE) has been proven to be effective in improving heat transfer due to its large surface area. In this study, HCHE was designed to provide hot air needed for fluidized bed drying processes. The HCHE design model was fabricated and evaluated to study the efficiency of the hot air output for a laboratory fluidized bed dryer. The mathematical model for estimation of the final (output) temperature of air, Taf, passing through the HCHE was developed and validated experimentally. The drying of bitter kola particulates was carried out with a drying temperature of 50C 3C and a bed height-to-bed diameter ratio (H/D) of 1.5. The time taken to dry bitter kola particulates to 0.4% moisture content was 1 hour 45 minutes. Hence, HCHE is recommended for use in the production of hot for laboratory-scale fluidized bed dryers.
文摘The article analyses the problem of determining the operating parameters of the district heating substation cooperating with the air heating system in technological air conditioning systems equipped with heat exchangers with high efficiency of heat recovery.Attention was paid to the correct selection of heat exchangers for the heat output balance depending on the heat recovery protection algorithms against a drop in the temperature of the heat transfer surface below 0℃.Critical parameters were determined in Polish climatic conditions,at which the operation of the heat recovery exchanger in the air conditioning system is switched off or limited.It has been proven that the proper functioning of the district heating substation cooperating with the installation of air conditioning with high heat recovery efficiency requires the use of two heat exchangers with different characteristics,equipped with properly selected temperature control systems.The optimal model of cooperation between the technological air conditioning system and the heating substation was also indicated.
基金Supported by Program of Science and Technology of Hunan Province(2007FJ2006)Project the Program of Science and Tech-nology of Hunan Province(2007TP4030)Hunan Provincial Natural Science Foundation of China(08JJ3093)
文摘This paper presented an entropy evaluation method for the influences of condense heat recovery system on the environment.Aiming at the damage of the condense heat to the environment,an entropy of resource loss and an emission entropy from the condense heat recovery system in the air conditioning refrigerating machine were introduced.For the evaluation of the entropies,we developed a new algorithm for the parameter identification,called the composite influence coefficient,based on the Least Squares Support Vector Machine method.By simulation,the numerical experiments shows that the Least Squares Support Vector Machine method is one of the powerful methods for the parameter identification to compute the damage entropy of the condense heat,with the largest training error being-0.025(the relative error being-3.56%),and the biggest test error being 0.015(the relative error being 2.5%).
基金Project(50838009) supported by the National Natural Science Foundation of ChinaProjects(2006BAJ02A09+1 种基金2006BAJ02A13-4) supported by the National Key Technologies R&D ProgramProject(2006BAJ01A06-3) supported by the Key R & D Program during the Eleventh Five-Year Plan Period,China
文摘A sewage heat pump system and its application based on a project in Chongqing,China,were discussed. Based on the sewage conditions,a feasibility analysis of the sewage heat pump air conditioning system was conducted. The theoretical and quantitative calculations indicate that sewage flux in the city sewage main pipe in the project can satisfy heat exchange requirements,and taking water from the pipes has relatively small influence on the pipe net in summer and winter. The sewage heat pump air-conditioning system can save 21.5% operating cost in one year,which is energy efficient and environmentally friendly.
文摘This work contributes to the improvement of energy-saving in air conditioning systems. The objective is to apply the thermal efficiency of heat exchangers for localized determination of the thermal performance of heat exchangers with individually finned heat pipes. The fundamental parameters used for performance analysis were the number of fins per heat pipe, the number of heat pipes, the inlet temperatures, and the flow rates of hot and cold fluids. The heat exchanger under analysis uses Freon 404A as a working fluid in an air conditioning system for cooling in the Evaporator and energy recovery in the Condenser. The theoretical model is localized and applied individually to the Evaporator, Condenser, and heat exchanger regions. The results obtained through the simulation are compared with experimental results that use a global approach for the heat exchanger. The thermal quantities obtained through the theoretical model in the mentioned regions are air velocity, Nusselt number, thermal effectiveness, heat transfer rate, and outlet temperature. The comparisons made with global experimental results are in excellent agreement, demonstrating that the localized theoretical approach developed is consistent and can be used as a comprehensive analysis tool for heat exchangers using heat pipes.
文摘This work contributes to the improvement of energy-saving in air conditioning systems. The objective is to apply the thermal efficiency of heat exchangers for localized determination of the thermal performance of heat exchangers with individually finned heat pipes. The fundamental parameters used for performance analysis were the number of fins per heat pipe, the number of heat pipes, the inlet temperatures, and the flow rates of hot and cold fluids. The heat exchanger under analysis uses Freon 404A as a working fluid in an air conditioning system for cooling in the Evaporator and energy recovery in the Condenser. The theoretical model is localized and applied individually to the Evaporator, Condenser, and heat exchanger regions. The results obtained through the simulation are compared with experimental results that use a global approach for the heat exchanger. The thermal quantities obtained through the theoretical model in the mentioned regions are air velocity, Nusselt number, thermal effectiveness, heat transfer rate, and outlet temperature. The comparisons made with global experimental results are in excellent agreement, demonstrating that the localized theoretical approach developed is consistent and can be used as a comprehensive analysis tool for heat exchangers using heat pipes.
文摘It is well known that one unit of electrical energy saved is equal to more than two units produced. One way of economizing the power is utilization of energy efficient systems at all locations. In the present study, the air conditioning system is analysed and an innovative way is suggested. We use natural low temperature of shallow sub surface (1 - 3 m) of the earth—geothermal cooling system. It is known that majority of the households and the apartment complexes in India have two tanks for water storage. One is the underground water sump and the other is the overhead water tank. In our study, we use these two water storage systems for space cooling during summer and also for heating during winter. The main aim of our paper is air-conditioning of the space in an economic way to save electricity. It is based on a simple idea of transferring the low temperature from underground water sump to the room in the house using water as a mode of transport. Since India is a tropical country located at low latitude, most of the year, the air temperature is high and demands space cooling. However, for a couple of months during severe winter months (Dec.-Jan.) at Ahmedabad, heating of the space is required. For heating the space, we suggest to use the well-known solar water heater. Effective use of heat exchanger is shown through computation, modelling schemes and lab experiment. We recommend geothermal cooling for 10 months in a year and solar hot water system during 2 months of winter. It is observed that the ambient air temperature of 35°C - 40°C in the room can be brought down to 26°C without much consumption of electricity. In a similar manner, the room temperature at night (13°C) during winter in Ahmedabad can be increased to 27°C through circulation of water from solar water heater in the heat exchanger.
文摘Selection of air conditioning(AC) cold/heat sources generally concerns about certain aspects and cannot reveal the whole profile of the problems. Grey relation analysis (GRA) is a data processing method to categorize the correlation extent of compared sequences and a certain reference sequence in a system with uncertain information. It is applied to evaluating and selecting AC cold/heat sources from four main aspects, which are technology, economy, reliability, and operation and management. Case study shows that the result for selecting AC cold/heat sources with the GRA method can be more reasonable and convincible. Thus it offers a new approach for designers in heating, ventilating and air conditioning field to compare and evaluate different AC cold/heat sou rces.
基金Supported by the National Basic Research Program of China("973"Program,No.2009CB219907)
文摘An explosion-proof dual throttling air-conditioning system was put forward to solve the heat dissipation and internal dewing problems of explosion-proof frequency converter in the underground coal mine. This study investigated the feasibility and benefits of explosion-proof dual throttling cooling and dehumidification air-conditioning system applied to the explosion-proof frequency converter. The physical model of dual throttling air-conditioning system was established and its performance parameter was described by mathematical method. The design calculation of the system has also been done. The experimental result showed that the system reached the steady state at the refrigeration mode after running 45 min, and the maximum internal temperature of the flame-proof cavity was 31.0 ℃. The system reached the steady state at the dehumidification mode after running 37 min. The maximum internal relative humidity and temperature of the flame-proof cavity were 33.4% and 36.3 ℃, respectively. Therefore, the proposed system had excellent ability of heat dissipation and avoided internal dewing. Compared with water cooling system, it was more energy-saving and economical. The airflow field of dual throttling air-conditioning system was also studied by CFD simulation. It was found that the result of CFD numerical simulation was highly consistent with the experimental data.
文摘The building sector consumes much energy either for cooling or heating and is associated to greenhouse gas emissions. To meet energy and environmental challenges, the use of ground-to-air heat exchangers for preheating and cooling buildings has recently received considerable attention. They provide substantial energy savings and contribute to the improvement of thermal comfort in buildings. For these systems, the ground temperature plays the main role. The present work aims to investigate numerically the influence of the nature of soil on the thermal behavior of the ground-to-air heat exchanger used for building passive cooling. We have taken into account in this work the influence of the soil nature by considering three types of dry soil: clay soil, sandy-clay soil and sandy soil. The mixed convection equations governing the heat transfers in the earth-to-air heat exchanger have been presented and discretized using the finite difference method with an Alternate Direction Implicit (ADI) scheme. The resulting algebraic equations are then solved using the algorithm of Thomas combined with an iterative Gauss-Seidel procedure. The results show that the flow is dominated by forced convection. The examination of the sensitivity of the model to the type of soil shows that the distributions of contours of streamlines, isotherms, isovalues of moisture are less affected by the variations of the nature of soil through the variation of the diffusivity of the soil. However, it is observed that the temperature values obtained for the clay soil are higher while the sandy soil shows lower temperature values. The values of the ground-to-air heat exchanger efficiency are only slightly influenced by the nature of the soil. Nevertheless, we note a slightly better efficiency for the sandy soil than for the sandy-clayey silt and clayey soils. This result shows that a sandy soil would be more suitable for geothermal system installations.
文摘This paper is based on the rainwater collection project in the retrofit of the Dongyi teaching block in Zhejiang University Xixi Campus.The analysis incorporates the local meteorological data, recycling water utilization, and precipitation adjustment.The rainwater collection system in this program also adds the condensation water from the heating, ventilation and air conditioning ( HVAC) system and the concentration from the reverse-osmosis system used for watering greens and supplying waterscapes.By calculating, the quantity of the HVAC condensation water in summer is 3.48 m3/d, and the quantity of the reverse-osmosis concentrated water is 198 to 396 L/d.This method solves the water shortage caused by high evaporation in summer and low precipitation in winter.Supported by empirical monitoring data, the proposed method significantly increases the economic efficiency of the system during the summer period.
基金funded by the National Natural Science Foundation of China(No.51806236,No.51806239)the Fundamental Research Funds for the Central Universities(No.2015XKMS059)+1 种基金Shaanxi Postdoctoral Fund Project(No.2018BSHEDZZ56)Foundation of Key Laboratory of Thermo-Fluid Science and Engineering(Xi'an Jiaotong University),Ministry of Education(No.KLTFSE2017KF01)。
文摘The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions.
基金Project(50976022) supported by the National Natural Science Foundation of ChinaProject(BY2011155) supported by the Provincial Science and Technology Innovation and Transformation of Achievements of Special Fund Project of Jiangsu Province,China
文摘Numerical computation models of air cooling heat transfer and flow behaviors in triangular wavy fin channels(TWFC) were established with structural parameters of fins considered.The air side properties of heat transfer coefficient and pressure drop are displayed with variable structural parameters of fins and inlet velocities of cooling air.Within the range of simulation,TWFC has the best comprehensive performance when inlet velocity vin=4-10 m/s.Compared with those of straight fins,the simulation results reveal that the triangular wavy fin channels are of higher heat transfer performances especially with the fin structural parameters of fin-height Fh=9.0 mm,fin-pitch Fp=2.5-3.0 mm,fin-wavelength λ=14.0-17.5 mm and fin-wave-amplitude A=1.0-1.2 mm.The correlations of both heat transfer factor and friction factor are presented,and the deviations from the experimental measurements are within 20%.
文摘Earth tempering of stable air has attracted great attention as a sustainable air conditioning method in pig houses. At summer time air cooling of income air strongly reduces heat stress and required ventilation rate. At winter time heating costs can be reduced. The effect of air condition using geothermal energy was investigated in a farrowing house. Underneath the foundation of the farrowing house 88 non perforated ribbed tubes (diameter: 20 cm) were piped in a depth of 1.6-2.0 m. Over a period of 12 month following data were recorded at hourly intervals and analyzed: outside air temperature, as well as air temperature in the air supply duct and in the compartments. Incoming air (supply duct) was heated up to 20 ℃ during winter time and in summer time cooled by up to 15 ℃ compared to the outside air temperature. In contrast to the outside air diurnal variation, temperature fluctuations of the incoming air were reduced by 90%. Due to cooling of the incoming air at summer time the stable inside temperature could be limited to maximal 29 ℃(maximum outside temperature was 35℃). Earth-tube heat exchangers with non perforated ribbed tubes were very efficient for air conditioning in farrowing houses. They were a cost effective supplement for sustainable cooling and heating of farrowing houses.
基金supported by the National Natural Science Foundation of China(U21B2085)the Natural Science Foundation of Shandong Province of China(ZR2021QE073)+2 种基金the China Postdoctoral Science Foundation(2021M703587)the Qingdao Postdoctoral Applied Research Project(qdyy20200096)Fundamental Research Funds for the Central Universities(20CX06076A)
文摘As the key equipment of floating liquefied natural gas(FLNG)process,the performance of spiral wound heat exchanger(SWHE)influences operation costs and reliability of the whole system.The sea conditions destroy the falling film flow state of the refrigeration and then affect the heat transfer performance of FLNG SWHE.In order to design and optimize the SWHE,a cryogenic experimental device of FLNG process and a numerical model of falling film flow have been constructed to study the effects of sea conditions on the falling film flow and heat transfer characteristics of SWHE.The cryogenic experimental results show that the pitching conditions have larger effects on the heat transfer performance than yawing.Under the pitching angle of 7°,the natural gas temperature and gaseous refrigerant temperature increase by 3.22°C and 7.42°C,respectively.The flow rates of refrigerant and feed natural gas have a great impact on the heat transfer performance of SWHE under pitching and compound sloshing conditions.When the tilt angle increases to 9°,the tube structure with outer diameter D=8 mm and pipe spacing S=4 mm is recommended to reduce the drying area of the pipe wall surface.
文摘The thesis has changed the heat and moisture exchange curves of Swiss Luwa air washer into double efficiency formulas which are widely used in our country with a computer, and also worked out the regression formula of heat transfer efficiency(X). This has created favourable condition for us to use computer in our calculation of Luwa air washer.
基金Supported by the National Natural Science Foundation of China(21576228)
文摘To realize the industrialization of the novel single-column air separation process proposed in previous work,steady-state simulation for four different configurations of the single-column process with ternary(nitrogen,oxygen and argon)is developed.Then,exergy analysis of the single-column processes is also carried out and compared with the conventional double-column air separation process at the same capacity.Furthermore,based on the steady-state simulation of single-column processes,the different heat exchanger networks(HENs)for the main heat exchanger and subcooler in each process are designed.To obtain better performance for this novel process,optimization of process configuration and operation is investigated.The optimal condition and configuration for this process is consisted as:feedstock is divided into two streams and the reflux nitrogen is compressed at the approximate temperature of 301 K.In addition,HEN is optimized to minimize the utilities.HENs without utilities are obtained for the four different configurations of single-column process.Furthermore,capital costs of the HEN for different cases are estimated and compared.
基金Supported by National Natural Science Foundation of China(50538040,50720165805,50808083)the 111 project(111-2-13)State Key Laboratory of Subtropical Building(2008ZB14))
文摘In order to calculate the air temperature of the near surface layer in urban environment,the surface layer air was divided into several layers in the vertical direction,and some energy balance equations were developed for each air layer,in which the heat exchange due to vertical turbulence and horizontal air flow was taken into account.Then,the vertical temperature distribution of the surface layer air was obtained through the coupled calculation using the energy balance equations of underlying surfaces and building walls.Moreover,the measured air temperatures in a small area(with a horizontal scale of less than 500 m)and a large area(with a horizontal scale of more than 1 000 m)in Guangzhou in summer were used to validate the proposed model.The calculated results agree well with the measured ones,with a maximum relative error of 4.18%.It is thus concluded that the proposed model is a high-accuracy method to theoretically analyze the urban heat island and the thermal environment.
基金supported by the National Key Research and Development Program of China(No.2016YFB0601602)National Natural Science Foundation of China(No.51676199)
文摘An air source heat pump(ASHP)with refrigerant injection is proposed for the air conditioning system of electric vehicles(EVs),especially for efficient heating in cold winter,when there is no wasted heat of engines.The simulation model is built with the framework of two-phase fluid network,where the compressor is separated as two compressors and the economizer is treated as two heat exchangers in the injection path and the main refrigerant path.With the validated simulation model,the heating performance is analyzed,and the results show that the coefficient of performance(COP)of ASHP with refrigerant injection is higher than 1.4 and the discharge temperature is less than 100℃ when the outdoor temperature is-20℃.The above performance ensures that the air conditioning system and EVs can operate normally with high efficiency even in the cold winter,which is much helpful for the practicability of EVs.