期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
Experimental Study on the Performance of ORC System Based on Ultra-Low Temperature Heat Sources
1
作者 Tianyu Zhou Liang Hao +2 位作者 Xin Xu Meng Si Lian Zhang 《Energy Engineering》 EI 2024年第1期145-168,共24页
This paper discussed the experimental results of the performance of an organic Rankine cycle(ORC)system with an ultra-low temperature heat source.The low boiling point working medium R134a was adopted in the system.Th... This paper discussed the experimental results of the performance of an organic Rankine cycle(ORC)system with an ultra-low temperature heat source.The low boiling point working medium R134a was adopted in the system.The simulated heat source temperature(SHST)in this work was set from 39.51°C to 48.60°C by the simulated heat source module.The influence of load percentage of simulated heat source(LPSHS)between 50%and 70%,the rotary valve opening(RVO)between 20%and 100%,the resistive load between 36Ωand 180Ωor the no-load of the generator,as well as the autumn and winter ambient temperature on the system performance were studied.The results showed that the stability of the system was promoted when the generator had a resistive load.The power generation(PG)and generator speed(GS)of the system in autumn were better than in winter,but the expander pressure ratio(EPR)was lower than in winter.Keep RVO unchanged,the SHST,the mass flow rate(MFR)of the working medium,GS,and the PG of the system increased with the increasing of LPSHS for different generator resistance load values.When the RVO was 60%,LPSHS was 70%,the SHST was 44.15°C and the resistive load was 72Ω,the highest PG reached 15.11 W.Finally,a simulation formula was obtained for LPSHS,resistance load,and PG,and its correlation coefficient was between 0.9818 and 0.9901.The formula can accurately predict the PG.The experimental results showed that the standard deviation between the experimental and simulated values was below 0.0792,and the relative error was within±5%. 展开更多
关键词 ORC load percentage of simulated heat source resistive load rotary valve opening power generation
下载PDF
Investigation on automated loading of dynamic 3D heat source during welding simulation 被引量:3
2
作者 胡广旭 董志波 +2 位作者 魏艳红 宋奎晶 占小红 《China Welding》 EI CAS 2011年第2期41-45,共5页
Since loading complexand dynamic heat source is a difficult job during welding simulation process, methods are studied to add the load automatically. Firstly, an expert module for selecting welding heat source model i... Since loading complexand dynamic heat source is a difficult job during welding simulation process, methods are studied to add the load automatically. Firstly, an expert module for selecting welding heat source model is founded based on simulation knowledge and experienc Secondly, a method named as "High order routine" is presented, which creates subroutines of 3D dynamic heat source m'od, el for user. Then an automated tool is presented to load the welding heat source boundary based on Marc software. The tool uses Marc command file to robustly achieve the process. At last, an electron beam welding heat model is presented to express the "toading method. 展开更多
关键词 heat source. automated loading electron beam welding high order routine
下载PDF
Investigation on automated loading of dynamic 3D heat source model for welding simulation 被引量:1
3
作者 Hu Guangxu Yang Xingya +1 位作者 Yu Xingbin Wei Yanhong 《China Welding》 CAS 2022年第3期48-52,共5页
Since programing complex and dynamic heat source model for welding simulation is a complex job,the parametric methods are studied in this paper.Firstly,an overall flow to achieve automatically modeling welding was int... Since programing complex and dynamic heat source model for welding simulation is a complex job,the parametric methods are studied in this paper.Firstly,an overall flow to achieve automatically modeling welding was introduced.Secondly,an expert module rule for selecting welding heat source model was founded,which is based on simulation knowledge and experiences.Thirdly,a modularity routine method was investigated using writing with C++programing,which automatically creates subroutines of 3D dynamic heat source model for user.To realize the dynamic weld path,the local weld path coordinate system was moved in the global coordinate system and it is used to model the direction of weld gun,welding path and welding pose.The weld path data file was prepared by the automatic tool for the welding heat source subroutines.All above functions were integrated in the user interface and the connection with architecture was introduced.At last,a laser beam welding heat source modeling was automatically modeled and the weld pool geometry was compared with the reported literature.It demonstrated that the automated tool is valid for welding simulation.Since modeling became convenient for welding simulation using the tool proposed,it could be easy and useful for welding engineers to acquire the needed information. 展开更多
关键词 welding heat source welding simulation 3D dynamic heat source model automated loading of heat source
下载PDF
Research on Energy-Saving Performance of Intermittent Heating for Rooms in Hot Summer&ColdWinter Zone
4
作者 Guoqing Yu Nan Fang +1 位作者 Dingke Hu Wei Zhao 《Energy Engineering》 EI 2023年第7期1563-1582,共20页
In the hot summer&cold winter zone in China,intermittent heating space for rooms is widely used.However,in comparison with continuous space heating,the energy-saving performance of intermittent space heating has n... In the hot summer&cold winter zone in China,intermittent heating space for rooms is widely used.However,in comparison with continuous space heating,the energy-saving performance of intermittent space heating has not been sufficiently investigated.This paper studied the factors influencing the energy performance of intermittent heating for the representativeoffice inhot summer&coldwinter zone.Basedon theheatbalancemethod,adynamic thermalmodel of the intermittent heating roomwas built and tested by experiments.And then,it analyzed the total space heating load,the amount of energy saving and energy saving ratio of the intermittent heating under different preheating hours,occupation hours,required roomtemperatures,air change rates,overall heat transfer coefficients(U-value)of windows and wall materials.If the adjacent rooms were not heated,for a typical room occupied about 10 h a day,the energy-saving ratio of intermittent heating was about 30%compared with continuous heating.But the preheating power was higher than two times of continuous heating.The results also indicated that the occupation hours had a significant effect on energy saving amount and ratio,it should be noted that the energy saving ratio by intermittent heating was much lower than the unoccupied period ratio.Relative to other factors,the heating temperatures,room air change rates and U-value of windows,and room envelope materials had little effect on energy efficiency.If the adjacent rooms were heated in the same manner as the roomin question,the energy-saving ratio of the total load of intermittent heating was heavily reduced to 8.46%. 展开更多
关键词 Intermittent heating space heat load continuous heating hot summer&cold winter zone energy saving ratio
下载PDF
Integrated Behavior of Carbon and Copper Alloy Heat Sink Under Different Heat Loads and Cooling Conditions 被引量:1
5
作者 李化 李建刚 +1 位作者 陈俊浚 胡建生 《Plasma Science and Technology》 SCIE EI CAS CSCD 2005年第4期2923-2925,共3页
An actively water-cooled limiter has been designed for the long pulse operation of an HT-7 device, by adopting an integrated structure-doped graphite and a copper alloy heat sink with a super carbon sheet serving as a... An actively water-cooled limiter has been designed for the long pulse operation of an HT-7 device, by adopting an integrated structure-doped graphite and a copper alloy heat sink with a super carbon sheet serving as a compliant layer between them. The behaviors of the integrated structure were evaluated in an electron beam facility under different heat loads and cooling conditions. The surface temperature and bulk temperature distribution were carefully measured by optical pyrometers and thermocouples under a steady state heat flux of 1 to 5 MW/m^2 and a water flow rate of 3 m^3/h, 4.5 m^3/h and 6 m^3/h, respectively. It was found that the surface temperature increased rapidly with the heat flux rising, but decreased only slightly with the water flow rate rising. The surface temperature reached approximately 1200℃ at 5 MW/m^2 of heat flux and 6 m^3/h of water flow. The primary experimental results indicate that the integrated design meets the requirements for the heat expelling capacity of the HT-7 device. A set of numerical simulations was also completed, whose outcome was in good accord with the experimental results. 展开更多
关键词 HT-7 tokamak carbon and copper alloy heat sink heat loads cooling conditions numerical simulation
下载PDF
Performance Evaluation Methods for Multi-stream Plate-Fin Heat Exchanger
6
作者 Li Jun Wang Yu +2 位作者 Jiang Yanlong Shi Hong Zheng Wenyuan 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第5期553-560,共8页
Mathematical model of cross type multi-stream plate-fin heat exchanger is established.Meanwhile,mean square error of accumulative heat load is normalized by dimensionless,and the equations of temperature-difference un... Mathematical model of cross type multi-stream plate-fin heat exchanger is established.Meanwhile,mean square error of accumulative heat load is normalized by dimensionless,and the equations of temperature-difference uniformity factor are improved.Evaluation factors above and performance of heat exchanger are compared and analyzed by taking aircraft three-stream condenser as an example.The results demonstrate that the mean square error of accumulative heat load is common result of total heat load and excess heat load between passages.So it can be influenced by passage arrangement,flow inlet parameters as well as flow patterns.Dimensionless parameter of mean square error of accumulative heat load can reflect the influence of passage arrangement to heat exchange performance and will not change dramatically with the variation of flow inlet parameters and flow patterns.Temperature-difference uniformity factor is influenced by passage arrangement and flow patterns.It remains basically unchanged under a certain range of flow inlet parameters. 展开更多
关键词 multi-stream plate-fin heat exchanger mean square error of accumulative heat load temperature-difference uniformity factor performance evaluation
下载PDF
Reducing Heat-Load in Buildings through the Use of Solar Screens: Case Study of Bookshop House, Lagos
7
作者 Adebamowo Michael Godwin John Oginni Adeyemi 《Journal of Civil Engineering and Architecture》 2012年第10期1435-1443,共9页
Technology advancement has ensured a better means of livelihood essentially in certain parts of West Africa, specifically Nigeria, where the climate is predominantly hot in most parts throughout the year. Air-conditio... Technology advancement has ensured a better means of livelihood essentially in certain parts of West Africa, specifically Nigeria, where the climate is predominantly hot in most parts throughout the year. Air-conditioning has reduced the harshness of indoor discomforts to the barest minimum. It is no more uncommon to find it regularly in use in most homes and offices. Currently, the economy has the centrality of its power supply hinged on generator plants. The enigma of the current situation is how this alternative problem has catastrophic after effects on the environment. This and many more add up to the greatest of all the threats now evading our environment and the world -- Global warming. The threat of Global warming is real and the need to find less environmentally destructive sources of energy cannot be overemphasized. This paper is a contribution towards energy saving in buildings through the reduction of solar radiation incident on buildings. Sustainable Building calls for an integrated planning approach for operating buildings economically, substantially reducing their impact on the environment by reducing energy/power consumption, amongst others, and enhancing the well-being of their inhabitants. Only buildings that reconcile all of the above factors are fit for the future. A case study of the CMS (Catholic Mission School) Book Shop house in Lagos was carried out. The methodology involved the use of a solar chart and shadow angle protractor to determine the overheated periods represented by the shading masks and data collected. From this analysis, it was decided to accept the use of external sun shading and preliminary designs and specifications were prepared by the architects. The use of external solar screens made a saving of up to 75% of the energy input which would otherwise have been required by air-conditioning. 展开更多
关键词 heat load BUILDINGS solar screens energy savings shading masks
下载PDF
Direction Dependence of Savings on Cooling and Heating Loads by Energy Efficient Windows
8
作者 Kazuki Yoshimura 《Journal of Energy and Power Engineering》 2014年第12期2012-2016,共5页
The energy saving performance of energy efficient windows has strong dependence on window direction. Transmitted insolation level definitely affected the cooling and heating load. Simple simulation on the decrement of... The energy saving performance of energy efficient windows has strong dependence on window direction. Transmitted insolation level definitely affected the cooling and heating load. Simple simulation on the decrement of cooling load and the increment of heating load of a shading window compared with those of a transparent window show the prospect of energy saving effect clearly.From southeastward to southwestward, shading window even enlarges total heating and cooling loads when the thermal transmission is the same. However, if the shading coefficient of window is switched between summer and winter, total cooling and heating load can be reduced. This result clarifies the importance of "smart window". 展开更多
关键词 Cooling load heating load shading coefficient U-vaLue.
下载PDF
Deep Learning for Multivariate Prediction of Building Energy Performance of Residential Buildings
9
作者 Ibrahim Aliyu Tai-Won Um +2 位作者 Sang-Joon Lee Chang Gyoon Lim Jinsul Kim 《Computers, Materials & Continua》 SCIE EI 2023年第6期5947-5964,共18页
In the quest to minimize energy waste,the energy performance of buildings(EPB)has been a focus because building appliances,such as heating,ventilation,and air conditioning,consume the highest energy.Therefore,effectiv... In the quest to minimize energy waste,the energy performance of buildings(EPB)has been a focus because building appliances,such as heating,ventilation,and air conditioning,consume the highest energy.Therefore,effective design and planning for estimating heating load(HL)and cooling load(CL)for energy saving have become paramount.In this vein,efforts have been made to predict the HL and CL using a univariate approach.However,this approach necessitates two models for learning HL and CL,requiring more computational time.Moreover,the one-dimensional(1D)convolutional neural network(CNN)has gained popularity due to its nominal computa-tional complexity,high performance,and low-cost hardware requirement.In this paper,we formulate the prediction as a multivariate regression problem in which the HL and CL are simultaneously predicted using the 1D CNN.Considering the building shape characteristics,one kernel size is adopted to create the receptive fields of the 1D CNN to extract the feature maps,a dense layer to interpret the maps,and an output layer with two neurons to predict the two real-valued responses,HL and CL.As the 1D data are not affected by excessive parameters,the pooling layer is not applied in this implementation.Besides,the use of pooling has been questioned by recent studies.The performance of the proposed model displays a comparative advantage over existing models in terms of the mean squared error(MSE).Thus,the proposed model is effective for EPB prediction because it reduces computational time and significantly lowers the MSE. 展开更多
关键词 Artificial intelligence(AI) convolutional neural network(CNN) cooling load deep learning ENERGY energy load energy building performance heating load PREDICTION
下载PDF
Analysis and Economic Evaluation of Hourly Operation Strategy Based on MSW Classification and LNG Multi-Generation System
10
作者 Xueqing Lu Yuetao Shi Jinsong Li 《Energy Engineering》 EI 2023年第6期1325-1352,共28页
In this study,a model of combined cooling,heating and power system with municipal solid waste(MSW)and liquefied natural gas(LNG)as energy sources was proposed and developed based on the energy demand of a large commun... In this study,a model of combined cooling,heating and power system with municipal solid waste(MSW)and liquefied natural gas(LNG)as energy sources was proposed and developed based on the energy demand of a large community,andMSW was classified and utilized.The systemoperated by determining power by heating load,and measures were taken to reduce operating costs by purchasing and selling LNG,natural gas(NG),cooling,heating,and power.Based on this system model,three operation strategies were proposed based on whether MSW was classified and the length of kitchen waste fermentation time,and each strategy was simulated hourly throughout the year.The results showed that the strategy of MSW classified and centralized fermentation of kitchen waste in summer(i.e.,strategy 3)required the least total amount of LNG for the whole year,which was 47701.77 t.In terms of total annual cost expenditure,strategy 3 had the best overall economy,with the lowest total annual expenditure of 2.7730×108 RMB at LNG and NG unit prices of 4 and 4.2 RMB/kg,respectively.The lower heating value of biogas produced by fermentation of kitchen waste from MSW being classified was higher than that of MSW before being classified,so the average annual thermal economy of the operating strategy of MSW being classified was better than that of MSW not being classified.Among the strategies in which MSW was classified and utilized,strategy 3 could better meet the load demand of users in the corresponding season,and thus this strategy had better thermal economy than the strategy of year-round fermentation of kitchen waste(i.e.,strategy 2).The hourly analysis data showed that the net electrical efficiency of the system varies in the same trend as the cooling,heating and power loads in all seasons,while the relationship between the energy utilization efficiency and load varied from season to season.This study can provide guidance for the practical application of MSW being classified in the system. 展开更多
关键词 Municipal solid waste liquefied natural gas energy recovery combined power heating and cooling determining power by heating load net electrical efficiency energy utilization efficiency
下载PDF
Simulations of NBI fast ion loss in the presence of toroidal field ripple on EAST 被引量:1
11
作者 Yingfeng XU Youjun HU +4 位作者 Xiaodong ZHANG Xingyuan XU Lei YE Xiaotao XIAO Zhen ZHENG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第9期13-23,共11页
NBI fast ion losses in the presence of the toroidal field ripple on EAST have been investigated by using the orbit code GYCAVA and the NBI code TGCO.The ripple effect was included in the upgraded version of the GYCAVA... NBI fast ion losses in the presence of the toroidal field ripple on EAST have been investigated by using the orbit code GYCAVA and the NBI code TGCO.The ripple effect was included in the upgraded version of the GYCAVA code.It is found that loss regions of NBI fast ions are mainly on the low field side near the edge in the presence of ripple.For co-current NBIs,the synergy effect of ripple and Coulomb collision on fast ion losses is dominant,and fast trapped ions located on the low field side are easily lost.The ripple well loss and the ripple stochastic loss of fast ions have been identified from the heat loads of co-current NBI fast ions.The ripple stochastic loss and the collisioninduced loss are much larger than the ripple well loss.Heat loads of lost fast ions are mainly localized on the right side of the radio frequency wave antennas from the inside view toward the first wall.For counter-current NBIs,the first orbit loss due to the magnetic drift is the dominant loss channel.In addition,fast ion loss fraction with ripple and collision for each NBI linearly increases with the effective charge number,which is related to the pitch angle scattering effect. 展开更多
关键词 fast ion loss RIPPLE NBI heat load COLLISION
下载PDF
Numerical and experimental study on shear coaxial injectors with hot hydrogen-rich gas/oxygen-rich gas and GH_2 /GO_2
12
作者 金平 李茂 蔡国飙 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第4期312-323,共12页
The influences of the shear coaxial injector parameters on the combustion performance and the heat load of a combustor are studied numerically and experimentally. The injector parameters, including the ratio of the ox... The influences of the shear coaxial injector parameters on the combustion performance and the heat load of a combustor are studied numerically and experimentally. The injector parameters, including the ratio of the oxidizer pressure drop to the combustor pressure (DP ), the velocity ratio of fuel to oxidizer (R V ), the thickness (WO ), and the recess (HO ) of the oxidizer injector post tip, the temperature of the hydrogen-rich gas (TH ) and the oxygen-rich gas (TO ), are integrated by the orthogonal experimental design method to investigate the performance of the shear coaxial injector. The gaseous hydrogen/oxygen at ambient temperature (GH2 /GO2 ), and the hot hydrogen-rich gas/oxygen-rich gas are used here. The length of the combustion (LC ), the average temperatures of the combustor wall (TW ), and the faceplate (TF ) are selected as the indicators. The tendencies of the influences of injector parameters on the combustion performance and the heat load of the combustor for the GH2 /GO2 case are similar to those in the hot propellants case. However, the combustion performance in the hot propellant case is better than that in the GH2/GO2 case, and the heat load of the combustor is also larger than that in the latter case. 展开更多
关键词 gas-gas injector combustion performance heat load experiment
下载PDF
Evolution of the Design of Cold Mass Support for the ITER Magnet Feeder System
13
作者 陆坤 宋云涛 +4 位作者 牛二武 周挺志 王忠伟 陈永华 朱银峰 《Plasma Science and Technology》 SCIE EI CAS CSCD 2013年第2期196-200,共5页
This paper presents the evolution of the design of cold mass support for the ITER magnet feeder system. The glass fibers in the cylinder and the flanges of the normal G10 support are discontinuous in the preliminary d... This paper presents the evolution of the design of cold mass support for the ITER magnet feeder system. The glass fibers in the cylinder and the flanges of the normal G10 support are discontinuous in the preliminary design. The heat load of this support from the analysis is only 4.86 W. However, the mechanical test of the prototype showed that it can only endure 9 kN lateral force, which is significantly less than the required 20 kN. So, the configuration of the glass fibers in the cylinders and flanges of this G10 support are modified by changing it to a continuous and knitted type to reinforce the support, and then a new improved prototype is manufactured and tested. It could endure 15'kN lateral forces this time, but still not meet the required 20 kN. Finally, the SS316LN material is chosen for the cold mass supports. The analysis results show that it is safe under 20 kN lateral forces with the heat load increased to 14.8 W. Considering the practical application, the requirements of strength is of primary importance. So, this SS316LN cold mass support is acceptable for the ITER magnet feeder system. On the other hand, the design idea of using continuous and knitted glass fibers to reinforce the strength of a G10 support is a good reference for the case with a lower heat load and not too high Lorentz force. 展开更多
关键词 cold mass support ITER magnet feeder heat load
下载PDF
Thermo-Mechanical Calculation of Vacuum Plasma Spraying Tungsten Coating as the Plasma Facing Material for Tokamak Device
14
作者 朱大焕 刘洋 +1 位作者 陈俊凌 鄢容 《Plasma Science and Technology》 SCIE EI CAS CSCD 2012年第9期794-798,共5页
Thermo-mechanical simulation of the vacuum plasma spraying tungsten (VPS-W) coating on the actively cooled CuCrZr substrate under the relevant quasi-stationary heat load and transient heat flux for tokamak device, i... Thermo-mechanical simulation of the vacuum plasma spraying tungsten (VPS-W) coating on the actively cooled CuCrZr substrate under the relevant quasi-stationary heat load and transient heat flux for tokamak device, is conducted by finite element analysis (FEA). It is shown that the failure of copper softening is likely to occur at the W/Cu compliant interlayer under a typical quasi-stationary heat load and the surface failure of plastic yield damage to occur at the surface edge under a transient heat flux. In addition, the critical transient heat flux for melting is approximately 0.75 MJ/m2 for about 0.5 ms. All these results are useful for the design of the plasma facing components (PFCs) and the plasma operation in the future. 展开更多
关键词 VPS-W coating heat load transient flux finite element analysis
下载PDF
Temperature of the Limiter Surface Measured by IR Camera in HT-7 Tokamak
15
作者 史博 林慧 +6 位作者 黄娟 罗南昌 龚先祖 张晓东 罗广南 杨钟时 李强 《Plasma Science and Technology》 SCIE EI CAS CSCD 2008年第2期158-161,共4页
Temperature measurement by IR (infrared) camera was performed oll HT-T tokamak. particularly during long pulse discharges, during which the temperature of the hot spots on the belt limiter exceeded 1000℃. The heat ... Temperature measurement by IR (infrared) camera was performed oll HT-T tokamak. particularly during long pulse discharges, during which the temperature of the hot spots on the belt limiter exceeded 1000℃. The heat load on the surface of the movable limiter could be obtained through ANSYS with the temperature measured by IR-camera. This work could be important for the temperature measurement and heat load study on the first wall of EAST device. 展开更多
关键词 surface temperature. HT-7 tokamak long pulse discharge. heat load
下载PDF
Optimal Thermal Insulation Thickness in Isolated Air-Conditioned Buildings and Economic Analysis
16
作者 Mousa M. Mohamed 《Journal of Electronics Cooling and Thermal Control》 2020年第2期23-45,共23页
The removal building heat load and electrical power consumption by air conditioning system are proportional to the outside conditions and solar radiation intensity. Building construction materials has substantial effe... The removal building heat load and electrical power consumption by air conditioning system are proportional to the outside conditions and solar radiation intensity. Building construction materials has substantial effects on the transmission heat through outer walls, ceiling and glazing windows. Good thermal isolation for buildings is important to reduce the transmitted heat and consumed power. The buildings models are constructed from common materials with 0 - 16 cm of thermal insulation thickness in the outer walls and ceilings, and double-layers glazing windows. The building heat loads were calculated for two types of walls and ceiling with and without thermal insulation. The cooling load temperature difference method, <em>CLTD</em>, was used to estimate the building heat load during a 24-hour each day throughout spring, summer, autumn and winter seasons. The annual cooling degree-day, <em>CDD</em> was used to estimate the optimal thermal insulation thickness and payback period with including the solar radiation effect on the outer walls surfaces. The average saved energy percentage in summer, spring, autumn and winter are 35.5%, 32.8%, 33.2% and 30.7% respectively, and average yearly saved energy is about of 33.5%. The optimal thermal insulation thickness was obtained between 7 - 12 cm and payback period of 20 - 30 month for some Egyptian Cities according to the Latitude and annual degree-days. 展开更多
关键词 Building heat Load Cooling Load Temperature Difference Energy Saving Power Consumption Annual Cooling Degree-Day Optimal Thermal Insulation Thickness Payback Period
下载PDF
Numerical simulation study on the hygrothermal performance of building exterior walls under dynamic wind-driven rain condition
17
作者 Xing Hu Huibo Zhang Hui Yu 《Building Simulation》 SCIE EI CSCD 2024年第2期207-221,共15页
Wind-driven rain(WDR)has a significant influence on the hygrothermal performance,durability,and energy consumption of building components.The calculation of WDR loads using semi-empirical models has been incorporated ... Wind-driven rain(WDR)has a significant influence on the hygrothermal performance,durability,and energy consumption of building components.The calculation of WDR loads using semi-empirical models has been incorporated into the boundary conditions of coupled heat and moisture transfer models.However,prior research often relied on fixed WDR absorption ratio,which fail to accurately capture the water absorption characteristics of porous building materials under rainfall scenarios.Therefore,this study aims to investigate the coupled heat and moisture transfer of exterior walls under dynamic WDR boundary conditions,utilizing an empirically obtained WDR absorption ratio model based on field measurements.The developed coupled heat and moisture transfer model is validated against the HAMSTAD project.The findings reveal that the total WDR flux calculated with the dynamic WDR boundary is lower than that obtained with the fixed WDR boundary,with greater disparities observed in orientations experiencing higher WDR loads.The variations in moisture flow significantly impact the surface temperature and relative humidity of the walls,influencing the calculation of cooling and heating loads by different models.Compared to the transient heat transfer model,the coupled heat and moisture transfer model incorporating dynamic WDR boundary exhibits maximum increases of 17.6%and 16.2%in cooling and heating loads,respectively.The dynamic WDR boundary conditions provide more precise numerical values for surface moisture flux,offering valuable insights for the thermal design of building enclosures and load calculations for HVAC systems. 展开更多
关键词 wind-driven rain building component hygrothermal model transient simulation cooling and heating loads
原文传递
Demystifying energy savings from dynamic temperature setpoints under weather and occupancy variability
18
作者 Riccardo Talami Ilyas Dawoodjee Ali Ghahramani 《Energy and Built Environment》 EI 2024年第6期878-888,共11页
Building temperature setpoints affect both HVAC energy consumption and occupant comfort.To reduce HVAC energy usage,researchers often investigate how system operations can be optimized under weather and occupancy vari... Building temperature setpoints affect both HVAC energy consumption and occupant comfort.To reduce HVAC energy usage,researchers often investigate how system operations can be optimized under weather and occupancy variability subject to a fixed setpoint that minimizes any possible discomfort.While previous research has explored the selection of dynamic setpoints to minimize HVAC energy consumption based on outdoor temperature,they have often neglected the impact of varying occupancy rates on the setpoints.This paper aims to demystify energy savings derived from fixed and dynamic temperature setpoints under weather and occupancy variability and explores the additional energy savings that can be achieved through dynamic temperature setpoints.An exhaustive HVAC zone temperature setpoint optimizer was developed to determine dynamic setpoints with respect to weather and occupancy(i.e.,setpoints that minimize HVAC energy consumption at different occupancy rates based on outdoor weather).U.S.DOE reference building energy models for small,medium,and large office buildings were simulated at 17 climate zones,4 occupancy rates(25%,50%,75%,100%)and 7 setpoints(19.5℃to 25.5℃at 1℃interval).It was found that,both fixed and dynamic setpoints benefit from the energy reduction of approximately 2-4%from the lower heat generated by the occupants at lower occupancy rates.However,at outdoor temperatures between 5℃and 32℃where occupant heat loads can swing the building between heating,free-running,and cooling modes,dynamic setpoints yield additional 2-10%energy savings,compared to fixed setpoints. 展开更多
关键词 Decarbonization Smart buildings OPTIMIZATION OCCUPANCY heat loads
原文传递
Trajectory generation of heat load test based on gauss pseudospectral method 被引量:6
19
作者 ZHANG YuanLong LIU LuHua +1 位作者 TANG GuoJian BAO WeiMin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2018年第2期273-284,共12页
A new trajectory generation for heat load test is proposed based on gauss pseudospectral method within limit range. Firstly,with multiple path constraints and flight task requirements taken into consideration, heat lo... A new trajectory generation for heat load test is proposed based on gauss pseudospectral method within limit range. Firstly,with multiple path constraints and flight task requirements taken into consideration, heat load parameters are introduced into the dynamics equations. In order to solve the problem of generating such a trajectory within limit range rapidly, the dynamics equations have been normalized by Earth related parameters. Secondly, since the gauss pseudospectral method is just employed to solve the discrete nonlinear programming problem, transformations are developed, which can relate the Lagrange multipliers of the discrete nonlinear programming problem to the costates of the continuous optimal control problem. In addtion, another approach of trajectory generation by tracking the given heat rate is also presented. Finally, simulation results with common aero vehicle(CAV-H) show that the trajectories obtained by both methods can well perform the heat load test with high stagnation heating rate and the large total aeroheating amount; meanwhile, gauss pseudospectral method is better than the compared one in the given range. Furthermore, the 3-D trajectory states and control variables, angle of attack and bank, which are generated by gauss pseudospectral method, can change smoothly. 展开更多
关键词 glide vehicle trajectory generation heat load test gauss pseudospectral method
原文传递
Performance Optimization of Irreversible Air Heat Pumps Considering Size Effect 被引量:3
20
作者 BI Yuehong CHEN Lingen +1 位作者 DING Zemin SUN Fengrui 《Journal of Thermal Science》 SCIE EI CAS CSCD 2018年第3期223-229,共7页
Considering the size of an irreversible air heat pump (AHP), heating load density (HLD) is taken as thermodynamic opt/mization objective by using finite-time thermodynamics. Based on an irreversible AHP with infin... Considering the size of an irreversible air heat pump (AHP), heating load density (HLD) is taken as thermodynamic opt/mization objective by using finite-time thermodynamics. Based on an irreversible AHP with infinite reservoir thermal-capacitance rate model, the expression of HLD of AHP is put forward. The HLD opti-mization processes are studied analytically and numerically, which consist of two aspects: (1) to choose pressure ratio; (2) to distribute heat-exchanger inventory. Heat reservoir temperatures, heat transfer performance of heat exchangers as well as irreversibility during compression and expansion processes are important factors influenc-ing on the performance of an irreversible AHP, which are characterized with temperature ratio, heat exchanger inventory as well as isentropic efficiencies, respectively. Those impacts of parameters on the maximum HLD are thoroughly studied. The research results show that HLD optimization can make the size of the AHP system smaller and improve the compactness of system. 展开更多
关键词 Irreversible Air heat Pump Thermodynamic Optimization heating Load Density Size Effect Finite Time Thermodynamics
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部