The performance of a 270 MW (9 × 30 MW) AES Corporation barge mounted gas turbine power plant in Nigeria is evaluated using the heat rate and entropy generation by the components of the plant to characterize the ...The performance of a 270 MW (9 × 30 MW) AES Corporation barge mounted gas turbine power plant in Nigeria is evaluated using the heat rate and entropy generation by the components of the plant to characterize the irreversibility in each component when operating at different loads between 90% and 25%. The power plants have the peculiarity that three of the plants were supplied by three (3) different Original Equipment Manufacturers (OEM);A, B and C. This study is sequel to the fact that the gas turbines were the first independent power plants in the country and after more than fifteen years of operation, it is reasonable to evaluate the performance of the major components. By analyzing the thermodynamic performance of these components, the study demonstrates the utility value of exergy efficiency as an important parameter in the evaluation of major components in a gas power plant. Exergy efficiency is shown to be an important parameter in ranking the power plant components, identifying and quantifying the possible areas of reduction in thermodynamic losses and improvement in efficiencies. A new relationship is derived to demonstrate the correlation between the exergy efficiency and the heat rate of a 30 MW gas power plant. The prediction of the derived relationship correlates well with the observed operational performance of the 30 MW power plants. The combustion chamber in each of the plants provides the maximum exergy destruction during operation. Its exergy efficiency is shown to exhibit good correlation with its energy efficiency and the plant rational exergy. The implication is that from an operational and component selection viewpoint in the specifications of a gas power plant, knowledge of the Heat Rate which is usually provided by the OEM is adequate to make a reasonable inference on the performance of some critical components of the plant.展开更多
Steam is the typical working fluid to drive turbo-generators in coal-fired power plants. It is an effective working fluid, but some of its energy is extracted in an unusable form when condensed. A Power Recovery ...Steam is the typical working fluid to drive turbo-generators in coal-fired power plants. It is an effective working fluid, but some of its energy is extracted in an unusable form when condensed. A Power Recovery Cycle (PRC) using a more volatile Secondary Working Fluid (SWF) added to the steam cycle could improve energy efficiency. PRCs have been applied to the flue gas and for combined cycle systems but not to traditional plant steam cycles. This paper details an analysis of adding a steam cycle PRC to a 500 MW lignite coal-fired power plant. A validated model of the plant was developed and PRCs using the three most attractive SWFs, benzene, methanol and hydrazine, were then added to the model. Adding a benzene, methanol, or hydrazine steam cycle PRC will produce an additional 59, 34, and 49 MW, respectively. An AACE Class 4 factored broad capital cost estimate and comparable operating costs and revenue estimates were developed to evaluate PRC feasibility. The benzene, methanol, and hydrazine processes had 2019 Net Present Values (NPVs) @12% of -$32, -$59, and +$35 million ± 40%, respectively. Thus, a PRC may be profitable at current or modest increases to U.S. Upper Midwest electricity prices of around $0.0667/kWh.展开更多
The demand for more efficient power generation is not only a prominent subject for environmental reasons but for economic reasons as well. Continuing growth in population contributes to more and more consumption of fr...The demand for more efficient power generation is not only a prominent subject for environmental reasons but for economic reasons as well. Continuing growth in population contributes to more and more consumption of fresh water, demanding less expensive desalination production, especially in the regions with little or no natural fresh water. Multigeneration desalination power plants may provide solutions to these issues through advanced and efficient designs that are capable of supplying fresh water and power to remote or arid regions of the world. This paper examines the flexibility and versatility of multigeneration systems to showcase the myriad of combinations that are available to accommodate any specific application. It also proposes a specific design for a multi-stage flash desalination system that is powered directly by the exhaust gases of a natural gas micro-turbine capable of producing around 1 MW of electrical power. The performance characteristics, the fresh water produced per kW and the overall plant efficiency, are numerically investigated and compared with previous designs that were analyzed on a larger scale. It is determined that the multigeneration system can produce 56,891 gallons of fresh water per day and an estimated 4.07 tons of salt per day and that a small scale multi-generation desalting systems is feasible.展开更多
随着“双碳”目标的提出,以风电为代表的可再生能源参与电力现货市场已是大势所趋。但由于具有不确定性和波动性,风电在市场中常处于不利地位。风电与具有灵活调节能力的光热电站(Concentrated Solar Power,CSP)联合能够减少实时出力偏...随着“双碳”目标的提出,以风电为代表的可再生能源参与电力现货市场已是大势所趋。但由于具有不确定性和波动性,风电在市场中常处于不利地位。风电与具有灵活调节能力的光热电站(Concentrated Solar Power,CSP)联合能够减少实时出力偏差,进而降低不平衡成本。基于此,本文针对风电—CSP电站联合参与现货市场的运行策略开展研究。首先,对风电—CSP电站联合参与现货市场的机理进行分析,在此基础上,以经济性最优为目标,综合考虑供电收益、冬季供暖收益和不平衡惩罚等因素,提出了考虑冬季供暖的风电—CSP电站联合参与电力现货市场运行策略,并基于Shapley值法对联盟收益进行分配,最后分析了储热容量对联盟收益的影响。算例表明所提联合运行策略能够充分利用CSP电站灵活性,显著提高双方收益,减少弃风损失。展开更多
文摘The performance of a 270 MW (9 × 30 MW) AES Corporation barge mounted gas turbine power plant in Nigeria is evaluated using the heat rate and entropy generation by the components of the plant to characterize the irreversibility in each component when operating at different loads between 90% and 25%. The power plants have the peculiarity that three of the plants were supplied by three (3) different Original Equipment Manufacturers (OEM);A, B and C. This study is sequel to the fact that the gas turbines were the first independent power plants in the country and after more than fifteen years of operation, it is reasonable to evaluate the performance of the major components. By analyzing the thermodynamic performance of these components, the study demonstrates the utility value of exergy efficiency as an important parameter in the evaluation of major components in a gas power plant. Exergy efficiency is shown to be an important parameter in ranking the power plant components, identifying and quantifying the possible areas of reduction in thermodynamic losses and improvement in efficiencies. A new relationship is derived to demonstrate the correlation between the exergy efficiency and the heat rate of a 30 MW gas power plant. The prediction of the derived relationship correlates well with the observed operational performance of the 30 MW power plants. The combustion chamber in each of the plants provides the maximum exergy destruction during operation. Its exergy efficiency is shown to exhibit good correlation with its energy efficiency and the plant rational exergy. The implication is that from an operational and component selection viewpoint in the specifications of a gas power plant, knowledge of the Heat Rate which is usually provided by the OEM is adequate to make a reasonable inference on the performance of some critical components of the plant.
文摘Steam is the typical working fluid to drive turbo-generators in coal-fired power plants. It is an effective working fluid, but some of its energy is extracted in an unusable form when condensed. A Power Recovery Cycle (PRC) using a more volatile Secondary Working Fluid (SWF) added to the steam cycle could improve energy efficiency. PRCs have been applied to the flue gas and for combined cycle systems but not to traditional plant steam cycles. This paper details an analysis of adding a steam cycle PRC to a 500 MW lignite coal-fired power plant. A validated model of the plant was developed and PRCs using the three most attractive SWFs, benzene, methanol and hydrazine, were then added to the model. Adding a benzene, methanol, or hydrazine steam cycle PRC will produce an additional 59, 34, and 49 MW, respectively. An AACE Class 4 factored broad capital cost estimate and comparable operating costs and revenue estimates were developed to evaluate PRC feasibility. The benzene, methanol, and hydrazine processes had 2019 Net Present Values (NPVs) @12% of -$32, -$59, and +$35 million ± 40%, respectively. Thus, a PRC may be profitable at current or modest increases to U.S. Upper Midwest electricity prices of around $0.0667/kWh.
文摘The demand for more efficient power generation is not only a prominent subject for environmental reasons but for economic reasons as well. Continuing growth in population contributes to more and more consumption of fresh water, demanding less expensive desalination production, especially in the regions with little or no natural fresh water. Multigeneration desalination power plants may provide solutions to these issues through advanced and efficient designs that are capable of supplying fresh water and power to remote or arid regions of the world. This paper examines the flexibility and versatility of multigeneration systems to showcase the myriad of combinations that are available to accommodate any specific application. It also proposes a specific design for a multi-stage flash desalination system that is powered directly by the exhaust gases of a natural gas micro-turbine capable of producing around 1 MW of electrical power. The performance characteristics, the fresh water produced per kW and the overall plant efficiency, are numerically investigated and compared with previous designs that were analyzed on a larger scale. It is determined that the multigeneration system can produce 56,891 gallons of fresh water per day and an estimated 4.07 tons of salt per day and that a small scale multi-generation desalting systems is feasible.
文摘随着“双碳”目标的提出,以风电为代表的可再生能源参与电力现货市场已是大势所趋。但由于具有不确定性和波动性,风电在市场中常处于不利地位。风电与具有灵活调节能力的光热电站(Concentrated Solar Power,CSP)联合能够减少实时出力偏差,进而降低不平衡成本。基于此,本文针对风电—CSP电站联合参与现货市场的运行策略开展研究。首先,对风电—CSP电站联合参与现货市场的机理进行分析,在此基础上,以经济性最优为目标,综合考虑供电收益、冬季供暖收益和不平衡惩罚等因素,提出了考虑冬季供暖的风电—CSP电站联合参与电力现货市场运行策略,并基于Shapley值法对联盟收益进行分配,最后分析了储热容量对联盟收益的影响。算例表明所提联合运行策略能够充分利用CSP电站灵活性,显著提高双方收益,减少弃风损失。