期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effect of aging temperature on the microstructures and mechanical properties of ZG12Cr9Mo1Co1NiVNbNB ferritic heat-resistant steel 被引量:1
1
作者 Xue Yang Lan Sun +3 位作者 Ji Xiong Ping Zhou Hong-yuan Fan Jian-yong Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第2期168-175,共8页
The effect of aging on the mechanical properties and microstructures of a new ZG12Cr9 MolColNiVNbNB ferritic heat resistant steel was investigated in this work to satisfy the high steam parameters of the ultra-supercr... The effect of aging on the mechanical properties and microstructures of a new ZG12Cr9 MolColNiVNbNB ferritic heat resistant steel was investigated in this work to satisfy the high steam parameters of the ultra-supercritical power plant.The results show that the main precipitates during aging are Fe(Cr,Mo)23C6,V(Nb)C,and(Fe2Mo) Laves in the steel.The amounts of the precipitated phases increase during aging,and correspondingly,the morphologies of phases are similar to be round.Fe(Cr,Mo)23C6 appears along boundaries and grows with increasing temperature.In addition,it is revealed that the martensitic laths are coarsened and eventually happen to be polygonization.The hardness and strength decrease gradually,whereas the plasticity of the steel increases.What's more,the hardness of this steel after creep is similar to that of other 9%-12%Cr ferritic steels.Thus,ZG12Cr9 MolColNiVNbNB can be used in the project. 展开更多
关键词 heat resistant steel aging temperature precipitates microstructure mechanical properties
下载PDF
Effects of Al on Microstructure and High-Temperature Wear Properties of Austenitic Heat-Resistant Steel 被引量:1
2
作者 ZHANG Yan1, SUN Yu-fu2, ZHAO Jing-yu2, GUAN Shao-kang2 (1. School of Materials Engineering, Nanjing Institute of Technology, Nanjing 211167, Jiangsu, China 2. School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, Henan, China) 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2012年第3期62-66,共5页
Microstructure and high-temperature dry sliding wear at 600 ~C in ambient air of austenitic heat-resistant steel ZG40Cr25Ni20 with different contents (mass percent) of AI (0 to 7.10~) have been investigated. The r... Microstructure and high-temperature dry sliding wear at 600 ~C in ambient air of austenitic heat-resistant steel ZG40Cr25Ni20 with different contents (mass percent) of AI (0 to 7.10~) have been investigated. The results show that microstructures of 4.68% and 7.10% A1 addition content consist of the matrix and reinforcement of inter- metallic compound y' and carbide, while microstructures of ZG40Cr25Ni20 without A1 and with A1 of 1.68% are ab- sent of y'. Higher wear resistance than the original ZG40Cr25Ni20 alloy is achieved in alloys with higher content of A1 under the same high-temperature wear test condition. The wear rates of Fe-25Cr-20Ni-7.10A1 and Fe-25Cr-20Ni- 4.68A1 are only 20.83% and 45.83% of that of Fe-25Cr-20Ni, respectively. Heat-resistant steels with higher con- tents of AI (4.72% and 7.10%) have higher hardness than those with lower contents of AI (1.68% and 0). Wear mechanisms of ZG40Cr25Ni20 are considered as severe plough plastic deformation and slight adhesive. However, wear mechanisms of Fe-25Cr-20Ni 4.68A1 are light micro-cutting and oxidation-wear, while that of Fe-25Cr-20Ni- 7. 10A1 are severe adhesive transfer and oxidation-wear_ 展开更多
关键词 austenitic heat resistant steel Al microstructure high-temperature sliding wear mechanism
原文传递
Effects of Cr Content on the Microstructure and Properties of 26Cr–3.5Mo–2Ni and 29Cr–3.5Mo–2Ni Super Ferritic Stainless Steels 被引量:10
3
作者 Li Ma Shengsun Hu +2 位作者 Junqi Shen Jian Han Zhixiong Zhu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第6期552-560,共9页
By using scanning electron microscopy, energy-dispersive spectrometry, X-ray diffraction, strength and hardness measurements, the microstructure, precipitation, mechanical properties, and corrosion resis- tance have b... By using scanning electron microscopy, energy-dispersive spectrometry, X-ray diffraction, strength and hardness measurements, the microstructure, precipitation, mechanical properties, and corrosion resis- tance have been investigated for two super ferritic stainless steels, 26Cr-3.SMo-2Ni and 29Cr-3.5Mo- 2Ni, with the aim to consider the effect of Cr content. The results showed that with the addition of Cr content, the recrystallization temperature was increased; the precipitation of Laves and Sigma (o) phases was promoted and the mechanical properties of super ferritic stainless steel were modified. Further- more, the pitting corrosion resistance and corrosion resistance to H2SO4 of the two super ferritic stainless steels were improved. In addition, suitable annealing processing is a key factor to maintain integrated performance by optimizing microstructure and removing detrimental precipitation phases. 展开更多
关键词 Super ferritic stainless stee heat treatment Microstructures Mechanical properties Corrosion resistance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部