We conducted a transient experimental investigation of steam–water direct contact condensation in the absence of noncondensible gas in a laboratory-scale column with the inner diameter of 325 mm and the height of 104...We conducted a transient experimental investigation of steam–water direct contact condensation in the absence of noncondensible gas in a laboratory-scale column with the inner diameter of 325 mm and the height of 1045 mm. We applied a new analysis method for the steam state equation to analyze the molar quantity change in steam over the course of the experiment and determined the transient steam variation. We also investigated the influence of flow rates and temperatures ofcooling water on the efficiency ofsteam condensation. Our experimental results show that appropriate increasing of the cooling water flow rate can significantly accelerate the steam condensation. We achieved a rapid increase in the total volumetric heat transfer coefficient by increasing the flow rate of cooling water, which indicated a higher thermal convection between the steam and the cooling water with higher flow rates. We found that the temperature ofcooling water did not play an important role on steam condensation. This method was confirmed to be effective for rapid recovering ofsteam.展开更多
为研究R410A与R134a在水平光管内的冷凝换热特性,在管内冷凝换热试验台上进行冷凝试验,分析质量流量、冷凝温度、测试水雷诺数Re、管径和制冷剂物性对换热系数和压降的影响。研究表明:换热系数、压降均随着质量流量的增加而变大,随冷凝...为研究R410A与R134a在水平光管内的冷凝换热特性,在管内冷凝换热试验台上进行冷凝试验,分析质量流量、冷凝温度、测试水雷诺数Re、管径和制冷剂物性对换热系数和压降的影响。研究表明:换热系数、压降均随着质量流量的增加而变大,随冷凝温度的升高而减小,换热系数随测试水雷诺数Re的增加而减小,而测试水雷诺数Re对压降的影响相对较小;尽管R410A的换热系数随管径的减小而增大,而管径对R134a换热系数的影响并不显著,R134a与R410A的压降均随管径的减小而增大;单位压降换热系数随质量流量的增加而减小; Cavallini et al.关联式可较好预测R410A与R134a在光管内换热系数,而Shah关联式只能用于预测R134a的换热系数。展开更多
文摘We conducted a transient experimental investigation of steam–water direct contact condensation in the absence of noncondensible gas in a laboratory-scale column with the inner diameter of 325 mm and the height of 1045 mm. We applied a new analysis method for the steam state equation to analyze the molar quantity change in steam over the course of the experiment and determined the transient steam variation. We also investigated the influence of flow rates and temperatures ofcooling water on the efficiency ofsteam condensation. Our experimental results show that appropriate increasing of the cooling water flow rate can significantly accelerate the steam condensation. We achieved a rapid increase in the total volumetric heat transfer coefficient by increasing the flow rate of cooling water, which indicated a higher thermal convection between the steam and the cooling water with higher flow rates. We found that the temperature ofcooling water did not play an important role on steam condensation. This method was confirmed to be effective for rapid recovering ofsteam.
文摘为研究R410A与R134a在水平光管内的冷凝换热特性,在管内冷凝换热试验台上进行冷凝试验,分析质量流量、冷凝温度、测试水雷诺数Re、管径和制冷剂物性对换热系数和压降的影响。研究表明:换热系数、压降均随着质量流量的增加而变大,随冷凝温度的升高而减小,换热系数随测试水雷诺数Re的增加而减小,而测试水雷诺数Re对压降的影响相对较小;尽管R410A的换热系数随管径的减小而增大,而管径对R134a换热系数的影响并不显著,R134a与R410A的压降均随管径的减小而增大;单位压降换热系数随质量流量的增加而减小; Cavallini et al.关联式可较好预测R410A与R134a在光管内换热系数,而Shah关联式只能用于预测R134a的换热系数。