期刊文献+
共找到1,292篇文章
< 1 2 65 >
每页显示 20 50 100
Heat transfer and friction factor of Therminol liquid phase heat transfer fluid in a ribbed tube 被引量:2
1
作者 Weiguo Xu Guodong Liu +3 位作者 Qinghong Zhang Shuai Wang Huilin Lu Heping Tan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第10期1343-1351,共9页
Experiments and simulations on flow and heat transfer behavior of Therminol-55 liquid phase heat transfer fluid have been conducted in a ribbed tube with the outer diameter and inner diameter 25.0 and 20.0 mm,pitch an... Experiments and simulations on flow and heat transfer behavior of Therminol-55 liquid phase heat transfer fluid have been conducted in a ribbed tube with the outer diameter and inner diameter 25.0 and 20.0 mm,pitch and rib height of 4.5 and 1.0 mm.respectively.Experimental results show that the heat transfer and thermal performance of Therminol-55 liquid phase heat transfer fluid in the ribbed tube are considerably improved compared to those of the smooth tube.The Nusselt number increase with the increase of Reynolds number.The increase in heat transfer rate of the ribbed tube has a mean value of 2.24 times.Also,the pressure drop results reveal that the average friction factor of the ribbed tube is in a range of 2.4 and 2.8 times over the smooth tube.Numerical simulations of three-dimensional flow behavior of Therminol-55 liquid phase heat transfer fluid are carried out using three different turbulence models in the ribbed tube.The numerical results show that the heat transfer of ribbed tube is improved because vortices are generated behind ribs,which produce some disruptions to fluid flow and enhance heat transfer compared with smooth tube.The numerical results prove that the ribbed tube can improve heat transfer and fluid flow performances of Therminol liquid phase heat transfer fluid. 展开更多
关键词 液相流动 传热速率 热流体 导热油 螺纹管 摩擦因子 数值模拟 流动特性
下载PDF
Influence of Anisotropic Permeability and Soret Effect on the Convective Heat and Mass Transfer through a Porous Cavity Saturated by a Non-Newtonian Fluid
2
作者 Dieudonné Kouke Julien Yovogan 《Engineering(科研)》 2023年第12期843-866,共24页
In this work, an analytical study is carried out on double-diffusive natural convection through a horizontal anisotropic porous layer saturated with a non-Newtonian fluid by using the Darcy model with the Boussinesq a... In this work, an analytical study is carried out on double-diffusive natural convection through a horizontal anisotropic porous layer saturated with a non-Newtonian fluid by using the Darcy model with the Boussinesq approximations. The horizontal walls of the system are subject to vertical uniform fluxes of heat and mass, whereas the vertical walls are assumed to be adiabatic and impermeable. The Soret effect is taken into consideration. Based on parallel flow approximation theory, the problem is solved in the limit of a thin layer and documented the effects of the physical parameters describing this investigation. 展开更多
关键词 Soret Number heat and Mass transfer Non-Newtonian fluid ISOTROPY Ani-sotropy Supercritical Rayleigh Number
下载PDF
High-temperature corrosion of Sn-Bi-Zn-Ga alloys as heat transfer fluid 被引量:1
3
作者 Qing-Meng Wang Xiao-Min Cheng +2 位作者 Yuan-Yuan Li Guo-Ming Yu Zhi Liu 《Rare Metals》 SCIE EI CAS CSCD 2021年第8期2221-2229,共9页
The new heat transfer alloy is highly reactive at high temperatures,and the corrosion of the container material determines the service life of the heat transfer system.The high-temperature corrosion of Sn-Bi-Zn-Ga all... The new heat transfer alloy is highly reactive at high temperatures,and the corrosion of the container material determines the service life of the heat transfer system.The high-temperature corrosion of Sn-Bi-Zn-Ga alloys as heat transfer fluid was investigated.The microstructure and elemental distribution were studied by field emission scanning electron microscopy(FESEM)and energy dispersive spectroscopy(EDS).The thermal properties before and after corrosion were studied by differential scanning calorimetry(DSC).The results show that the corrosion kinetics of the studied materials follows the parabolic law and the thermal properties after corrosion are improved.Ga significantly improves the thermal conductivity.316 stainless steel exhibits excellent corrosion resistance due to its high Cr and Ni contents.Corrosion mechanism analysis shows that the oxidation of Ga has a smaller Gibbs free energy,and an oxide forms at the corrosion interface to prevent dissolution corrosion and oxidative corrosion of the container material. 展开更多
关键词 Sn-Bi-Zn-Ga heat transfer fluids Thermophysical properties High-temperature corrosion
原文传递
Experimental Studies on the Thermal Performance of a Parabolic Dish Solar Receiver with the Heat Transfer Fluids SiC+ Water Nano Fluid and Water 被引量:11
4
作者 D.R.Rajendran E.Ganapathy Sundaram P.Jawahar 《Journal of Thermal Science》 SCIE EI CAS CSCD 2017年第3期263-272,共10页
An experimental investigation has been carried out with aa point focusing dish reflector of 12 square meters aperture area, exposed to the average direct normal irradiations of 810 W/m^2. This work focuses on enhancin... An experimental investigation has been carried out with aa point focusing dish reflector of 12 square meters aperture area, exposed to the average direct normal irradiations of 810 W/m^2. This work focuses on enhancinge the energy and exergy efficiencies of the cavity receiver by minimizing the temperature difference between the wall and heat transfer fluids. Two heat transfer fluids Water and SiC + water nano fluid have been prepared from 50 nm particle size and 1% of volume fraction, and experimented separately for the flow rates of 0.2 lpm to 0.6 lpm with an interval of 0.1 lpm. The enhanced thermal conductivity of nano fluid is 0.800115 W/mK with the k_(eff)/k_b ratio of 1.1759 determined by using the Koo and Kleinstreuer correlation. The maximum attained energy and exergy efficiencies are 29.14% and 24.82% for water, and 32.91% and 39.83% for SiC+water nano fluid. The nano fluid exhibits enhanced energy and exergy efficiency of 12.94% and 60.48% than that of water at the flow rate of 0.5 lpm. The result shows that the system with SiC+Water produces higher exergy efficiency as compared to energy efficiency; in the case of water alone, the energy efficiency is higher than exergy efficiency. 展开更多
关键词 指导正常照耀 洞接收装置 加热转移液体 nano 液体 exergy 因素
原文传递
Numerical simulation of aluminum holding furnace with fluid-solid coupled heat transfer 被引量:7
5
作者 周乃君 周善红 +1 位作者 张家奇 潘青林 《Journal of Central South University》 SCIE EI CAS 2010年第6期1389-1394,共6页
To predict three-dimensional temperature distribution of molten aluminum and its influencing factors inside an industrial aluminum holding furnace,a fluid-solid coupled method was presented.The fluid-solid coupled mat... To predict three-dimensional temperature distribution of molten aluminum and its influencing factors inside an industrial aluminum holding furnace,a fluid-solid coupled method was presented.The fluid-solid coupled mathematics models of aluminum holding furnace in the premixed combustion processing were established based on mass conservation,moment conservation,momentum conservation,energy conservation and chemistry species conservation.Computational results agree well with the test data of the typical condition.The maximum combustion temperature is 1 850 K.The average temperature of the molten aluminum is 1 158 K,and the maximum temperature difference is about 240 K.The average temperature increases 0.3 ℃ while the temperature of combustion air increases 1 ℃.The optimal excess air ratio is 1.25-1.30. 展开更多
关键词 铝成立炉子燃烧热转移液体固体联合了数字模拟
下载PDF
Three-dimensional turbulent model of heat transfer and fluid flow in GTAW process 被引量:1
6
作者 董志波 徐艳利 +3 位作者 魏艳红 马瑞 王淑娟 翟国富 《China Welding》 EI CAS 2010年第2期23-27,共5页
A two-equation K-ε turbulent fluid flow model is built to model the heat transfer and fluid flow in gas tungsten arc welding (GTAW) process of stainless steel S US310 and S US316. This model combines the buoyancy f... A two-equation K-ε turbulent fluid flow model is built to model the heat transfer and fluid flow in gas tungsten arc welding (GTAW) process of stainless steel S US310 and S US316. This model combines the buoyancy force, lorentz force and marangni force as the driving forces of thefluidflow in the weld pool. The material properties are functions of temperature in this model. The simulated results show that the molten metal flowing outward is mainly caused by the marangoni convection, which makes the weld pool become wider and shallower. The comparison of the weld pool shape of SUS310 and SUS316 shows that the slight differences of the value of thermal conductivity mainly attributes to the difference of the weld pool shape and the distinction of heat transport in laminar and turbulent model makes large diversity in the simulated results. 展开更多
关键词 heat transfer fluid flow GTAW K-ε turbulent fluid flow model
下载PDF
NUMERICAL ANALYSIS OF THREE-DIMENSIONAL FLUID FLOW AND HEAT TRANSFER IN TIG WELD POOL WITH FULL PENETRATION WU Chuansong,CAO Zhenning,WU Lin Harbin Institute of Technology,Harbin,China 被引量:4
7
作者 WU Chuansong,CAO Zhenning,WU Lin Harbin Institute of Technology,Harbin,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1993年第8期130-136,共7页
A model is established to analyze three-dimensional fluid flow and heat transfer in TICweld pools with full penetration.It considers the deformation of the molten pool surfaceat the condition of full penetrated workpi... A model is established to analyze three-dimensional fluid flow and heat transfer in TICweld pools with full penetration.It considers the deformation of the molten pool surfaceat the condition of full penetrated workpieees,takes the are pressure as the drivingforce of the pool surface deformation,and determines the surface configuration of weldpool based on the dynamic balance of arc pressure,pool gravity and surface tension atdeformed weld pool surface. The SIMPLER algorithm is used to calculate the fluid flowfield and temperature distribution in TIG weld pools of stainless steel workpieces.TIGwelding experiments are made to verify the validity of the model.It shows the calculatedresults by the model are in good agreement with experimental measurements. professor,Dept of Welding Engineering,Harbin Institute of Technology,Harbin 150006,China 展开更多
关键词 TIG weld pool full penetration fluid flow heat transfer numerical analysis
下载PDF
Casson fluid flow and heat transfer over a nonlinearly stretching surface 被引量:3
8
作者 Swati Mukhopadhyay 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第7期298-302,共5页
A boundary layer analysis is presented for non-Newtonian fluid flow and heat transfer over a nonlinearly stretching surface. The Casson fluid model is used to characterize the non-Newtonian fluid behavior. By using su... A boundary layer analysis is presented for non-Newtonian fluid flow and heat transfer over a nonlinearly stretching surface. The Casson fluid model is used to characterize the non-Newtonian fluid behavior. By using suitable transformations, the governing partial differential equations corresponding to the momentum and energy equations are converted into non-linear ordinary differential equations. Numerical solutions of these equations are obtained with the shooting method. The effect of increasing Casson parameter is to suppress the velocity field. However the temperature is enhanced with the increasing Casson parameter. 展开更多
关键词 nonlinear stretching Casson fluid heat transfer similarity transformations
下载PDF
MHD flow and heat transfer of micropolar fluid between two porous disks 被引量:2
9
作者 M. ASHRAF A. R. WEHGAL 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第1期51-64,共14页
A numerical study is carried out for the axisymmetric steady laminar incompressible flow of an electrically conducting micropolar fluid between two infinite parallel porous disks with the constant uniform injection th... A numerical study is carried out for the axisymmetric steady laminar incompressible flow of an electrically conducting micropolar fluid between two infinite parallel porous disks with the constant uniform injection through the surface of the disks. The fluid is subjected to an external transverse magnetic field. The governing nonlinear equations of motion are transformed into a dimensionless form through yon Karman's similarity transformation. An algorithm based on a finite difference scheme is used to solve the reduced coupled ordinary differential equations under associated boundary conditions. The effects of the Reynolds number, the magnetic parameter, the micropolar parameter, and the Prandtl number on the flow velocity and temperature distributions are discussed. The results agree well with those of the previously published work for special cases. The investigation predicts that the heat transfer rate at the surfaces of the disks increases with the increases in the Reynolds number, the magnetic parameter, and the Prandtl number. The shear stresses decrease with the increase in the injection while increase with the increase in the applied magnetic field. The shear stress factor is lower for micropolar fluids than for Newtonian fluids, which may be beneficial in the flow and thermal control in the polymeric processing. 展开更多
关键词 MHD flow porous disk micropolar fluid heat transfer MICROROTATION
下载PDF
Heat and Mass Transfer of Upper Convected Maxwell Fluid Flow with Variable Thermo-Physical Properties over a Horizontal Melting Surface 被引量:1
10
作者 Kolawole S. Adegbie Adeola J. Omowaye +1 位作者 Akeem B. Disu Isaac L. Animasaun 《Applied Mathematics》 2015年第8期1362-1379,共18页
The objective of this article is to present the dynamics of an Upper Convected Maxwell (UCM) fluid flow with heat and mass transfer over a melting surface. The influence of melting heat transfer, thermal and solutal s... The objective of this article is to present the dynamics of an Upper Convected Maxwell (UCM) fluid flow with heat and mass transfer over a melting surface. The influence of melting heat transfer, thermal and solutal stratification are properly accounted for by modifying the classical boundary conditions of temperature and concentration respectively. It is assumed that the ratio of inertia forces to viscous forces is high enough for boundary layer approximation to be valid. The corresponding influence of exponential space dependent internal heat source on viscosity and thermal conductivity of UCM is properly considered. The dynamic viscosity and thermal conductivity of UCM are temperature dependent. Classical temperature dependent viscosity and thermal conductivity models were modified to suit the case of both melting heat transfer and thermal stratification. The governing non-linear partial differential equations describing the problem are reduced to a system of nonlinear ordinary differential equations using similarity transformations and completed the solution numerically using the Runge-Kutta method along with shooting technique. For accurate and correct analysis of the effect of variable viscosity on fluid flow in which (Tw or Tm) T∞ , the mathematical models of variable viscosity and thermal conductivity must be modified. 展开更多
关键词 MELTING heat transfer VISCOELASTIC fluid VARIABLE VISCOSITY Solutal STRATIFICATION
下载PDF
Heat transfer on peristaltic flow of fourth grade fluid in inclined asymmetric channel with partial slip 被引量:2
11
作者 O.U.MEHMOOD N.MUSTAPHA S.SHAFIE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第10期1313-1328,共16页
In this paper, the effects of slip and heat transfer are studied on the peristaltic transport of a magnetohydrodynamic (MHD) fourth grade fluid. The governing equations are modeled and solved under the long waveleng... In this paper, the effects of slip and heat transfer are studied on the peristaltic transport of a magnetohydrodynamic (MHD) fourth grade fluid. The governing equations are modeled and solved under the long wavelength approximation by using a regular perturbation method. Explicit expressions of solutions for the stream function, the velocity, the pressure gradient, the temperature, and the heat transfer coefficient are presented. Pumping and trapping phenomena are analyzed for increasing the slip parameter. Further, the temperature profiles and the heat transfer coefficient are observed for various increasing parameters. It is found that these parameters considerably affect the considered flow characteristics. Comparisons with published results for the no-slip case are found in close agreement. 展开更多
关键词 peristaltic flow fourth grade fluid heat transfer slip condition inclinedchannel
下载PDF
Numerical Study of Fluid Dynamics and Heat Transfer Induced by Plasma Discharges 被引量:1
12
作者 俞建阳 陈浮 +1 位作者 刘华坪 宋彦萍 《Plasma Science and Technology》 SCIE EI CAS CSCD 2015年第1期41-49,共9页
A numerical investigation is conducted to explore the evolution of a plasma discharge and its interaction with the fluid flow based on a self-consistent fluid model which couples the discharge dynamics with the fluid ... A numerical investigation is conducted to explore the evolution of a plasma discharge and its interaction with the fluid flow based on a self-consistent fluid model which couples the discharge dynamics with the fluid dynamics.The effects of the applied voltage on the distribution of velocity and temperature in initially static air are parainetrically studied.Furthermore,the spatial structure of plasma discharge and the resulting force contours in streamwise and normal directions are discussed in detail.The result shows that the plasma actuator produces a net force that should always be directed away from the exposed electrode,which results in an ionic wind pushing particles into a jet downstream of the actuator.When the energy added by the plasma is taken into account,the ambient air temperature is increased slightly around the electrode,but the velocity is almost not affected.Therefore it is unlikely that the induced flow is buoyancy driven.For the operating voltages considered in this paper,the maximum induced velocity is found to follow a power law,i.e.,it is proportional to the applied voltage to the 3.5 power.This promises an efficient application in the flow control with plasma actuators. 展开更多
关键词 fluid dynamics heat transfer numerical study dielectric barrier discharge(DBD)
下载PDF
Theoretical Calculation Model of Heat Transfer for Deep-derived Supercritical Fluids with a Case Study 被引量:6
13
作者 HUWenxuan JINZhijun +2 位作者 SONGYucai SUNRui DUANZhenhao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第1期221-229,共9页
Based on a set of equations established by Duan et al. (1992, 1996) for a geofluid system H2O-CO2-CH4(-N2), a formula is obtained to calculate the heat changes. Combining the geological T-P conditions (geothermal grad... Based on a set of equations established by Duan et al. (1992, 1996) for a geofluid system H2O-CO2-CH4(-N2), a formula is obtained to calculate the heat changes. Combining the geological T-P conditions (geothermal gradients and lithostatic and hydrostatic pressures), the enthalpy of some typical geofluids is figured out. Then the principles of heat transfer of deep-derived supercritical fluids are discussed. The result shows that deep-derived geofluids can bring a large amount of thermal heat and release most heat to the shallow surroundings as they move up, because the molar enthalpies vary very greatly from the deep to shallow, increasing with the increases of T and P. Generally, more than tens of kilojoules heat per molar can be released. Furthermore, the molar enthalpy is affected by the compositions of the geofluids, and the molar enthalpy of CO2, CH4, or N2 is greater than that of H2O, being twice, more than twice, and about 140% of H2O, respectively. Finally, a case study is conducted by investigating a source rock sequence affected hydrothermally by magmatic fluids in the Huimin depression of Shengli Oilfield. The thermal heat calculated theoretically of the fluids related to a diabase intrusion is quite large, which can increase the temperature near the diabase to about 300℃, and that can, to some extent, account for the abnormal rise of the vitrinite reflectance, with the highest of about 3.8% (Ro). 展开更多
关键词 heat transfer ENTHALPY theoretical calculation deep-derived fluids a case study
下载PDF
Stagnation-point flow of couple stress fluid with melting heat transfer 被引量:3
14
作者 T.HAYAT M.MUSTAFA +1 位作者 Z.IQBAL A.ALSAEDI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第2期167-176,共10页
Melting heat transfer in the boundary layer flow of a couple stress fluid over a stretching surface is investigated. The developed differential equations are solved for homotopic solutions. It is observed that the vel... Melting heat transfer in the boundary layer flow of a couple stress fluid over a stretching surface is investigated. The developed differential equations are solved for homotopic solutions. It is observed that the velocity and the boundary layer thickness are decreasing functions of the couple stress fluid parameter. However, the temperature and surface heat transfer increase when the values of the couple stress fluid parameter increase. The velocity and temperature fields increase with an increase in the melting process of the stretching sheet. 展开更多
关键词 couple stress fluid melting heat transfer stagnation-point flow series solution
下载PDF
Modeling transient fluid flow and heat transfer phenothena in stationary pulsed current TIG weld pool 被引量:1
15
作者 Zheng Wei Wu Chuansong and Wu Lin(Harbin Institute of Technology, Harbin) 《China Welding》 EI CAS 1995年第2期139-149,共11页
A mathematical model is presented to describe transient behavior of heat transfer and fluid flow in stationary pulsed current tungsten inert gas (PC-TIG) weld pool, which considers three kinds of driving, forces for w... A mathematical model is presented to describe transient behavior of heat transfer and fluid flow in stationary pulsed current tungsten inert gas (PC-TIG) weld pool, which considers three kinds of driving, forces for weld pool convection, i,e. buoyancyforce, electromagnetic force and surface tension force. furthermore. the effect of vaporization heat flux at the free surface of weld pool and the temperature coefficient of surface tenston which is a function of temperatuer and composition are considered in the model In order to accelerate the convergence of iteration the AST(additive source term)method which concerns with the thermal energv boundary conditions is extended successfully to deal with the momentum boundary conditions by which the transient momentum equation and energy equation are mutually coupled. At the same time. ADI (Alternating direction implicit) method and DBC (double blocks correction) technque are employed to solve the finite difference equations. The results of numerical simulation demonstrate the transient behavior of PC-TIG weld pool, as well as the periodic variation of fluid flow and heat transfer with the periodic variation of welding current in stationary PC-TIG weld pool. The theoretical predictions based on this model are, shown to be in good accordance with the experimental measurements. 展开更多
关键词 numerical simulation pulsed current TIG. weld pool. fluid flow. heat transfer
下载PDF
Numerical Simulation of Fluid Flow and Heat Transfer in Funnel Shaped Mold of Thin Slab Continuous Caster 被引量:2
16
作者 ZHU Miao-yong WANG Jun ZHANG Ying 《Journal of Iron and Steel Research(International)》 SCIE CAS CSCD 2005年第6期14-19,共6页
Thin slab casting is used widely in the world. The control of molten steel flow and solidification in the mold is difficult due to the high casting speed and complicated configuration of the mold. Numerical simulation... Thin slab casting is used widely in the world. The control of molten steel flow and solidification in the mold is difficult due to the high casting speed and complicated configuration of the mold. Numerical simulation was carried out to study the fluid flow and heat transfer in the funnel shaped mold. The influence of nozzle design, casting speed and nozzle submersion depth on the flow and temperature fields in the mold was investigated, and guidance for selecting configurations of submerged nozzle was obtained. 展开更多
关键词 thin slab continuous casting fluid flow heat transfer numerical simulation
下载PDF
Peristaltic transport of MHD Williamson fluid in an inclined asymmetric channel through porous medium with heat transfer 被引量:1
17
作者 K.Ramesh M.Devakar 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期3189-3201,共13页
The intention of this investigation is to study the effects of heat transfer and inclined magnetic field on the peristaltic flow of Williamson fluid in an asymmetric channel through porous medium. The governing two-di... The intention of this investigation is to study the effects of heat transfer and inclined magnetic field on the peristaltic flow of Williamson fluid in an asymmetric channel through porous medium. The governing two-dimensional equations are simplified under the assumption of long wavelength approximation. The simplified equations are solved for the stream function, temperature, and axial pressure gradient by using a regular perturbation method. The expression for pressure rise is computed numerically. The profiles of velocity, pressure gradient, temperature, heat transfer coefficient and stream function are sketched and interpreted for various embedded parameters and also the behavior of stream function for various wave forms is discussed through graphs. It is observed that the peristaltic velocity increases from porous medium to non-porous medium, the magnetic effects have increasing effect on the temperature, and the size of the trapped bolus decreases with the increasing of magnetic effects while the trend is reversed with the increasing of Darcy number. Moreover, limiting solutions of our problem are in close agreement with the corresponding results of the Newtonian fluid model. 展开更多
关键词 非对称信道 流体模型 传热介质 蠕动 MHD 运输 多孔介质 倾斜磁场
下载PDF
Time Dependent Pressure Gradient Effect on Unsteady MHD Couette Flow and Heat Transfer of a Casson Fluid 被引量:1
18
作者 M. E. Sayed-Ahmed Hazem A. Attia Karem M. Ewis 《Engineering(科研)》 2011年第1期38-49,共12页
The unsteady magnetohydrodynamic flow of an electrically conducting viscous incompressible non-Newto- nian Casson fluid bounded by two parallel non-conducting porous plates has been studied with heat transfer consider... The unsteady magnetohydrodynamic flow of an electrically conducting viscous incompressible non-Newto- nian Casson fluid bounded by two parallel non-conducting porous plates has been studied with heat transfer considering the Hall effect. The fluid is acted upon by a uniform and exponential decaying pressure gradient. An external uniform magnetic field is applied perpendicular to the plates and the fluid motion is subjected to a uniform suction and injection. The lower plate is stationary and the upper plate is suddenly set into mo- tion and simultaneously suddenly isothermally heated to a temperature other than the lower plate temperature. Numerical solutions are obtained for the governing momentum and energy equations taking the Joule and viscous dissipations into consideration. The effect of unsteady pressure gradient, the Hall term, the parameter describing the non-Newtonian behavior on both the velocities and temperature distributions have been stud- ied. 展开更多
关键词 MHD Flow heat transfer Non-Newtonian fluidS UNSTEADY Pressure NUMERICAL Solution
下载PDF
Discriminated Dimensional Analysis Versus Classical Dimensional Analysis and Applications to Heat Transfer and Fluid Dynamics
19
作者 F. Alhama C.N. Madrid 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第5期626-631,共6页
与古典维的分析相对照,区别了维的分析假设空间坐标是独立于对方的在尺寸上并且允许在维的基础要过去常的几何数量的另外的类型,例如表面和角度。作为后果,区别了维的分析导致维的组的一个更低的数字,它使答案更精确。而且,这些区... 与古典维的分析相对照,区别了维的分析假设空间坐标是独立于对方的在尺寸上并且允许在维的基础要过去常的几何数量的另外的类型,例如表面和角度。作为后果,区别了维的分析导致维的组的一个更低的数字,它使答案更精确。而且,这些区别的组以力量和精力平衡有一个清楚的物理意思。纸介绍这种技术并且为主要数量和热转移和液体流动地的物理参数提供维的方程。二应用被介绍表明这个方法的效率。 展开更多
关键词 因次分析方法 传统方法 传热力学 流体力学
下载PDF
Flow of a Jeffery-Six Constant Fluid Between Coaxial Cylinders with Heat Transfer Analysis 被引量:1
20
作者 Muhammad Yousaf Malik Azad Hussain Sohail Nadeem 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第8期345-351,共7页
In the present investigation we have discussed the flow of a Jeffrey-six constant incompressible fluid betweentwo infinite coaxial cylinders in the presence of heat transfer analysis.The governing equations of Jeffrey... In the present investigation we have discussed the flow of a Jeffrey-six constant incompressible fluid betweentwo infinite coaxial cylinders in the presence of heat transfer analysis.The governing equations of Jeffrey-six constant fluidalong with energy equation have been derived in cylindrical coordinates.The highly nonlinear equations are simplifiedwith the help of non-dimensional parameters and then solved analytically with the help of homotopy analysis method(HAM) for two fundamental flows namely Couette and Generalized Couette Bow.The effects of emerging parametersare discussed through graphs.The convergence of the HAM solution has been discussed by plotting h-curves. 展开更多
关键词 不可压缩流体 传热分析 COUETTE流动 恒定 同轴 圆柱坐标系 无量纲参数 非线性方程
下载PDF
上一页 1 2 65 下一页 到第
使用帮助 返回顶部