This paper presents the study of convective heat and mass transfer characteristics of an incompressible MHD visco-elastic fluid flow immersed in a porous medium over a stretching sheet with chemical reaction and therm...This paper presents the study of convective heat and mass transfer characteristics of an incompressible MHD visco-elastic fluid flow immersed in a porous medium over a stretching sheet with chemical reaction and thermal stratification effects. The resultant governing boundary layer equations are highly non-linear and coupled form of partial differential equations, and they have been solved by using fourth order Runge-Kutta integration scheme with Newton Raphson shooting method. Numerical computations are carried out for the non-dimensional physical parameters. Here a numerical has been carried out to study the effect of different physical parameters such as visco-elasticity, permeability of the porous medium, magnetic field, Grashof number, Schmidt number, heat source parameter and chemical reaction parameter on the flow, heat and mass transfer characteristics.展开更多
The effect of the solid matrix and porosity of the porous medium are first introduced to the study of power-law nanofluids, and the Marangoni boundary layer flow with heat generation is investigated. Two cases of soli...The effect of the solid matrix and porosity of the porous medium are first introduced to the study of power-law nanofluids, and the Marangoni boundary layer flow with heat generation is investigated. Two cases of solid matrix of porous medium including glass balls and aluminum foam are considered. The governing partial differential equations are simplified by dimensionless variables and similarity transformations, and are solved numerically by using a shooting method with the fourth-fifth-order Runge-Kutta integration technique. It is indicated that the increase of the porosity leads to the enhancement of heat transfer in the surface of the Marangoni boundary layer flow.展开更多
We investigate heat and mass transfer in an isosceles trapezoidal cavity, filled with charcoal considered as a granular porous medium. The Darcy-Brinkman-Forchheimer flow model is coupled to the energy and mass equati...We investigate heat and mass transfer in an isosceles trapezoidal cavity, filled with charcoal considered as a granular porous medium. The Darcy-Brinkman-Forchheimer flow model is coupled to the energy and mass equations with the assumption of non-thermal equilibrium. These equations are discretized by the finite volume method with an offset mesh and then solved by the line-by-line method of Thomas. The coupling between pressure and velocity is obtained by Semi-Implicit Method for Pressure Linked Equations. (SIMPLE) algorithm. The results show that the temperature in the cavity increases when the inclination angle of the sides walls decreases. The 15° inclination is selected as being able to offer better thermal performance in the cookstove combustion chamber.展开更多
The problem of magneto-hydro-dynamic (MHD) mass and heat transfer of an oscillatory fluid in two-dimensional viscous, electrically conducting over an infinite vertical permeable moving plate in a saturated porous medi...The problem of magneto-hydro-dynamic (MHD) mass and heat transfer of an oscillatory fluid in two-dimensional viscous, electrically conducting over an infinite vertical permeable moving plate in a saturated porous medium with the presence of a transverse magnetic field and chemical reaction is analytically presented. The governing equations, momentum, energy, and concentration are solved. Various flow parameters effects on velocity, temperature and concentration fields are discussed. It is found that, the fluid velocity increases with increasing both the permeability and chemical reaction parameters. While, it increases with decreasing the magnetic field parameter. Furthermore, the concentration increases with increasing chemical reaction parameters.展开更多
The viscous flow in a wavy channel with convective boundary conditions is investigated. The channel is filled with a porous viscous fluid. Two cases of equal and different external convection coefficients on the walls...The viscous flow in a wavy channel with convective boundary conditions is investigated. The channel is filled with a porous viscous fluid. Two cases of equal and different external convection coefficients on the walls are taken into account. Effect of viscous dissipation is also considered. The governing equations are derived employing long wavelength and low Reynolds number approximations. Exact closed form solutions are obtained for the simplified equations. Important physical features for peristaltic flow caused by the wavy wave are pumping, trapping and heat transfer rate at the channel walls. These are discussed one by one in depth and detail through graphical illustrations. Special attention has been given to the effects of convective boundary conditions. The results show that for Bi1≠Bi2, there exists a critical value of Brinkman number Brc at which the temperatures of both the walls become equal. And, for Bi1>Bi2 and Br>Brc, the temperature of the cold wall exceeds the temperature of hot wall.展开更多
Based on medium plate runout table ultra-fast cooling( UFC)-accelerated cooling equipment( ACC) system,a heat transfer coefficient model was constructed. Firstly,according to the measured data,heat transfer coefficien...Based on medium plate runout table ultra-fast cooling( UFC)-accelerated cooling equipment( ACC) system,a heat transfer coefficient model was constructed. Firstly,according to the measured data,heat transfer coefficients under different roll speed and water volume were calculated by using an inverse heat conduction method. Secondly,a monofactorial heat transfer coefficient calculation formula was obtained. Finally,the heat transfer coefficient model based on medium plate runout table UFC-ACC system was constructed by intercept function,slope function,interaction influence function and linear or nonlinear influencing factors. The precision of these models was validated by comparing model prediction value with measured data,and the results were in good agreement with practical needs,and the average deviation was less than 5%.展开更多
Because of the great importance of thermal instability in nature, in chemical processes, in separation processes, in industrial applications as well as in geophysical and astrophysical engineering, the effect of therm...Because of the great importance of thermal instability in nature, in chemical processes, in separation processes, in industrial applications as well as in geophysical and astrophysical engineering, the effect of thermal diffusion on the combined MHD heat transfer in an unsteady flow past a continuously moving semi-infinite vertical porous plate which is subjected to constant heat has been investigated numerically under the action of strong applied magnetic field taking into account the induced magnetic field. This study is performed for cooling problem with lighter and heavier particles. Numerical solutions for the velocity field, induced magnetic field as well as temperature distribution are obtained for associated parameters using the explicit finite difference method. The obtained results are also discussed with the help of graphs to observe effects of various parameters on the above mentioned quantities.展开更多
This article studies the wall temperature distribution of inorganic heat transfer element in different working conditions by experiments, and analyzes the impact of inclination angle, heating power, different kinds of...This article studies the wall temperature distribution of inorganic heat transfer element in different working conditions by experiments, and analyzes the impact of inclination angle, heating power, different kinds of cooling medium and different inlet temperature of cooling medium on the starting property of inorganic heat transfer element.展开更多
A numerical study on boundary layer flow behaviour, heat and mass transfer characteristics of a nanofluid over an exponentially stretching sheet in a porous medium is presented in this paper. The sheet is assumed to b...A numerical study on boundary layer flow behaviour, heat and mass transfer characteristics of a nanofluid over an exponentially stretching sheet in a porous medium is presented in this paper. The sheet is assumed to be permeable. The governing partial differential equations are transformed into coupled nonlinear ordinary differential equations by using suitable similarity transformations. The transformed equations are then solved numerically using the well known explicit finite difference scheme known as the Keller Box method. A detailed parametric study is performed to access the influence of the physical parameters on longitudinal velocity, temperature and nanoparticle volume fraction profiles as well as the local skin-friction coefficient, local Nusselt number and the local Sherwood number and then, the results are presented in both graphical and tabular forms.展开更多
In the current work, transient heat conduction in a semi-infinite medium is considered for its many applications in various heat fields. Here, the homotopy analysis method (HAM) is applied to solve this problem and ...In the current work, transient heat conduction in a semi-infinite medium is considered for its many applications in various heat fields. Here, the homotopy analysis method (HAM) is applied to solve this problem and analytical results are compared with those of the exact and integral methods results. The results show that the HAM can give much better approximations than the other approximate methods: Changes in heat fluxes and profiles of temperature are obtained at different times and positions for copper, iron and aluminum.展开更多
In this work, the peristaltic motion of a nano non-Newtonian fluid which obeys Carreau model through a porous medium inside an asymmetric channel is investigated. The hall current effects with Joule heating and viscou...In this work, the peristaltic motion of a nano non-Newtonian fluid which obeys Carreau model through a porous medium inside an asymmetric channel is investigated. The hall current effects with Joule heating and viscous dissipation are considered. The problem is modulated mathematically by a set of nonlinear partial differential equations which describe the conservation of mass, momentum, energy and concentration of nanoparticles. The non-dimensional form of these equations is simplified under the assumption of long wavelength and low Reynolds number, and then resulting equations of coupled nonlinear differential equations are tackled numerically with appropriate boundary conditions. Graphical results are presented for dimensionless velocity, temperature, concentration and pressure gradient in order to illustrate the variations of various parameters of this problem on these obtained solutions.展开更多
Aerogel nanoporous materials possess high porosity, high specific surface area, and extremely low density due to their unique nanoscale network structure. Moreover, their effective thermal conductivity is very low, ma...Aerogel nanoporous materials possess high porosity, high specific surface area, and extremely low density due to their unique nanoscale network structure. Moreover, their effective thermal conductivity is very low, making them a new type of lightweight and highly efficient nanoscale super-insulating material. However, prediction of their effective thermal conductivity is challenging due to their uneven pore size distribution. To investigate the internal heat transfer mechanism of aerogel nanoporous materials, this study constructed a cross-aligned and cubic pore model(CACPM) based on the actual pore arrangement of SiO_(2) aerogel. Based on the established CACPM, the effective thermal conductivity expression for the aerogel was derived by simultaneously considering gas-phase heat conduction, solid-phase heat conduction, and radiative heat transfer. The derived expression was then compared with available experimental data and the Wei structure model. The results indicate that, according to the model established in this study for the derived thermal conductivity formula of silica aerogel, for powdery silica aerogel under the conditions of T = 298 K, a_(2)= 0.85, D_(1)= 90 μm, ρ = 128 kg/m^(3), within the pressure range of 0–10^(5)Pa, the average deviation between the calculated values and experimental values is 10.51%. In the pressure range of 10^(3)–10^(4)Pa, the deviation between calculated values and experimental values is within 4%. Under these conditions, the model has certain reference value in engineering verification. This study also makes a certain contribution to the research of aerogel thermal conductivity heat transfer models and calculation formulae.展开更多
文摘This paper presents the study of convective heat and mass transfer characteristics of an incompressible MHD visco-elastic fluid flow immersed in a porous medium over a stretching sheet with chemical reaction and thermal stratification effects. The resultant governing boundary layer equations are highly non-linear and coupled form of partial differential equations, and they have been solved by using fourth order Runge-Kutta integration scheme with Newton Raphson shooting method. Numerical computations are carried out for the non-dimensional physical parameters. Here a numerical has been carried out to study the effect of different physical parameters such as visco-elasticity, permeability of the porous medium, magnetic field, Grashof number, Schmidt number, heat source parameter and chemical reaction parameter on the flow, heat and mass transfer characteristics.
基金Supported by the National Natural Science Foundation of China under Grant No 51305080
文摘The effect of the solid matrix and porosity of the porous medium are first introduced to the study of power-law nanofluids, and the Marangoni boundary layer flow with heat generation is investigated. Two cases of solid matrix of porous medium including glass balls and aluminum foam are considered. The governing partial differential equations are simplified by dimensionless variables and similarity transformations, and are solved numerically by using a shooting method with the fourth-fifth-order Runge-Kutta integration technique. It is indicated that the increase of the porosity leads to the enhancement of heat transfer in the surface of the Marangoni boundary layer flow.
文摘We investigate heat and mass transfer in an isosceles trapezoidal cavity, filled with charcoal considered as a granular porous medium. The Darcy-Brinkman-Forchheimer flow model is coupled to the energy and mass equations with the assumption of non-thermal equilibrium. These equations are discretized by the finite volume method with an offset mesh and then solved by the line-by-line method of Thomas. The coupling between pressure and velocity is obtained by Semi-Implicit Method for Pressure Linked Equations. (SIMPLE) algorithm. The results show that the temperature in the cavity increases when the inclination angle of the sides walls decreases. The 15° inclination is selected as being able to offer better thermal performance in the cookstove combustion chamber.
文摘The problem of magneto-hydro-dynamic (MHD) mass and heat transfer of an oscillatory fluid in two-dimensional viscous, electrically conducting over an infinite vertical permeable moving plate in a saturated porous medium with the presence of a transverse magnetic field and chemical reaction is analytically presented. The governing equations, momentum, energy, and concentration are solved. Various flow parameters effects on velocity, temperature and concentration fields are discussed. It is found that, the fluid velocity increases with increasing both the permeability and chemical reaction parameters. While, it increases with decreasing the magnetic field parameter. Furthermore, the concentration increases with increasing chemical reaction parameters.
文摘The viscous flow in a wavy channel with convective boundary conditions is investigated. The channel is filled with a porous viscous fluid. Two cases of equal and different external convection coefficients on the walls are taken into account. Effect of viscous dissipation is also considered. The governing equations are derived employing long wavelength and low Reynolds number approximations. Exact closed form solutions are obtained for the simplified equations. Important physical features for peristaltic flow caused by the wavy wave are pumping, trapping and heat transfer rate at the channel walls. These are discussed one by one in depth and detail through graphical illustrations. Special attention has been given to the effects of convective boundary conditions. The results show that for Bi1≠Bi2, there exists a critical value of Brinkman number Brc at which the temperatures of both the walls become equal. And, for Bi1>Bi2 and Br>Brc, the temperature of the cold wall exceeds the temperature of hot wall.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51104045)
文摘Based on medium plate runout table ultra-fast cooling( UFC)-accelerated cooling equipment( ACC) system,a heat transfer coefficient model was constructed. Firstly,according to the measured data,heat transfer coefficients under different roll speed and water volume were calculated by using an inverse heat conduction method. Secondly,a monofactorial heat transfer coefficient calculation formula was obtained. Finally,the heat transfer coefficient model based on medium plate runout table UFC-ACC system was constructed by intercept function,slope function,interaction influence function and linear or nonlinear influencing factors. The precision of these models was validated by comparing model prediction value with measured data,and the results were in good agreement with practical needs,and the average deviation was less than 5%.
文摘Because of the great importance of thermal instability in nature, in chemical processes, in separation processes, in industrial applications as well as in geophysical and astrophysical engineering, the effect of thermal diffusion on the combined MHD heat transfer in an unsteady flow past a continuously moving semi-infinite vertical porous plate which is subjected to constant heat has been investigated numerically under the action of strong applied magnetic field taking into account the induced magnetic field. This study is performed for cooling problem with lighter and heavier particles. Numerical solutions for the velocity field, induced magnetic field as well as temperature distribution are obtained for associated parameters using the explicit finite difference method. The obtained results are also discussed with the help of graphs to observe effects of various parameters on the above mentioned quantities.
文摘This article studies the wall temperature distribution of inorganic heat transfer element in different working conditions by experiments, and analyzes the impact of inclination angle, heating power, different kinds of cooling medium and different inlet temperature of cooling medium on the starting property of inorganic heat transfer element.
文摘A numerical study on boundary layer flow behaviour, heat and mass transfer characteristics of a nanofluid over an exponentially stretching sheet in a porous medium is presented in this paper. The sheet is assumed to be permeable. The governing partial differential equations are transformed into coupled nonlinear ordinary differential equations by using suitable similarity transformations. The transformed equations are then solved numerically using the well known explicit finite difference scheme known as the Keller Box method. A detailed parametric study is performed to access the influence of the physical parameters on longitudinal velocity, temperature and nanoparticle volume fraction profiles as well as the local skin-friction coefficient, local Nusselt number and the local Sherwood number and then, the results are presented in both graphical and tabular forms.
文摘In the current work, transient heat conduction in a semi-infinite medium is considered for its many applications in various heat fields. Here, the homotopy analysis method (HAM) is applied to solve this problem and analytical results are compared with those of the exact and integral methods results. The results show that the HAM can give much better approximations than the other approximate methods: Changes in heat fluxes and profiles of temperature are obtained at different times and positions for copper, iron and aluminum.
文摘In this work, the peristaltic motion of a nano non-Newtonian fluid which obeys Carreau model through a porous medium inside an asymmetric channel is investigated. The hall current effects with Joule heating and viscous dissipation are considered. The problem is modulated mathematically by a set of nonlinear partial differential equations which describe the conservation of mass, momentum, energy and concentration of nanoparticles. The non-dimensional form of these equations is simplified under the assumption of long wavelength and low Reynolds number, and then resulting equations of coupled nonlinear differential equations are tackled numerically with appropriate boundary conditions. Graphical results are presented for dimensionless velocity, temperature, concentration and pressure gradient in order to illustrate the variations of various parameters of this problem on these obtained solutions.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51764046 and 52160013)the Inner Mongolia Autonomous Region Postgraduate Research Innovation Project of China (Grant No. S20231165Z)the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region of China (Grant Nos. 2023RCTD016 and 2024RCTD008)。
文摘Aerogel nanoporous materials possess high porosity, high specific surface area, and extremely low density due to their unique nanoscale network structure. Moreover, their effective thermal conductivity is very low, making them a new type of lightweight and highly efficient nanoscale super-insulating material. However, prediction of their effective thermal conductivity is challenging due to their uneven pore size distribution. To investigate the internal heat transfer mechanism of aerogel nanoporous materials, this study constructed a cross-aligned and cubic pore model(CACPM) based on the actual pore arrangement of SiO_(2) aerogel. Based on the established CACPM, the effective thermal conductivity expression for the aerogel was derived by simultaneously considering gas-phase heat conduction, solid-phase heat conduction, and radiative heat transfer. The derived expression was then compared with available experimental data and the Wei structure model. The results indicate that, according to the model established in this study for the derived thermal conductivity formula of silica aerogel, for powdery silica aerogel under the conditions of T = 298 K, a_(2)= 0.85, D_(1)= 90 μm, ρ = 128 kg/m^(3), within the pressure range of 0–10^(5)Pa, the average deviation between the calculated values and experimental values is 10.51%. In the pressure range of 10^(3)–10^(4)Pa, the deviation between calculated values and experimental values is within 4%. Under these conditions, the model has certain reference value in engineering verification. This study also makes a certain contribution to the research of aerogel thermal conductivity heat transfer models and calculation formulae.