This study is to understand the impact of operating conditions, especially initial operation temperature (T<sub>ini</sub>) which is set in a high temperature range, on the temperature profile of the interf...This study is to understand the impact of operating conditions, especially initial operation temperature (T<sub>ini</sub>) which is set in a high temperature range, on the temperature profile of the interface between the polymer electrolyte membrane (PEM) and the catalyst layer at the cathode (i.e., the reaction surface) in a single cell of polymer electrolyte fuel cell (PEFC). A 1D multi-plate heat transfer model based on the temperature data of the separator measured using the thermograph in a power generation experiment was developed to evaluate the reaction surface temperature (T<sub>react</sub>). In addition, to validate the proposed heat transfer model, T<sub>react</sub> obtained from the model was compared with that from the 3D numerical simulation using CFD software COMSOL Multiphysics which solves the continuity equation, Brinkman equation, Maxwell-Stefan equation, Butler-Volmer equation as well as heat transfer equation. As a result, the temperature gap between the results obtained by 1D heat transfer model and those obtained by 3D numerical simulation is below approximately 0.5 K. The simulation results show the change in the molar concentration of O<sub>2</sub> and H<sub>2</sub>O from the inlet to the outlet is more even with the increase in T<sub>ini</sub> due to the lower performance of O<sub>2</sub> reduction reaction. The change in the current density from the inlet to the outlet is more even with the increase in T<sub>ini</sub> and the value of current density is smaller with the increase in T<sub>ini </sub>due to the increase in ohmic over-potential and concentration over-potential. It is revealed that the change in T<sub>react</sub> from the inlet to the outlet is more even with the increase in T<sub>ini</sub> irrespective of heat transfer model. This is because the generated heat from the power generation is lower with the increase in T<sub>ini </sub>due to the lower performance of O<sub>2</sub> reduction reaction.展开更多
In order to solve for temperature fields in microwave heating for recycling asphalt mixtures, a two-dimensional heat transfer model for the asphalt mixtures within the heating range is built based on the theory of uns...In order to solve for temperature fields in microwave heating for recycling asphalt mixtures, a two-dimensional heat transfer model for the asphalt mixtures within the heating range is built based on the theory of unsteady heat conduction. Four onedimensional heat transfer models are established for the asphalt mixtures outside the heating range, which are simplified into four half-infinite solids. The intensity of the radiation electric field is calculated through experiment by using heating water loads. It is suggested that the mathematical model of boundary conditions can be established in two ways, which are theoretical deduction and experimental reverse. The actual temperature field is achieved by fitting temperatures of different positions collected in the heating experiment. The simulant temperature field, which is solved with the Matlab PDE toolbox, is in good agreement with the actual temperature field. The results indicate that the proposed models have high precision and can be directly used to calculate the temperature distribution of asphalt pavements.展开更多
Currently, when magnesium alloy sheet is rolled, the method of controlling roll temperature is simple and inaccurate. Furthermore, roll temperature has a large influence on the quality of magnesium alloy sheet; theref...Currently, when magnesium alloy sheet is rolled, the method of controlling roll temperature is simple and inaccurate. Furthermore, roll temperature has a large influence on the quality of magnesium alloy sheet; therefore, a new model using circular fluid flow control roll temperature has been designed. A fluid heat transfer structure was designed, the heat transfer process model of the fluid heating roll was simplified, and the finite di erence method was used to cal?culate the heat transfer process. Fluent software was used to simulate the fluid?solid coupling heat transfer, and both the trend and regularity of the temperature field in the heat transfer process were identified. The results show that the heating e ciency was much higher than traditional heating methods(when the fluid heat of the roll and tempera?ture distribution of the roll surface was more uniform). Moreover, there was a bigger temperature di erence between the input and the output, and after using reverse flow the temperature di erence decreased. The axial and circum?ferential temperature distributions along the sheet were uniform. Both theoretical calculation results and numerical simulation results of the heat transfer between fluid and roll were compared. The error was 1.8%–12.3%, showing that the theoretical model can both forecast and regulate the temperature of the roll(for magnesium alloy sheets) in the rolling process.展开更多
The high degree of reversibility of heat integrated distillation column(HIDiC) has been thermodynamically interpreted by the entropy method. In this paper, a heat transfer model and a more universal method were propos...The high degree of reversibility of heat integrated distillation column(HIDiC) has been thermodynamically interpreted by the entropy method. In this paper, a heat transfer model and a more universal method were proposed, through which the overall heat transfer coefficient at different height of column under different operating conditions could be obtained before the experiment. Then the separation of a binary ethanol-water system was carried out experimentally as a case study to verify the heat transfer model and the aforementioned calculation method. The close results between the calculation, the simulation, and the experiments suggested that the proposed model and the calculation method in this paper were accurate and applicable. Meanwhile, it was demonstrated that the HIDiC shows obvious effect of reducing entropy increase and improving thermodynamic efficiency as compared to conventional distillation column.展开更多
This study presents a novel design for a spiral finned crystallizer which is the primary element of progressive freeze concentration(PFC) system, which simplifies the setup of the conventional system. After the crysta...This study presents a novel design for a spiral finned crystallizer which is the primary element of progressive freeze concentration(PFC) system, which simplifies the setup of the conventional system. After the crystallizer has been designed, the research experiments have been conducted and evaluated through a thorough analysis of its performance by developing a mathematical model that can be used to predict the productivity of ice crystal at a range of coolant temperature. The model is developed based on the basic heat transfer equation, and by considering the solution's and the coolant's convective heat transfer coefficient(h) under the forced flow condition.The model's accuracy is verified by making comparison between the ice crystal mass' experimental value and the values predicted by the model. Consequently, the study found that the model helps in enhancing the PFC system.展开更多
A mathematical model for one-dimensional heat transfer in pipelines undergoing freezing induced by liquid nitrogen is elaborated.The basic premise of this technology is that the content within a pipeline is frozen to ...A mathematical model for one-dimensional heat transfer in pipelines undergoing freezing induced by liquid nitrogen is elaborated.The basic premise of this technology is that the content within a pipeline is frozen to form a plug or two plugs at a position upstream and downstream from a location where work a modification or a repair must be executed.Based on the variable separation method,the present model aims to solve the related coupled heat conduction and moving-boundary phase change problem.An experiment with a 219 mm long pipe,where water was taken as the plugging agent,is presented to demonstrate the relevance and reliability of the proposed model(results show that the error is within 18%).Thereafter,the model is applied to predict the cooling and freezing process of pipelines with different inner diameters at different liquid nitrogen refrigeration temperatures when water is used as the plugging agent.展开更多
Based on the Cluster Renewal Model of the particle motion in a CFB riser, a revised heat transfer model is developed, which introduces the latest research results of the hydrodynamics of the suspension flow in CFB. Th...Based on the Cluster Renewal Model of the particle motion in a CFB riser, a revised heat transfer model is developed, which introduces the latest research results of the hydrodynamics of the suspension flow in CFB. This model divides the heat transfer into two parts, which are due to the transient heat conduction by the covered clusters and the convection between the uncovered wall and the dispersed phase. Radiation at high temperature is regarded as being additive. The fraction of the covered wall by clusters is revised by a new formula, which is a function of the operating condition and the particle properties. The radiation between the dispersed phase and the uncovered wall includes not only the direct radiation to the uncovered wall, but also the radiation to the clusters and then reflected to the uncovered wall. Calculation was carried out for the CFB heat transfer model. The results were compared with the published typical experimental data of other researchers and showed a good agreement between them.展开更多
In the direct fired furnace of a continuous annealing line, seal rolls are susceptible to deformation that leads to surface defects of steel strips. According to failure analysis, the reasons include improper structur...In the direct fired furnace of a continuous annealing line, seal rolls are susceptible to deformation that leads to surface defects of steel strips. According to failure analysis, the reasons include improper structural design and heat imbalance. An improved design has been proposed to reduce stress concentration and thermal radiation. A heat transfer model has been employed to determine the proper water flow rate for roll cooling. Industrial application proves that seal rolls with the new design has less deformation and longer service life.展开更多
An improved numerical heat transfer model considering pyrolysis effect is proposed to predict thermal performance of heat-resistant fabric subjected to radiant heat flux. The model incorporates the heat-induced change...An improved numerical heat transfer model considering pyrolysis effect is proposed to predict thermal performance of heat-resistant fabric subjected to radiant heat flux. The model incorporates the heat-induced changes in fabric thermophysical properties. The new model has been validated with data from modified Radiant Protective Performance (RPP) tests of flame-resistant cotton fabrics. Comparison with experimental data shows that the predictions of mass loss rates and temperature profiles within the charring material and skin simulant are in reasonably good agreement with the experiments. Results from the numerical model contribute to a better understanding of the heat transfer process within flame-resistant fabrics under high heat flux conditions, and also to establish a systematic method for analyzing heat transfer in other fibrous materials applications.展开更多
It is known from the New Energy and Industry Technology Development Organization (NEDO) roam map Japan, 2017 that the polymer electrolyte fuel cell (PEFC) power generation system is required to operate at 100°C f...It is known from the New Energy and Industry Technology Development Organization (NEDO) roam map Japan, 2017 that the polymer electrolyte fuel cell (PEFC) power generation system is required to operate at 100°C for application of mobility usage from 2020 to 2025. This study aims to clarify the effect of separator thickness on the distribution of the temperature of reaction surface (T<sub>react</sub>) at the initial temperature of cell (T<sub>ini</sub>) with flow rate, relative humidity (RH) of supply gases as well as RH of air surrounding cell of PEFC. The distribution of T<sub>react</sub> is estimated by means of the heat transfer model considering the H<sub>2</sub>O vapor transfer proposed by the authors. The relationship between the standard deviation of T<sub>react</sub>-T<sub>ini</sub> and total voltage obtained in the experiment is also investigated. We can know the effect of the flow rate of supply gas as well as RH of air surrounding cell of PEFC on the distribution of T<sub>react</sub>-T<sub>ini</sub> is not significant. It is observed the wider distribution of T<sub>react</sub>-T<sub>ini</sub> provides the reduction in power generation performance irrespective of separator thickness. In the case of separator thickness of 1.0 mm, the standard deviation of T<sub>react</sub>-T<sub>ini</sub> has smaller distribution range and the total voltage shows a larger variation compared to the other cases.展开更多
A mathematical model for heap bioleaching is developed to analyze heat transfer, oxygen flow, target ion distribution and oxidation leaching rate in the heap. The model equations are solved with Comsol Multiphysics so...A mathematical model for heap bioleaching is developed to analyze heat transfer, oxygen flow, target ion distribution and oxidation leaching rate in the heap. The model equations are solved with Comsol Multiphysics software. Numerical simulation results show the following facts: Concentration of oxygen is relatively high along the boundary of the slope, and low in the center part where leaching rate is slow. Temper- ature is relatively low along the slope and reaches the highest along the bottom region near the slope, with difference being more than 6℃. Concentration of target mental ions is the highest in the bottom region near the slope. Oxidation leaching rate is relatively large in the bottom and slope part with a fast reaction rate, and small in the other part with low oxygen concentration.展开更多
Modeling of heat transfer and solidification of composite roll was established and used to predict the thermal history and solidification process of roll during spray forming. Evolution of temperature field of the pr...Modeling of heat transfer and solidification of composite roll was established and used to predict the thermal history and solidification process of roll during spray forming. Evolution of temperature field of the preform and cooling rate in the growing deposit during spray deposition and post-deposition were numerically simulated.展开更多
The main objective of this study is the technical optimization of a Shell-and-Tube Heat Exchanger(STHE).In order to do so,a simulation model is introduced that takes into account the related gas-phase circulation.Then...The main objective of this study is the technical optimization of a Shell-and-Tube Heat Exchanger(STHE).In order to do so,a simulation model is introduced that takes into account the related gas-phase circulation.Then,simulation verification experiments are designed in order to validate the model.The results show that the tem-peraturefield undergoes strong variations in time when an inlet wind speed of 6 m/s is considered,while the heat transfer error reaches a minimum of 5.1%.For an inlet velocity of 9 m/s,the heat transfer drops to the lowest point,while the heat transfer error reaches a maximum,i.e.,9.87%.The pressure drop increasesfirst and then decreases with an increase in the wind speed and reaches a maximum of 819 Pa under the 9 m/s wind speed con-dition.Moreover,the pressure drops,and the heat transfer coefficient increases with the Reynolds number.展开更多
The SMART (System-integrated Modular Advanced ReacTor) which is a 330 MWt advanced integral PWR was developed by the KAERI (Korea Atomic Energy Institute) for electricity generation and seawater desalination. To e...The SMART (System-integrated Modular Advanced ReacTor) which is a 330 MWt advanced integral PWR was developed by the KAERI (Korea Atomic Energy Institute) for electricity generation and seawater desalination. To enhance its safety, the various design concepts were adopted such as the most containing of the RCS (reactor coolant system) components and a PRHRS (passive residual heat removal system). To ensure the safety and performance of the SMART, a thermal hydraulic evaluation and safety analysis are performed by the TASS/SMR-S code. It uses a one dimensional node/path modeling and point kinetics for the core power simulation. The code also has specific models reflecting the design features of the SMART such as a helical tube and PRHRS heat transfer models. In this study, the validation of the core heat transfer model in the TASS/SMR-S code on the steady conditions was performed with the Bennett's heated tube tests and THTF (thermal hydraulic test facility) experiment. From the results of the TASS/SMR-S code calculation, the CHF (critical heat flux) point and the fuel rod surface temperature were predicted conservatively compared to the test results.展开更多
In this paper,we first establish a new fractional magnetohydrodynamic(MHD)coupled flow and heat transfer model for a generalized second-grade fluid.This coupled model consists of a fractional momentum equation and a h...In this paper,we first establish a new fractional magnetohydrodynamic(MHD)coupled flow and heat transfer model for a generalized second-grade fluid.This coupled model consists of a fractional momentum equation and a heat conduction equation with a generalized form of Fourier law.The second-order fractional backward difference formula is applied to the temporal discretization and the Legendre spectral method is used for the spatial discretization.The fully discrete scheme is proved to be stable and convergent with an accuracy of O(τ^(2)+N-r),whereτis the time step-size and N is the polynomial degree.To reduce the memory requirements and computational cost,a fast method is developed,which is based on a globally uniform approximation of the trapezoidal rule for integrals on the real line.The strict convergence of the numerical scheme with this fast method is proved.We present the results of several numerical experiments to verify the effectiveness of the proposed method.Finally,we simulate the unsteady fractional MHD flow and heat transfer of the generalized second-grade fluid through a porous medium.The effects of the relevant parameters on the velocity and temperature are presented and analyzed in detail.展开更多
Gas flexible pipes are critical multi-layered equipment for offshore oil and gas development.Under high pressure conditions,small molecular components of natural gas dissolve into the polymer inner liner of the flexib...Gas flexible pipes are critical multi-layered equipment for offshore oil and gas development.Under high pressure conditions,small molecular components of natural gas dissolve into the polymer inner liner of the flexible pipes and further diffuse into the annular space,incurring annular pressure build-up and/or production of acidic environment,which poses serious challenges to the structure and integrity of the flexible pipes.Gas permeation in pipes is a complex phenomenon governed by various factors such as internal pressure and temperature,annular structure,external temperature.In a long-distance gas flexible pipe,moreover,gas permeation exhibits non-uniform features,and the gas permeated into the annular space flows along the metal gap.To assess the complex gas transport behavior in long-distance gas flexible pipes,a mathematical model is established in this paper considering the multiphase flow phenomena inside the flexible pipes,the diffusion of gas in the inner liner,and the gas seepage in the annular space under varying permeable properties of the annulus.In addition,the effect of a variable temperature is accounted.A numerical calculation method is accordingly constructed to solve the coupling mathematical equations.The annular permeability was shown to significantly influence the distribution of annular pressure.As permeability increases,the annular pressure tends to become more uniform,and the annular pressure at the wellhead rises more rapidly.After annular pressure relief followed by shut-in,the pressure increase follows a convex function.By simulating the pressure recovery pattern after pressure relief and comparing it with test results,we deduce that the annular permeability lies between 123 and 512 m D.The results help shed light upon assessing the annular pressure in long distance gas flexible pipes and thus ensure the security of gas transport in the emerging development of offshore resources.展开更多
Hydrothermal processes are key components in permafrost dynamics; these processes are integral to global wanning. In this study the coupled heat and mass transfer model for (CoupModel) the soil-plant-atmosphere-syst...Hydrothermal processes are key components in permafrost dynamics; these processes are integral to global wanning. In this study the coupled heat and mass transfer model for (CoupModel) the soil-plant-atmosphere-system is applied in high-altitude permafrost regions and to model hydrothermal transfer processes in freeze-thaw cycles. Measured meteorological forcing and soil and vegetation properties are used in the CoupModel for the period from January 1, 2009 to December 31, 2012 at the Tanggula observation site in the Qinghai-Tibet Plateau. A 24-h time step is used in the model simulation. The results show that the simulated soil temperature and water content, as well as the frozen depth compare well with the measured data. The coefficient of determination (R2) is 0.97 for the mean soil temperature and 0.73 for the mean soil water content, respectively. The simulated soil heat flux at a depth of 0-20 cm is also consistent with the monitored data. An analysis is performed on the simulated hydrothermal transfer processes from the deep soil layer to the upper one during the freezing and thawing period. At the beginning of the freezing period, the water in the deep soil layer moves upward to the freezing front and releases heat during the freezing process. When the soil layer is completely frozen, there are no vertical water ex- changes between the soil layers, and the heat exchange process is controlled by the vertical soil temperature gradient. During the thaw- ing period, the downward heat process becomes more active due to increased incoming shortwave radiation at the ground surface. The melt water is quickly dissolved in the soil, and the soil water movement only changes in the shallow soil layer. Subsequently, the model was used to provide an evaluation of the potential response of the active layer to different scenarios of initial water content and climate warming at the Tanggula site. The results reveal that the soil water content and the organic layer provide protection against active layer deepening in summer, so climate warming will cause the permafrost active layer to become deeoer and permafrost degradation.展开更多
This research investigates a numerical simulation of swirling turbulent non-premixed combustion.The effects on the combustion characteristics are examined with three turbulence models:namely as the Reynolds stress mod...This research investigates a numerical simulation of swirling turbulent non-premixed combustion.The effects on the combustion characteristics are examined with three turbulence models:namely as the Reynolds stress model,spectral turbulence analysis and Re-Normalization Group.In addition,the P-1 and discrete ordinate(DO)models are used to simulate the radiative heat transfer in this model.The governing equations associated with the required boundary conditions are solved using the numerical model.The accuracy of this model is validated with the published experimental data and the comparison elucidates that there is a reasonable agreement between the obtained values from this model and the corresponding experimental quantities.Among different models proposed in this research,the Reynolds stress model with the Probability Density Function(PDF)approach is more accurate(nearly up to 50%)than other turbulent models for a swirling flow field.Regarding the effect of radiative heat transfer model,it is observed that the discrete ordinate model is more precise than the P-1 model in anticipating the experimental behavior.This model is able to simulate the subcritical nature of the isothermal flow as well as the size and shape of the internal recirculation induced by the swirl due to combustion.展开更多
Grinding is a crucial process in machining workpieces because it plays a vital role in achieving the desired precision and surface quality.However,a significant technical challenge in grinding is the potential increas...Grinding is a crucial process in machining workpieces because it plays a vital role in achieving the desired precision and surface quality.However,a significant technical challenge in grinding is the potential increase in temperature due to high specific energy,which can lead to surface thermal damage.Therefore,ensuring control over the surface integrity of workpieces during grinding becomes a critical concern.This necessitates the development of temperature field models that consider various parameters,such as workpiece materials,grinding wheels,grinding parameters,cooling methods,and media,to guide industrial production.This study thoroughly analyzes and summarizes grinding temperature field models.First,the theory of the grinding temperature field is investigated,classifying it into traditional models based on a continuous belt heat source and those based on a discrete heat source,depending on whether the heat source is uniform and continuous.Through this examination,a more accurate grinding temperature model that closely aligns with practical grinding conditions is derived.Subsequently,various grinding thermal models are summarized,including models for the heat source distribution,energy distribution proportional coefficient,and convective heat transfer coefficient.Through comprehensive research,the most widely recognized,utilized,and accurate model for each category is identified.The application of these grinding thermal models is reviewed,shedding light on the governing laws that dictate the influence of the heat source distribution,heat distribution,and convective heat transfer in the grinding arc zone on the grinding temperature field.Finally,considering the current issues in the field of grinding temperature,potential future research directions are proposed.The aim of this study is to provide theoretical guidance and technical support for predicting workpiece temperature and improving surface integrity.展开更多
The accurate simulation of boundary layer transition process plays a very important role in the prediction of turbine blade temperature field. Based on the Abu-Ghannam and Shaw (AGS) and c-Re h transition models, a ...The accurate simulation of boundary layer transition process plays a very important role in the prediction of turbine blade temperature field. Based on the Abu-Ghannam and Shaw (AGS) and c-Re h transition models, a 3D conjugate heat transfer solver is developed, where the fluid domain is discretized by multi-block structured grids, and the solid domain is discretized by unstructured grids. At the unmatched fluid/solid interface, the shape function interpolation method is adopted to ensure the conservation of the interfacial heat flux. Then the shear stress transport (SST) model, SST & AGS model and SST & c-Re h model are used to investigate the flow and heat transfer characteristics of Mark II turbine vane. The results indicate that compared with the full turbulence model (SST model), the transition models could improve the prediction accuracy of temperature and heat transfer coefficient at the laminar zone near the blade leading edge. Compared with the AGS transition model, the c-Re h model could predict the transition onset location induced by shock/boundary layer interaction more accurately, and the prediction accuracy of temperature field could be greatly improved.展开更多
文摘This study is to understand the impact of operating conditions, especially initial operation temperature (T<sub>ini</sub>) which is set in a high temperature range, on the temperature profile of the interface between the polymer electrolyte membrane (PEM) and the catalyst layer at the cathode (i.e., the reaction surface) in a single cell of polymer electrolyte fuel cell (PEFC). A 1D multi-plate heat transfer model based on the temperature data of the separator measured using the thermograph in a power generation experiment was developed to evaluate the reaction surface temperature (T<sub>react</sub>). In addition, to validate the proposed heat transfer model, T<sub>react</sub> obtained from the model was compared with that from the 3D numerical simulation using CFD software COMSOL Multiphysics which solves the continuity equation, Brinkman equation, Maxwell-Stefan equation, Butler-Volmer equation as well as heat transfer equation. As a result, the temperature gap between the results obtained by 1D heat transfer model and those obtained by 3D numerical simulation is below approximately 0.5 K. The simulation results show the change in the molar concentration of O<sub>2</sub> and H<sub>2</sub>O from the inlet to the outlet is more even with the increase in T<sub>ini</sub> due to the lower performance of O<sub>2</sub> reduction reaction. The change in the current density from the inlet to the outlet is more even with the increase in T<sub>ini</sub> and the value of current density is smaller with the increase in T<sub>ini </sub>due to the increase in ohmic over-potential and concentration over-potential. It is revealed that the change in T<sub>react</sub> from the inlet to the outlet is more even with the increase in T<sub>ini</sub> irrespective of heat transfer model. This is because the generated heat from the power generation is lower with the increase in T<sub>ini </sub>due to the lower performance of O<sub>2</sub> reduction reaction.
基金The Key Project of Science and Technology of Ministryof Education (No.105085)the Specialized Research Fund of Science andTechnology Production Translation of Jiangsu Province (No.BA2006068).
文摘In order to solve for temperature fields in microwave heating for recycling asphalt mixtures, a two-dimensional heat transfer model for the asphalt mixtures within the heating range is built based on the theory of unsteady heat conduction. Four onedimensional heat transfer models are established for the asphalt mixtures outside the heating range, which are simplified into four half-infinite solids. The intensity of the radiation electric field is calculated through experiment by using heating water loads. It is suggested that the mathematical model of boundary conditions can be established in two ways, which are theoretical deduction and experimental reverse. The actual temperature field is achieved by fitting temperatures of different positions collected in the heating experiment. The simulant temperature field, which is solved with the Matlab PDE toolbox, is in good agreement with the actual temperature field. The results indicate that the proposed models have high precision and can be directly used to calculate the temperature distribution of asphalt pavements.
基金National Natural Science Foundation of China(Grant No.U1510131)Key Research and Development Projects of Shanxi Province of China(Grant Nos.201603D121010,201603D111004)+3 种基金Science and Technology Project of Jin Cheng City of China(Grant No.20155010)Youth Program of National Natural Science Fund of China(Grant No.51604181)Project of Young Scholar of Shanxi ProvinceLeading Talent Project of Innovative Entrepreneurial Team of Jiangsu Province(Grant No.51501122)
文摘Currently, when magnesium alloy sheet is rolled, the method of controlling roll temperature is simple and inaccurate. Furthermore, roll temperature has a large influence on the quality of magnesium alloy sheet; therefore, a new model using circular fluid flow control roll temperature has been designed. A fluid heat transfer structure was designed, the heat transfer process model of the fluid heating roll was simplified, and the finite di erence method was used to cal?culate the heat transfer process. Fluent software was used to simulate the fluid?solid coupling heat transfer, and both the trend and regularity of the temperature field in the heat transfer process were identified. The results show that the heating e ciency was much higher than traditional heating methods(when the fluid heat of the roll and tempera?ture distribution of the roll surface was more uniform). Moreover, there was a bigger temperature di erence between the input and the output, and after using reverse flow the temperature di erence decreased. The axial and circum?ferential temperature distributions along the sheet were uniform. Both theoretical calculation results and numerical simulation results of the heat transfer between fluid and roll were compared. The error was 1.8%–12.3%, showing that the theoretical model can both forecast and regulate the temperature of the roll(for magnesium alloy sheets) in the rolling process.
基金supported by the National Key Research and Development Program of China(2017YFB0602500)the Foundation for High Level Talents of Hebei (A2017002032).
文摘The high degree of reversibility of heat integrated distillation column(HIDiC) has been thermodynamically interpreted by the entropy method. In this paper, a heat transfer model and a more universal method were proposed, through which the overall heat transfer coefficient at different height of column under different operating conditions could be obtained before the experiment. Then the separation of a binary ethanol-water system was carried out experimentally as a case study to verify the heat transfer model and the aforementioned calculation method. The close results between the calculation, the simulation, and the experiments suggested that the proposed model and the calculation method in this paper were accurate and applicable. Meanwhile, it was demonstrated that the HIDiC shows obvious effect of reducing entropy increase and improving thermodynamic efficiency as compared to conventional distillation column.
基金the financial support through Research University Grant and Fundamental Research Grant Scheme(Vot nos.04H46 and 4F224)Chemical Engineering Department,Universiti Teknologi PETRONAS for its support
文摘This study presents a novel design for a spiral finned crystallizer which is the primary element of progressive freeze concentration(PFC) system, which simplifies the setup of the conventional system. After the crystallizer has been designed, the research experiments have been conducted and evaluated through a thorough analysis of its performance by developing a mathematical model that can be used to predict the productivity of ice crystal at a range of coolant temperature. The model is developed based on the basic heat transfer equation, and by considering the solution's and the coolant's convective heat transfer coefficient(h) under the forced flow condition.The model's accuracy is verified by making comparison between the ice crystal mass' experimental value and the values predicted by the model. Consequently, the study found that the model helps in enhancing the PFC system.
文摘A mathematical model for one-dimensional heat transfer in pipelines undergoing freezing induced by liquid nitrogen is elaborated.The basic premise of this technology is that the content within a pipeline is frozen to form a plug or two plugs at a position upstream and downstream from a location where work a modification or a repair must be executed.Based on the variable separation method,the present model aims to solve the related coupled heat conduction and moving-boundary phase change problem.An experiment with a 219 mm long pipe,where water was taken as the plugging agent,is presented to demonstrate the relevance and reliability of the proposed model(results show that the error is within 18%).Thereafter,the model is applied to predict the cooling and freezing process of pipelines with different inner diameters at different liquid nitrogen refrigeration temperatures when water is used as the plugging agent.
基金the Project of Outstanding Young University Teachers of Shanghai,No.03YQHB076. and R & D Fund of DonghuaUniversity
文摘Based on the Cluster Renewal Model of the particle motion in a CFB riser, a revised heat transfer model is developed, which introduces the latest research results of the hydrodynamics of the suspension flow in CFB. This model divides the heat transfer into two parts, which are due to the transient heat conduction by the covered clusters and the convection between the uncovered wall and the dispersed phase. Radiation at high temperature is regarded as being additive. The fraction of the covered wall by clusters is revised by a new formula, which is a function of the operating condition and the particle properties. The radiation between the dispersed phase and the uncovered wall includes not only the direct radiation to the uncovered wall, but also the radiation to the clusters and then reflected to the uncovered wall. Calculation was carried out for the CFB heat transfer model. The results were compared with the published typical experimental data of other researchers and showed a good agreement between them.
文摘In the direct fired furnace of a continuous annealing line, seal rolls are susceptible to deformation that leads to surface defects of steel strips. According to failure analysis, the reasons include improper structural design and heat imbalance. An improved design has been proposed to reduce stress concentration and thermal radiation. A heat transfer model has been employed to determine the proper water flow rate for roll cooling. Industrial application proves that seal rolls with the new design has less deformation and longer service life.
文摘An improved numerical heat transfer model considering pyrolysis effect is proposed to predict thermal performance of heat-resistant fabric subjected to radiant heat flux. The model incorporates the heat-induced changes in fabric thermophysical properties. The new model has been validated with data from modified Radiant Protective Performance (RPP) tests of flame-resistant cotton fabrics. Comparison with experimental data shows that the predictions of mass loss rates and temperature profiles within the charring material and skin simulant are in reasonably good agreement with the experiments. Results from the numerical model contribute to a better understanding of the heat transfer process within flame-resistant fabrics under high heat flux conditions, and also to establish a systematic method for analyzing heat transfer in other fibrous materials applications.
文摘It is known from the New Energy and Industry Technology Development Organization (NEDO) roam map Japan, 2017 that the polymer electrolyte fuel cell (PEFC) power generation system is required to operate at 100°C for application of mobility usage from 2020 to 2025. This study aims to clarify the effect of separator thickness on the distribution of the temperature of reaction surface (T<sub>react</sub>) at the initial temperature of cell (T<sub>ini</sub>) with flow rate, relative humidity (RH) of supply gases as well as RH of air surrounding cell of PEFC. The distribution of T<sub>react</sub> is estimated by means of the heat transfer model considering the H<sub>2</sub>O vapor transfer proposed by the authors. The relationship between the standard deviation of T<sub>react</sub>-T<sub>ini</sub> and total voltage obtained in the experiment is also investigated. We can know the effect of the flow rate of supply gas as well as RH of air surrounding cell of PEFC on the distribution of T<sub>react</sub>-T<sub>ini</sub> is not significant. It is observed the wider distribution of T<sub>react</sub>-T<sub>ini</sub> provides the reduction in power generation performance irrespective of separator thickness. In the case of separator thickness of 1.0 mm, the standard deviation of T<sub>react</sub>-T<sub>ini</sub> has smaller distribution range and the total voltage shows a larger variation compared to the other cases.
基金Project supported by the National Natural Science Foundation of China (Nos. 50934002 and 50774011)the Postdoctoral Science Foundation of China (No. 20090450014)the DoctoralNatural Science Foundation of China (No. 20070008038)
文摘A mathematical model for heap bioleaching is developed to analyze heat transfer, oxygen flow, target ion distribution and oxidation leaching rate in the heap. The model equations are solved with Comsol Multiphysics software. Numerical simulation results show the following facts: Concentration of oxygen is relatively high along the boundary of the slope, and low in the center part where leaching rate is slow. Temper- ature is relatively low along the slope and reaches the highest along the bottom region near the slope, with difference being more than 6℃. Concentration of target mental ions is the highest in the bottom region near the slope. Oxidation leaching rate is relatively large in the bottom and slope part with a fast reaction rate, and small in the other part with low oxygen concentration.
基金The National Natural Science FOundation of China(Grants No. 59605012) and Natural Science FOundation of Heilonaiiang (GrantsNO.9
文摘Modeling of heat transfer and solidification of composite roll was established and used to predict the thermal history and solidification process of roll during spray forming. Evolution of temperature field of the preform and cooling rate in the growing deposit during spray deposition and post-deposition were numerically simulated.
文摘The main objective of this study is the technical optimization of a Shell-and-Tube Heat Exchanger(STHE).In order to do so,a simulation model is introduced that takes into account the related gas-phase circulation.Then,simulation verification experiments are designed in order to validate the model.The results show that the tem-peraturefield undergoes strong variations in time when an inlet wind speed of 6 m/s is considered,while the heat transfer error reaches a minimum of 5.1%.For an inlet velocity of 9 m/s,the heat transfer drops to the lowest point,while the heat transfer error reaches a maximum,i.e.,9.87%.The pressure drop increasesfirst and then decreases with an increase in the wind speed and reaches a maximum of 819 Pa under the 9 m/s wind speed con-dition.Moreover,the pressure drops,and the heat transfer coefficient increases with the Reynolds number.
文摘The SMART (System-integrated Modular Advanced ReacTor) which is a 330 MWt advanced integral PWR was developed by the KAERI (Korea Atomic Energy Institute) for electricity generation and seawater desalination. To enhance its safety, the various design concepts were adopted such as the most containing of the RCS (reactor coolant system) components and a PRHRS (passive residual heat removal system). To ensure the safety and performance of the SMART, a thermal hydraulic evaluation and safety analysis are performed by the TASS/SMR-S code. It uses a one dimensional node/path modeling and point kinetics for the core power simulation. The code also has specific models reflecting the design features of the SMART such as a helical tube and PRHRS heat transfer models. In this study, the validation of the core heat transfer model in the TASS/SMR-S code on the steady conditions was performed with the Bennett's heated tube tests and THTF (thermal hydraulic test facility) experiment. From the results of the TASS/SMR-S code calculation, the CHF (critical heat flux) point and the fuel rod surface temperature were predicted conservatively compared to the test results.
基金supported by the Project of the National Key R&D Program(Grant No.2021YFA1000202)National Natural Science Foundation of China(Grant Nos.12120101001,12001326 and 12171283)+2 种基金Natural Science Foundation of Shandong Province(Grant Nos.ZR2021ZD03,ZR2020QA032 and ZR2019ZD42)China Postdoctoral Science Foundation(Grant Nos.BX20190191 and 2020M672038)the Startup Fund from Shandong University(Grant No.11140082063130)。
文摘In this paper,we first establish a new fractional magnetohydrodynamic(MHD)coupled flow and heat transfer model for a generalized second-grade fluid.This coupled model consists of a fractional momentum equation and a heat conduction equation with a generalized form of Fourier law.The second-order fractional backward difference formula is applied to the temporal discretization and the Legendre spectral method is used for the spatial discretization.The fully discrete scheme is proved to be stable and convergent with an accuracy of O(τ^(2)+N-r),whereτis the time step-size and N is the polynomial degree.To reduce the memory requirements and computational cost,a fast method is developed,which is based on a globally uniform approximation of the trapezoidal rule for integrals on the real line.The strict convergence of the numerical scheme with this fast method is proved.We present the results of several numerical experiments to verify the effectiveness of the proposed method.Finally,we simulate the unsteady fractional MHD flow and heat transfer of the generalized second-grade fluid through a porous medium.The effects of the relevant parameters on the velocity and temperature are presented and analyzed in detail.
基金supported by the Natural Science Research Project of Guangling College of Yangzhou University,China (ZKZD18004)General Program of Natural Science Research in Higher Education Institutions of Jiangsu Province,China (20KJD430006)。
文摘Gas flexible pipes are critical multi-layered equipment for offshore oil and gas development.Under high pressure conditions,small molecular components of natural gas dissolve into the polymer inner liner of the flexible pipes and further diffuse into the annular space,incurring annular pressure build-up and/or production of acidic environment,which poses serious challenges to the structure and integrity of the flexible pipes.Gas permeation in pipes is a complex phenomenon governed by various factors such as internal pressure and temperature,annular structure,external temperature.In a long-distance gas flexible pipe,moreover,gas permeation exhibits non-uniform features,and the gas permeated into the annular space flows along the metal gap.To assess the complex gas transport behavior in long-distance gas flexible pipes,a mathematical model is established in this paper considering the multiphase flow phenomena inside the flexible pipes,the diffusion of gas in the inner liner,and the gas seepage in the annular space under varying permeable properties of the annulus.In addition,the effect of a variable temperature is accounted.A numerical calculation method is accordingly constructed to solve the coupling mathematical equations.The annular permeability was shown to significantly influence the distribution of annular pressure.As permeability increases,the annular pressure tends to become more uniform,and the annular pressure at the wellhead rises more rapidly.After annular pressure relief followed by shut-in,the pressure increase follows a convex function.By simulating the pressure recovery pattern after pressure relief and comparing it with test results,we deduce that the annular permeability lies between 123 and 512 m D.The results help shed light upon assessing the annular pressure in long distance gas flexible pipes and thus ensure the security of gas transport in the emerging development of offshore resources.
基金National Major Scientific Project of China(No.2013CBA01803)Science Fund for Creative Research Groups of National Natural Science Foundation of China(No.41121001)+1 种基金National Natural Science Foundation of China(No.41271081)Foundation of One Hundred Person Project of Chinese Academy of Sciences(No.51Y251571)
文摘Hydrothermal processes are key components in permafrost dynamics; these processes are integral to global wanning. In this study the coupled heat and mass transfer model for (CoupModel) the soil-plant-atmosphere-system is applied in high-altitude permafrost regions and to model hydrothermal transfer processes in freeze-thaw cycles. Measured meteorological forcing and soil and vegetation properties are used in the CoupModel for the period from January 1, 2009 to December 31, 2012 at the Tanggula observation site in the Qinghai-Tibet Plateau. A 24-h time step is used in the model simulation. The results show that the simulated soil temperature and water content, as well as the frozen depth compare well with the measured data. The coefficient of determination (R2) is 0.97 for the mean soil temperature and 0.73 for the mean soil water content, respectively. The simulated soil heat flux at a depth of 0-20 cm is also consistent with the monitored data. An analysis is performed on the simulated hydrothermal transfer processes from the deep soil layer to the upper one during the freezing and thawing period. At the beginning of the freezing period, the water in the deep soil layer moves upward to the freezing front and releases heat during the freezing process. When the soil layer is completely frozen, there are no vertical water ex- changes between the soil layers, and the heat exchange process is controlled by the vertical soil temperature gradient. During the thaw- ing period, the downward heat process becomes more active due to increased incoming shortwave radiation at the ground surface. The melt water is quickly dissolved in the soil, and the soil water movement only changes in the shallow soil layer. Subsequently, the model was used to provide an evaluation of the potential response of the active layer to different scenarios of initial water content and climate warming at the Tanggula site. The results reveal that the soil water content and the organic layer provide protection against active layer deepening in summer, so climate warming will cause the permafrost active layer to become deeoer and permafrost degradation.
基金the provided funding resources by Mohsen Saffari Pour from the National Elites Foundation of IranStiftelsen Axel Hultgerns of Sweden for supporting this research。
文摘This research investigates a numerical simulation of swirling turbulent non-premixed combustion.The effects on the combustion characteristics are examined with three turbulence models:namely as the Reynolds stress model,spectral turbulence analysis and Re-Normalization Group.In addition,the P-1 and discrete ordinate(DO)models are used to simulate the radiative heat transfer in this model.The governing equations associated with the required boundary conditions are solved using the numerical model.The accuracy of this model is validated with the published experimental data and the comparison elucidates that there is a reasonable agreement between the obtained values from this model and the corresponding experimental quantities.Among different models proposed in this research,the Reynolds stress model with the Probability Density Function(PDF)approach is more accurate(nearly up to 50%)than other turbulent models for a swirling flow field.Regarding the effect of radiative heat transfer model,it is observed that the discrete ordinate model is more precise than the P-1 model in anticipating the experimental behavior.This model is able to simulate the subcritical nature of the isothermal flow as well as the size and shape of the internal recirculation induced by the swirl due to combustion.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52205481,51975305 and 52105457)Shandong Natural Science Foundation(Grant Nos.ZR2020ME158,ZR2023QE057,ZR2022QE028,ZR2021QE116,ZR2020KE027,and ZR2022QE159)+1 种基金Qingdao Science and Technology Planning Park Cultivation Plan(23-1-5-yqpy-17-qy)China Postdoctral Science Foundation(2021M701810).
文摘Grinding is a crucial process in machining workpieces because it plays a vital role in achieving the desired precision and surface quality.However,a significant technical challenge in grinding is the potential increase in temperature due to high specific energy,which can lead to surface thermal damage.Therefore,ensuring control over the surface integrity of workpieces during grinding becomes a critical concern.This necessitates the development of temperature field models that consider various parameters,such as workpiece materials,grinding wheels,grinding parameters,cooling methods,and media,to guide industrial production.This study thoroughly analyzes and summarizes grinding temperature field models.First,the theory of the grinding temperature field is investigated,classifying it into traditional models based on a continuous belt heat source and those based on a discrete heat source,depending on whether the heat source is uniform and continuous.Through this examination,a more accurate grinding temperature model that closely aligns with practical grinding conditions is derived.Subsequently,various grinding thermal models are summarized,including models for the heat source distribution,energy distribution proportional coefficient,and convective heat transfer coefficient.Through comprehensive research,the most widely recognized,utilized,and accurate model for each category is identified.The application of these grinding thermal models is reviewed,shedding light on the governing laws that dictate the influence of the heat source distribution,heat distribution,and convective heat transfer in the grinding arc zone on the grinding temperature field.Finally,considering the current issues in the field of grinding temperature,potential future research directions are proposed.The aim of this study is to provide theoretical guidance and technical support for predicting workpiece temperature and improving surface integrity.
基金National Natural Science Foundation of China(Grant No.91130013)Innovation Foundation of BUAA for PhD Graduates(YWF-12-RBYJ-010)Specialized Research Fund for the Doctoral Program of Higher Education(20101102110011)for funding this work
文摘The accurate simulation of boundary layer transition process plays a very important role in the prediction of turbine blade temperature field. Based on the Abu-Ghannam and Shaw (AGS) and c-Re h transition models, a 3D conjugate heat transfer solver is developed, where the fluid domain is discretized by multi-block structured grids, and the solid domain is discretized by unstructured grids. At the unmatched fluid/solid interface, the shape function interpolation method is adopted to ensure the conservation of the interfacial heat flux. Then the shear stress transport (SST) model, SST & AGS model and SST & c-Re h model are used to investigate the flow and heat transfer characteristics of Mark II turbine vane. The results indicate that compared with the full turbulence model (SST model), the transition models could improve the prediction accuracy of temperature and heat transfer coefficient at the laminar zone near the blade leading edge. Compared with the AGS transition model, the c-Re h model could predict the transition onset location induced by shock/boundary layer interaction more accurately, and the prediction accuracy of temperature field could be greatly improved.