期刊文献+
共找到4,908篇文章
< 1 2 246 >
每页显示 20 50 100
Optimum Profiles of Endwall Contouring for Enhanced Net Heat Flux Reduction and Aerodynamic Performance
1
作者 Arjun K S Tide P S Biju N 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第2期80-92,共13页
Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplish... Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplished by steady-state numerical hydrodynamics and deep knowledge of the field of flow.Because of the interaction between mainstream and purge flow contributing supplementary losses in the stage,non-axisymmetric endwalls are highly susceptible to the inception of purge flow exit compared to the flat and any advantage rapidly vanishes.The conclusions reveal that the supreme endwall pattern could yield a lowering of the gross pressure loss at the design stage and is related to the size of the top-loss location being productively lowered.This has led to diminished global thermal exchange lowered in the passage of the vane alone.The reverse flow adjacent to the suction side corner of the endwall is migrated farther from the vane surface,as the deviated pressure spread on the endwall accelerates the flow and progresses the reverse flow core still downstream.The depleted association between the tornado-like vortex and the corner vortex adjacent to the suction side corner of the endwall is the dominant mechanism of control in the contoured end wall.In this publication,we show that the non-axisymmetric endwall contouring by selective numerical shape change method at most prominent locations is advantageous in lowering the thermal load in turbines to augment the net heat flux reduction as well as the aerodynamic performance using multi-objective optimization. 展开更多
关键词 endwall contouring turbine VANE heat transfer phantom cooling coolant injection net heat flux reduction aerodynamic performance
下载PDF
Waste Heat Recovery from a Drier Receiver of an A/C Unit Using Thermoelectric Generators 被引量:1
2
作者 Ali Jaber Abdulhamed Aws Al-Akam +1 位作者 Ahmed A.Abduljabbar Mohammed H.Alkhafaji 《Energy Engineering》 EI 2023年第8期1729-1746,共18页
Thermoelectric generators(TEGs)are considered promising devices for waste heat recovery from various systems.The Seebeck effect can be utilized to generate power using the residual heat emitted by the filter dryer rec... Thermoelectric generators(TEGs)are considered promising devices for waste heat recovery from various systems.The Seebeck effect can be utilized to generate power using the residual heat emitted by the filter dryer receiver(FDR)of an air conditioning(A/C)system,which would otherwise go to waste.The study aims to build a set of thermoelectric generators(TEG)to collect the waste heat of the FDR and generate low-power electricity.A novel electrical circuit with two transformers is designed and fabricated to produce a more stable voltage for operation and charging.The thermoelectric generator(TEGs)was installed on the FDR of the A/C unit.The test showed that climate conditions have a significant impact on the output power generated from the system.The results showed that the peak voltage recorded in the current study is 5.2 V per day(wet,cold,and wind weather)with an output power of 0.2 W.These values are acceptable for powering the load and charging a single battery with 3.5 V as the voltage increases battery 0.1 V/20 min charge.A case study of operating the emergency signs in a building was considered.The current heat recovery system is deemed to be easily installed and can be connected to a network of TEGs to produce more power. 展开更多
关键词 Thermoelectric generator waste heat filter dryer receiver air conditioning heat recovery
下载PDF
Waste heat recovery from hot steel slag on the production line:Numerical simulation,validation and industrial test
3
作者 Tianhua Zhang Longheng Xiao +4 位作者 Guibo Qiu Huigang Wang Min Guo Xiangtao Huo Mei Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第11期2191-2199,共9页
Waste heat recovery from hot steel slag was determined in a granular bed through the combination of numerical simulation and an industrial test method.First,the effective thermal conductivity of the granular bed was c... Waste heat recovery from hot steel slag was determined in a granular bed through the combination of numerical simulation and an industrial test method.First,the effective thermal conductivity of the granular bed was calculated.Then,the unsteady-state model was used to simulate the heat recovery under three different flow fields(O-type,S-type,and nonshielding type(Nontype)).Second,the simulation results were validated by in-situ industrial experiments.The two methods confirmed that the heat recovery efficiencies of the flow fields from high to low followed the order of Nontype,S-type,and O-type.Finally,heat recovery was carried out under the Nontype flow field in an industrial test.The heat recovery efficiency increased from~76%and~78%to~81%when the steel slag thickness decreased from 400 and 300 to 200 mm,corresponding to reductions in the steel slag mass from 3.96 and 2.97 to 1.98 t with a blower air volume of 14687 m^(3)/h.Therefore,the research results showed that numerical simulation can not only guide experiments on waste heat recovery but also optimize the flow field.Most importantly,the method proposed in this paper has achieved higher waste heat recovery from hot steel slag in industrial scale. 展开更多
关键词 hot steel slag calculation and verification industrial tests waste heat recovery
下载PDF
Off-Design Simulation of a CSP Power Plant Integrated with aWaste Heat Recovery System
4
作者 T.E.Boukelia A.Bourouis +1 位作者 M.E.Abdesselem M.S.Mecibah 《Energy Engineering》 EI 2023年第11期2449-2467,共19页
Concentrating Solar Power(CSP)plants offer a promising way to generate low-emission energy.However,these plants face challenges such as reduced sunlight during winter and cloudy days,despite being located in high sola... Concentrating Solar Power(CSP)plants offer a promising way to generate low-emission energy.However,these plants face challenges such as reduced sunlight during winter and cloudy days,despite being located in high solar radiation areas.Furthermore,their dispatch capacities and yields can be affected by high electricity consumption,particularly at night.The present work aims to develop an off-design model that evaluates the hourly and annual performances of a parabolic trough power plant(PTPP)equipped with a waste heat recovery system.The study aims to compare the performances of this new layout with those of the conventional Andasol 1 plant,with the aim of assessing the improvements achieved in the new design.Based on the results,it can be concluded that the new layout has increased the annual generated power to almost 183 GWh(an increase of about 7.60% is achieved compared to the Andasol 1 layout that generates 169 GWh annually).Additionally,the proposed installation has achieved an efficiency of 20.55%,which represents a 7.87% increase compared to the previous design(19.05%).The Levelized Cost of Electricity(LCOE)of the new layout has been reduced by more than 5.8% compared to the Andasol 1 plant.Specifically,it has decreased from 13.11 to 12.35 c/kWh.This reduction in LCOE highlights the improved cost-effectiveness of the newlayout,making it amore economically viable option for generating electricity compared to the conventional Andasol 1 plant. 展开更多
关键词 Dispatch capacity organic Rankine cycle parabolic trough solar power plant performanceS waste heat recovery
下载PDF
Heat Transfer and Energy Utilization of Waste Heat Recovery Device with Different Internal Component
5
作者 Enmin Tang Jing Ding Jianfeng Lu 《Energy and Power Engineering》 2020年第2期88-100,共13页
Steel industry is high energy-consuming industry, and its waste?heat recovery is critically?important for energy utilization. In this study, pipeline bundle is used to enhance heat transfer in?waste?heat recovery devi... Steel industry is high energy-consuming industry, and its waste?heat recovery is critically?important for energy utilization. In this study, pipeline bundle is used to enhance heat transfer in?waste?heat recovery device,?and?associated gas-solid heat transfer and energy utilization performance with different pipeline arrangement, pipe diameter and shape of internal component are further analyzed. The temperatures of gas and particle in device with pipeline bundle periodically fluctuate in horizontal direction, and those in staggered system distribute more uniformly than those in paralleled system. Compared with paralleled device, exergy and waste heat utilization efficiency of staggered device have been improved, and they are both higher than?those without pipeline. As pipe diameter increases, exergy and waste heat utilization efficiency first increases and then decreases, and they reach the maxima with optimal pipe diameter.?As the width of internal component keeps constant, influence of its shape on heat transfer is very little. 展开更多
关键词 waste heat recovery Device POROUS Media Local Thermal NON-EQUILIBRIUM Gas Solid heat transfer
下载PDF
Simulation Analysis of Flue Gas Waste Heat Utilization Retrofit Based on ORC System 被引量:1
6
作者 Liqing Yan Jiang Liu +1 位作者 Guangwei Ying Ning Zhang 《Energy Engineering》 EI 2023年第8期1919-1938,共20页
Recovery of waste heat from boiler flue gas is an effective way to improve energy utilization efficiency.Taking a heating station heating project as an example,the existing heating system of this heating station was a... Recovery of waste heat from boiler flue gas is an effective way to improve energy utilization efficiency.Taking a heating station heating project as an example,the existing heating system of this heating station was analyzed for its underutilized flue gas waste heat and low energy utilization rate.Rankine cycle is an effective waste heat recovery method,and a steam boiler organic Rankine cycle(ORC)cogeneration waste heat utilization method is proposed.The system model simulation is constructed and verified.First,a thermodynamic model was constructed in MATLAB and five suitable work gases were selected to analyze the effects of evaporation temperature and condensation temperature on the network and thermal efficiency of the waste heat cycle power system.Secondly,the ORC model is invoked in TRNSYS to construct the improved cogeneration system,and the rationality of the remaining heat utilization methods is determined by calculating and analyzing the thermal performance,economy,and environmental protection of the improved system.The simulation results show that the system can generate about 552,000 kWh of electricity per year,and improving the energy utilization rate from 0.72 to 0.78. 展开更多
关键词 COGENERATION waste heat recovery organic Rankine cycle simulation model
下载PDF
Theoretical and experimental investigation on vertical tank technology for sinter waste heat recovery 被引量:3
7
作者 冯军胜 董辉 +2 位作者 高建业 刘靖宇 梁凯 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2281-2287,共7页
In the present work, the gas flow pressure drop and gas–solid heat transfer characteristics in sinter bed layer of vertical tank were studied experimentally on the basis of the homemade experimental setup. The gas fl... In the present work, the gas flow pressure drop and gas–solid heat transfer characteristics in sinter bed layer of vertical tank were studied experimentally on the basis of the homemade experimental setup. The gas flow pressure drop through the sinter bed layer was measured with different gas velocity and particle diameters, as well as the sinter and air temperatures. The influences of gas superficial velocity and particle diameter on the gas flow pressure drop and gas solid heat transfer in sinter bed layer were analyzed in detail. The revised Ergun's correlation and gas solid heat transfer correlation were obtained according to the regression analysis of experimental data. It is found that, the pressure drop of unit bed layer height gradually increases as a quadratic relationship with increasing the gas superficial velocity, and decreases as an exponential relationship with the increase of sinter particle diameter. For a given sinter temperature, the heat transfer coefficient in sinter bed layer increases with increasing the gas superficial velocity, and increases with decreasing the sinter particle diameter. In addition, the heat transfer coefficient also gradually increases with increasing the sinter temperature at the same gas superficial velocity and sinter particle diameter. The mean deviations between the experimental data obtained from this work and the values calculated by the revised Ergun's correlation and the experimental heat transfer correlation are 7.22% and 4.22% respectively, showing good prediction. 展开更多
关键词 SINTER waste heat pressure DROP heat transfer COEFFICIENT experimental study
下载PDF
Performance comparison for oil-water heat transfer of circumferential overlap trisection helical baffle heat exchanger 被引量:2
8
作者 王伟晗 程道来 +1 位作者 刘涛 刘颖昊 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第10期2720-2727,共8页
The performance tests were conducted on oil–water heat transfer in circumferential overlap trisection helical baffle heat exchangers with incline angles of 12°, 16°, 20°, 24° and 28°, and com... The performance tests were conducted on oil–water heat transfer in circumferential overlap trisection helical baffle heat exchangers with incline angles of 12°, 16°, 20°, 24° and 28°, and compared with a segmental baffle heat exchanger. The results show that the shell side heat transfer coefficient h_o and pressure drop Δp_o both increase while the comprehensive index h_o/Δp_o decreases with the increase of the mass flow rate of all schemes. And the shell side heat transfer coefficient, pressure drop and the comprehensive index ho/Δpo decrease with the increase of the baffle incline angle at a certain mass flow rate. The average values of shell side heat transfer coefficient and the comprehensive index h_o/Δp_o of the 12° helical baffled scheme are above 50% higher than those of the segmental one correspondingly, while the pressure drop value is very close and the ratios of the average values are about 1.664 and 1.596, respectively. The shell-side Nusselt number Nu_o and the comprehensive index Nu_o·Eu_(zo)^(-1) increase with the increase of Reynolds number of the shell side axial in all schemes, and the results also demonstrate that the small incline angled helical scheme has better comprehensive performance. 展开更多
关键词 performance experiments helical baffled heat exchangers circumferential overlap of baffles incline angle of baffle heat transfer enhancement
下载PDF
Dynamic test on waste heat recovery system with organic Rankine cycle 被引量:3
9
作者 王志奇 刘力文 +1 位作者 夏小霞 周乃君 《Journal of Central South University》 SCIE EI CAS 2014年第12期4607-4612,共6页
Dynamic performance is important to the controlling and monitoring of the organic Rankine cycle(ORC) system so to avoid the occurrence of unwanted conditions. A small scale waste heat recovery system with organic Rank... Dynamic performance is important to the controlling and monitoring of the organic Rankine cycle(ORC) system so to avoid the occurrence of unwanted conditions. A small scale waste heat recovery system with organic Rankine cycle was constructed and the dynamic behavior was presented. In the dynamic test, the pump was stopped and then started. In addition, there was a step change of the flue gas volume flow rate and the converter frequency of multistage pump, respectively. The results indicate that the working fluid flow rate has the shortest response time, followed by the expander inlet pressure and the expander inlet temperature.The operation frequency of pump is a key parameter for the ORC system. Due to a step change of pump frequency(39.49-35.24 Hz),the expander efficiency and thermal efficiency drop by 16% and 21% within 2 min, respectively. Besides, the saturated mixture can lead to an increase of the expander rotation speed. 展开更多
关键词 余热回收系统 朗肯循环 动态测试 废热回收系统 转换频率 阶跃变化 多级泵 膨胀机
下载PDF
Integration of Low-level Waste Heat Recovery and Liquefied Nature Gas Cold Energy Utilization 被引量:16
10
作者 白菲菲 张早校 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第1期95-99,共5页
分别地,二个新奇热周期基于 Brayton 周期和 Rankine 被建议它集成低级废热和液化性质气体(LNG ) 的恢复为发电的冷精力利用。在低级废热,低温度的 exergy 和 LNG 的压力 exergy 通过系统合成高效地被利用的地方,精力的串联利用在二... 分别地,二个新奇热周期基于 Brayton 周期和 Rankine 被建议它集成低级废热和液化性质气体(LNG ) 的恢复为发电的冷精力利用。在低级废热,低温度的 exergy 和 LNG 的压力 exergy 通过系统合成高效地被利用的地方,精力的串联利用在二个热周期被认识到。模拟加 10.2 用商业白杨被执行,并且结果被分析。与常规 Brayton 周期和 Rankine 相比,二个新奇周期在 exergy 效率带 60.94% 和 60% ,分别地并且 53.08% 和 52.31% 在热效率分别地。 展开更多
关键词 低温位 废热回收 液化天然气 冷能利用
下载PDF
Effects of bending on heat transfer performance of axial micro-grooved heat pipe 被引量:5
11
作者 蒋乐伦 汤勇 潘敏强 《Journal of Central South University》 SCIE EI CAS 2011年第2期580-586,共7页
Heat pipe is always bent in the typical application of electronic heat dissipation at high heat flux,which greatly affects its heat transfer performance. The capillary limit of heat transport in the bent micro-grooved... Heat pipe is always bent in the typical application of electronic heat dissipation at high heat flux,which greatly affects its heat transfer performance. The capillary limit of heat transport in the bent micro-grooved heat pipes was analyzed in the vapor pressure drop,the liquid pressure drop and the interaction of the vapor with wick fluid. The bent heat pipes were fabricated and tested from the bending angle,the bending position and the bending radius. The results show that temperature difference and thermal resistance increase while the heat transfer capacity of the heat pipe decreases,with the increase of the bending angles and the bending position closer to the vapor section. However,the effects of bending radius can be ignored. The result agrees well with the predicted equations. 展开更多
关键词 传热性能 热弯曲 微槽道 热管 热效应 轴向 压力下降 弯曲角度
下载PDF
Heat Transfer Performance of a Novel Microchannel Embedded with Connected Grooves 被引量:1
12
作者 Ding Yuan Wei Zhou +1 位作者 Ting Fu Qingyu Dong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第6期362-372,共11页
To improve the heat transfer performance of microchannels,a novel microchannel embedded with connected grooves crossing two sidewalls and the bottom surface(type A)was designed.A comparative study of heat transfer was... To improve the heat transfer performance of microchannels,a novel microchannel embedded with connected grooves crossing two sidewalls and the bottom surface(type A)was designed.A comparative study of heat transfer was conducted regarding the performances of type A microchannels,microchannels embedded with grooves on their bottom(including types B and C),or on the sidewalls(type D)as well as smooth rectangular microchannels(type E)via a three-dimensional numerical simulation and experimental validation(at Reynolds numbers from 118 to 430).Numerical results suggested that the average Nusselt number of types A,B,C,and D microchannels were 106,73.4,50.1,and 12.6%higher than that of type E microchannel,respectively.The smallest synergy angle β and entropy generation number Ns,a were determined for type A microchannels based on field synergy and nondimensional entropy analysis,which indicated that type A exhibited the best heat transfer performance.Numerical flow analysis indicated that connected grooves induced fluid to flow along two different temperature gradients,which contributed to enhanced heat transfer performance. 展开更多
关键词 MICROCHANNEL Connected grooves heat transfer enhancement performance evaluation
下载PDF
Exploring heating performance of gas engine heat pump with heat recovery 被引量:2
13
作者 董付江 刘凤国 +2 位作者 李先庭 尤学一 赵冬芳 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第8期1931-1936,共6页
In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1400... In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1400-2600 r/min), ambient air temperature(2.4-17.8 °C) and condenser water inlet temperature(30-50 °C). The results show that as engine speed increases from 1400 r/min to 2600 r/min, the total heating capacity and energy consumption increase by about 30% and 89%, respectively; while the heat pump coefficient of performance(COP) and system primary energy ratio(PER) decrease by 44% and 31%, respectively. With the increase of ambient air temperature from 2.4 °C to 17.8 °C, the heat pump COP and system PER increase by 32% and 19%, respectively. Moreover, the heat pump COP and system PER decrease by 27% and 15%, respectively, when the condenser water inlet temperature changes from 30 °C to 50 °C. So, it is obvious that the effect of engine speed on the performance is more significant than the effects of ambient air temperature and condenser water inlet temperature. 展开更多
关键词 燃气机热泵 制热性能 冷凝器进水温度 热回收 发动机转速 空气温度 COP 热水供应
下载PDF
DETERMINATION OF THE OPTIMAL RANKINE CYCLE FOR WASTE HEAT RECOVERY
14
作者 冯霄 Thore Berntsson 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1997年第3期66-72,共7页
In this paper,the optimal Rankine Cycle for waste heat recovery is considered after pro-cess integration.The exergetic efficiency is used to measure the thermodynamic performance of the re-covery system.Comparing with... In this paper,the optimal Rankine Cycle for waste heat recovery is considered after pro-cess integration.The exergetic efficiency is used to measure the thermodynamic performance of the re-covery system.Comparing with recovering a single waste heat stream,heat recovery after processintegration is much more complicated due to the changeable specific heat given by the process grandcomposite curves.Therefore,this paper attempts to focus attention on the influence of grand compos-ite curves on the optimization. 展开更多
关键词 waste heat recovery Rankine CYCLE process INTEGRATION
下载PDF
Parametric optimization of packed bed for activated coal fly ash waste heat recovery using CFD techniques
15
作者 Kai Liang Saimeng Jin +3 位作者 Hengzhi Chen Jingzheng Ren Weifeng Shen Shun'anWei 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第2期518-525,共8页
Coal fly ash is an industrial solid waste generated from coal preparation during the processing and cleaning of coal for electric power generation.Comprehensive investigation on the reutilization of waste heat of acti... Coal fly ash is an industrial solid waste generated from coal preparation during the processing and cleaning of coal for electric power generation.Comprehensive investigation on the reutilization of waste heat of activated coal fly ash is of great economic significance.The method of recovering the waste heat,proposed in this study,is the transfer of heat from activated coal fly ash to gas with the movement of air using the packed bed,providing valuable energy sources for preheating the raw coal fly ash to reduce the overall energy consumption.The investigation is carried on the heat transfer characteristics of gas–solid(activated coal fly ash)phases and air temperature fields of the packed bed under some key conditions via computational fluid dynamics.A two dimensional geometry is utilized to represent key parts of packed bed.The distribution mechanism of the temperature field for gas phase is analyzed based on the transient temperature contours at different times.The results show that the obtained rule of gas–solid heat transfer can effectively evaluate the influences of operating parameters on the air temperature in the packed bed.Simultaneously,it is found that no temperature differences exist in the hot air at the outlet of the packed bed.The investigation provides guidance for the design and optimization of other similar energy recovery apparatuses in industries. 展开更多
关键词 Coal FLY ASH COMPUTATIONAL fluid dynamics Eulerian–Eulerian model waste heat recovery Packed BED
下载PDF
Heat Transfer Performance and Structural Optimization of a Novel Micro-channel Heat Sink
16
作者 Jianhua Xiang Liangming Deng +3 位作者 Chao Zhou Hongliang Zhao Jiale Huang Sulian Tao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第2期189-200,共12页
With the advent of the 5G era,the design of electronic equipment is developing towards thinness,intelligence and multi-function,which requires higher cooling performance of the equipment.Micro-channel heat sink is pro... With the advent of the 5G era,the design of electronic equipment is developing towards thinness,intelligence and multi-function,which requires higher cooling performance of the equipment.Micro-channel heat sink is promising for the heat dissipation of super-thin electronic equipment.In this study,thermal resistance theoretical model of the micro-channel heat sink was first established.Then,fabrication process of the micro-channel heat sink was introduced.Subsequently,heat transfer performance of the fabricated micro-channel heat sink was tested through the developed testing platform.Results show that the developed micro-channel heat sink has more superior heat dissipation performance over conventional metal solid heat sink and it is well suited for high power LEDs application.Moreover,the micro-channel structures in the heat sink were optimized by orthogonal test.Based on the orthogonal optimization,heat dissipation performance of the micro-channel radiator was further improved. 展开更多
关键词 MICRO-CHANNEL Phase change heat sink heat transfer performance testing Finite element simulation Orthogonal test
下载PDF
Conceptual design and heat transfer performance of a flat-tile water-cooled divertor target
17
作者 李磊 韩乐 +6 位作者 訾鹏飞 曹磊 许铁军 牟南瑜 王兆亮 殷磊 姚达毛 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第9期194-205,共12页
The divertor target components for the Chinese fusion engineering test reactor(CFETR)and the future experimental advanced superconducting tokamak(EAST)need to remove a heat flux of up to20 MW m-2.In view of such a hig... The divertor target components for the Chinese fusion engineering test reactor(CFETR)and the future experimental advanced superconducting tokamak(EAST)need to remove a heat flux of up to20 MW m-2.In view of such a high heat flux removal requirement,this study proposes a conceptual design for a flat-tile divertor target based on explosive welding and brazing technology.Rectangular water-cooled channels with a special thermal transfer structure(TTS)are designed in the heat sink to improve the flat-tile divertor target’s heat transfer performance(HTP).The parametric design and optimization methods are applied to study the influence of the TTS variation parameters,including height(H),width(W*),thickness(T),and spacing(L),on the HTP.The research results show that the flat-tile divertor target’s HTP is sensitive to the TTS parameter changes,and the sensitivity is T>L>W*>H.The HTP first increases and then decreases with the increase of T,L,and W*and gradually increases with the increase of H.The optimal design parameters are as follows:H=5.5 mm,W*=25.8 mm,T=2.2 mm,and L=9.7 mm.The HTP of the optimized flat-tile divertor target at different flow speeds and tungsten tile thicknesses is studied using the numerical simulation method.A flat-tile divertor mock-up is developed according to the optimized parameters.In addition,high heat flux(HHF)tests are performed on an electron beam facility to further investigate the mock-up HTP.The numerical simulation calculation results show that the optimized flat-tile divertor target has great potential for handling the steady-state heat load of 20 MW m-2under the tungsten tile thickness<5 mm and the flow speed7 m s^(-1).The heat transfer efficiency of the flat-tile divertor target with rectangular cooling channels improves by13%and30%compared to that of the flat-tile divertor target with circular cooling channels and the ITER-like monoblock,respectively.The HHF tests indicate that the flat-tile divertor mock-up can successfully withstand 1000 cycles of20 MW m-2of heat load without visible deformation,damage,and HTP degradation.The surface temperature of the flat-tile divertor mock-up at the 1000th cycle is only930℃.The flat-tile divertor target’s HTP is greatly improved by the parametric design and optimization method,and is better than the ITER-like monoblock and the flat-tile mock-up for the WEST divertor.This conceptual design is currently being applied to the engineering design of the CFETR and EAST flat-tile divertors. 展开更多
关键词 CFETR heat transfer performance parametric design and optimization HHF tests flat-tile divertor target
下载PDF
Application of the waste heat recovery system and energy-saving in the strip continuous annealing furnace
18
作者 WANG Lu 《Baosteel Technical Research》 CAS 2010年第2期23-28,共6页
The common problem of cold strip continuous annealing furnaces is high exhaust gas temperature and great energy consumption. Taking the cold-strip continuous annealing furnaces of Baosteel No. 4 cold mill plant as an ... The common problem of cold strip continuous annealing furnaces is high exhaust gas temperature and great energy consumption. Taking the cold-strip continuous annealing furnaces of Baosteel No. 4 cold mill plant as an example, several waste heat recovery systems in the annealing furnaces are compared and their advantages and disadvantages are analyzed through different energy-saving technologies. 展开更多
关键词 annealing furnace waste heat recovery system energy-saving technology
下载PDF
Efficiency analysis of trilateral-cycle power systems for waste heat recovery-to-power generation
19
作者 Habeeb A.AJIMOTOKAN 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第12期3160-3170,共11页
Numerous innovative heat recovery-to-power technologies have been resourcefully and technologically exploited to bridge the growing gap between energy needs and its sustainable and affordable supply.Among them,the pro... Numerous innovative heat recovery-to-power technologies have been resourcefully and technologically exploited to bridge the growing gap between energy needs and its sustainable and affordable supply.Among them,the proposed trilateral-cycle(TLC) power system exhibits high thermodynamic efficiency during heat recovery-to-power from low-to-medium temperature heat sources.The TLCs are proposed and analysed using n-pentane as working fluid for waste heat recovery-to-power generation from low-grade heat source to evaluate the thermodynamic efficiency of the cycles.Four different single stage TLC configurations with distinct working principles are modelled thermodynamically using engineering equation solver.Based on the thermodynamic framework,thermodynamic performance simulation and efficiency analysis of the cycles as well as the exergy efficiencies of the heating and condensing processes are carried out and compared in their efficiency.The results show that the simple TLC,recuperated TLC,reheat TLC and regenerative TLC operating at subcritical conditions with cycle high temperature of 473 K can attain thermal efficiencies of 21.97%,23.91%,22.07% and 22.9%,respectively.The recuperated TLC attains the highest thermodynamic efficiency at the cycle high temperature because of its lowest exergy destruction rates in the heat exchanger and condenser.The efficiency analysis carried out would assist in guiding thermodynamic process development and thermal integration of the proposed cycles. 展开更多
关键词 余热回收利用 发电技术 效率分析 电力系统 循环 热力学效率 薄层扫描法 低品位热源
下载PDF
Theoretical and experimental research on heat transfer performance of the semi-open heat pipe
20
作者 Hua ZHU Bo ZHUAN Jin-jun TAN Rong-hua HONG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第3期410-415,共6页
This paper focuses on the heat transfer performance of semi-open heat pipe which is a new type of heat pipe. After analyzing its condensation heat transfer mechanisms theoretically, several semi-open heat pipes in dif... This paper focuses on the heat transfer performance of semi-open heat pipe which is a new type of heat pipe. After analyzing its condensation heat transfer mechanisms theoretically, several semi-open heat pipes in different length ratios and upper hole diameters are studied experimentally and compared with the same dimensions closed heat pipes. Experimental results show that the heat transfer performance of semi-open heat pipe becomes better by increasing heat transfer rate. At the first transitional point, the heat transfer performance of semi-open heat pipe approaches the level of the closed heat pipe. It is suitable to choose upper small hole about 1 mm in diameter and length ratio larger than 0.6 for the semi-open heat pipe. 展开更多
关键词 热力学 传递模式 温度 分析方法
下载PDF
上一页 1 2 246 下一页 到第
使用帮助 返回顶部