The experimental study of natural convection in allglass evacuated tube solar collectors is performed through the experimental platform of the solar-assisted fuel cell system.The experimental facility includes solar c...The experimental study of natural convection in allglass evacuated tube solar collectors is performed through the experimental platform of the solar-assisted fuel cell system.The experimental facility includes solar collectors with different length and diameter tubes, different coating materials, and with / without guide plates, respectively. Threedimensional mathematical models on natural and forced convections in the solar collectors are established and the experimental data is validated by field synergy and entransy principles. The results of natural convection show that the water temperature increases and thermal efficiency decreases gradually with the evacuated tube length. The thermal efficiency increases when absorption rates increase from 0. 95 to 1. 0 and emission rates decrease from 0. 16 to 0. 06. The thermal efficiency of solar collectors is increased after being equipped with the guide plate, which is attributed to the disappearance of the mixed flowand the enhancement of the heat transfer at the bottom of the evacuated tube. The results of forced convertion indicate that the Reynolds, Nusselt and entransy increments of the horizontal double collectors are higher than those of the vertical single collector while the entransy dissipation is lower than that of the vertical single collector. It is concluded that the solar collectors with guide plates are suitable for natural convection while the double horizontal collectors are suitable for forced convection in the thermal field of solar-assisted fuel cell systems with lowand medium temperatures.展开更多
Evacuated Tube Transport Technologies (ET3) offers the potential for more than an order of magnitude improvement in transportation efficiency, speed, cost, and effectiveness. An ET3 network may be optimized to susta...Evacuated Tube Transport Technologies (ET3) offers the potential for more than an order of magnitude improvement in transportation efficiency, speed, cost, and effectiveness. An ET3 network may be optimized to sustainably displace most global transportation by car, ship, truck, train, and jet aircraft. To do this, ET3 standards should adhere to certain key principals: maximum value through efficiency, reliability, and simplicity; equal consideration for passenger and cargo loads; optimum size; high speed/high frequency operation; demand oriented; random accessibility; scalability; high granularity; automated control; full speed passive switching; open standards of implementation; and maximum use of existing capacities, materials, and processes.展开更多
Evacuated tube transportation (ETT) will be one of the ultra-large-scale vacuum application areas. This paper lists some key vacuum technology issues in ETT: (1) how to construct ultra-large-scale vacuum chamber ...Evacuated tube transportation (ETT) will be one of the ultra-large-scale vacuum application areas. This paper lists some key vacuum technology issues in ETT: (1) how to construct ultra-large-scale vacuum chamber with lower cost and high reliability, (2) how to evacuate gas out of the ETT tube in short time, (3) how to release heat or reduce temperature in the vacuum tube, (4) how to avoid vacuum discharge, (5) how to make vehicles with airproof shells and life support system, and (6) how to detect leaks and find leak positions efficiently. At the same time, some solutions are proposed.展开更多
The aerodynamic resistance of a train running in the open air limits the maximum speed that can be attained by the train.For this reason,evacuated tube trains(ETT)are being considered as valid alternatives to be imple...The aerodynamic resistance of a train running in the open air limits the maximum speed that can be attained by the train.For this reason,evacuated tube trains(ETT)are being considered as valid alternatives to be implemented in the future.The atmosphere in the tube,the so-called blocking ratio and the length of the streamlined nose are the key factors affecting the aerodynamic performances of these trains.In the present work,we investigate evacuated tube trains with different lengths of the streamline nose on the basis of computational fluid dynamics(CFD).The three-dimensional steady compressible Navier-Stokes equations are solved.The running speed of the ETT is 800 km/h and the blocking ratio is 0.2.Results show that with the increase of the streamlined nose length,the aerodynamic drag and lift forces of the head car decrease gradually,and the drag and lift forces of the middle car change slightly.For the tail car,the drag force decreases,whereas the absolute value of the lift force increases.At a speed of 800 km/h,a slight shock wave appears at the rear of the tail car,which affects the aerodynamic forces acting on the train.展开更多
The aerodynamic drag on a train running in an evacuated tube varies with tube air pressure, train speed and shape, as well as blockage ratio. This paper uses numerical simulations to study the effects of different fac...The aerodynamic drag on a train running in an evacuated tube varies with tube air pressure, train speed and shape, as well as blockage ratio. This paper uses numerical simulations to study the effects of different factors on the aerodynamic drag of a train running at subsonic speed in an evacuated tube. Firstly, we present the assumption of a steady state, two dimensional, incompressible viscous flow with lubricity wall conditions. Subsequently, based on the Navier-Stokes equation and the k-c turbulent models, we calculate the aerodynamic drag imposed on the column train with a 3-meter diameter running under different pressure and blockage ratio conditions in an evacuated tube transporta- tion (ETT) system. The simulation is performed with FLUENT 6.3 software package. An analyses of the simulation re- sults suggest that the blockage ratio for ETT should be in the range of 0.25-0.7, and the tube internal diameter in the range of 2-4 m, with the feasible vacuum pressure in the range of 1-10 000 Pa for the future subsonic ETT trains.展开更多
The so-called Evacuated Tube Train(ETT)is currently being proposed as a high-speed transportation system potentially competitive with airplane transportation.Aerodynamic resistance is one of the most crucial factors f...The so-called Evacuated Tube Train(ETT)is currently being proposed as a high-speed transportation system potentially competitive with airplane transportation.Aerodynamic resistance is one of the most crucial factors for the successful design of an ETT.In the present work,a three-dimensional concept ETT model has been elaborated.The aerodynamic characteristics of the subsonic ETT have been numerically simulated under different conditions.The train’s running speed varies from 600 km/h up to 1200 km/h,and the blockage ratio is in the range between 0.1 and 0.3.As the blocking ratio and running speed increase,the resistance of the head car increases greatly,while the resistance of the middle car changes slightly.The aerodynamic resistance of the tail car is affected by the shock wave emerging in the wake flow.Two different design criteria for the maximum allowed aerodynamic resistance are proposed for aerodynamic parameter matching.With an increase in the blockage ratio and running speed,the atmospheric pressure in the tube should be decreased to achieve a balance.展开更多
In order to study the relationships between the aerodynamic drag of maglev and other factors in the evacuated tube, the formula of aerodynamic drag was deduced based on the basic equations of aerodynamics and then the...In order to study the relationships between the aerodynamic drag of maglev and other factors in the evacuated tube, the formula of aerodynamic drag was deduced based on the basic equations of aerodynamics and then the calculated result was confirmed at a low speed on an experimental system developed by Superconductivity and New Energy R&D Center of South Jiaotong University. With regard to this system a high temperature superconducting magnetic levitation vehicle was motivated by a linear induction motor (LIM) fixed on the permanent magnetic guideway. When the vehicle reached an expected speed, the LIM was stopped. Then the damped speed was recorded and used to calculate the experimental drag. The two results show the approximately same relationship between the aerodynamic drag on the maglev and the other factors such as the pressure in the tube, the velocity of the maglev and the blockage ratio. Thus, the pressure, the velocity, and the blockage ratio are viewed as the three important factors that contribute to the energy loss in the evacuated tube transportation.展开更多
Based on the Navier-Stokes (N-S) equations of incompressible viscous fluids and the standard k-ε turbu- lence model with assumptions of steady state and two dimensional conditions, a simulation of the aerodynamic d...Based on the Navier-Stokes (N-S) equations of incompressible viscous fluids and the standard k-ε turbu- lence model with assumptions of steady state and two dimensional conditions, a simulation of the aerodynamic drag on a maglev train in an evacuated tube was made with ANSYS/FLOTRAN software under different vacuum pressures, blockage ratios, and shapes of train head and tail. The pressure flow fields of the evacuated tube maglev train under different vacuum pressures were analyzed, and then compared under the same blockage ratio condition. The results show that the environmental pressure of 1 000 Pa in the tube is the best to achieve the effect of aerodynamic drag reduction, and there are no obvious differences in the aerodynamic drag reduction among different streamline head shapes. Overall, the blunt-shape tail and the blockage ratio of 0.25 are more efficient for drag reduction of the train at the tube pressure of 1 000 Pa.展开更多
The super-high speed high temperature superconductor (HTS) maglev evacuated tube transport (ETT) is a promising transport mode for the future. As a key component of the HTS maglev vehicle, the permanent magnet gui...The super-high speed high temperature superconductor (HTS) maglev evacuated tube transport (ETT) is a promising transport mode for the future. As a key component of the HTS maglev vehicle, the permanent magnet guide- ways (PMGs) with different geometrical configurations and iron yoke widths are analyzed by finite element method (FEM). The levitation force of a single onboard HTS maglev device over the designed PMG at different field cooling heights (FCH) is measured by magnetic levitation measurement system. Based on the designed PMG and experimental results, a preliminary scheme of subterranean super-high speed HTS maglev ETT is described in this paper. The HTS maglev ETT is mainly composed of an evacuated tube, HTS maglev vehicle, PMG, propulsion system, station, emergency rescue system, etc. In addition, a subterranean tube that consists of foundation tube and vacuum airproof layer is introduced. In order to convert the stress caused by the air pressure difference between inside and outside of the vehicle, a multi-circular vehicle body is designed. The vehicle is driven by a linear motor propulsion system under the control of a ground controlling system. The scheme of long-distance super-high speed passenger transportation is accomplished by the connection of different vehicles.展开更多
Since Maglev vehicles will run in a closed vacuum tube,the layout of the terminal stations of evacuated tube transportation(ETT) will differ from the traditional railway stations.This paper deals with some possible ...Since Maglev vehicles will run in a closed vacuum tube,the layout of the terminal stations of evacuated tube transportation(ETT) will differ from the traditional railway stations.This paper deals with some possible station layouts of ETT,e.g.,a station with an airlock,a station without an airlock,above ground and underground stations,and stations with either level arrayed or rotation platforms.Then different station layouts are compared,and characteristics of each are analyzed.Finally,a more secure mode for ETT station layouts is suggested,which can be the basis for future ETT station layout and designs.展开更多
Evacuated Tube Transportation(ETT)systems have been claimed to have considerable strengths,including ultra-highspeed,safety,and environmentally-friendly.However,the frequent handover caused by the high-speed brings a ...Evacuated Tube Transportation(ETT)systems have been claimed to have considerable strengths,including ultra-highspeed,safety,and environmentally-friendly.However,the frequent handover caused by the high-speed brings a challenge for ETT mobile wireless communication to preserve steady link performance.Moreover,in such a special scenario,the wireless link between the base station and the passengers on the train needs to experience fading from both metal pipe and train,thus the free-wave coverage with antennas in traditional high-speed rail wireless communication systems is not suitable for ETT.Based on the characteristics of ETT,an improved architecture of wireless communication network is proposed,using distributed base stations with remote radio units(RRUs)and baseband units(BBUs)and leaky waveguides to form stable coverage.And a redundant BBUs or RRUs structure is designed for coverage enhancement.Based on this redundant architecture,a fast handover scheme is proposed to resolve the handover problem.The analytical and simulation results show that the proposed scheme is capable of reducing communication outage probability and handover failure probability remarkably.展开更多
Energy consumption in buildings is considered a significant portion of gross power dissipation, so a great effort is required to design efficient construction. In severe hot weather conditions as Kuwait, energy requir...Energy consumption in buildings is considered a significant portion of gross power dissipation, so a great effort is required to design efficient construction. In severe hot weather conditions as Kuwait, energy required for building cooling and heating results in a huge energy loads and consumption and accordingly high emission rates of carbon dioxide. So, the main purpose of the current work is to convert the existing institutional building to near net-zero energy building (nNZEB) or into a net-zero energy building (NZEB). A combination of integrated high concentrated photovoltaic (HCPV) solar modules and evacuated tube collectors (ETC) are proposed to provide domestic water heating, electricity load as well as cooling consumption of an institutional facility. An equivalent circuit model for single diode is implemented to evaluate triple junction HCPV modules efficiency considering concentration level and temperature effects. A code compatible with TRNSYS subroutines is introduced to optimize evacuated tube collector efficiency. The developed models are validated through comparison with experimental data available from literature. The efficiency of integrated HCPV-ETC unit is optimized by varying the different system parameters. Transient simulation program (TRNSYS) is adapted to determine the performance of various parts of HCPV-ETC system. Furthermore, a theoretical code is introduced to evaluate the environmental effects of the proposed building when integrated with renewable energy systems. The integrated HCPV-ETC fully satisfies the energy required for building lighting and equipment. Utilizing HCPV modules of orientation 25? accomplishes a minimum energy payback time of about 8 years. Integrated solar absorption chiller provides about 64% of the annual air conditioning consumption needed for the studied building. The energy payback period (EPT) or solar cooling system is about 18 years which is significantly larger than that corresponding to HCPV due to the extra expenses of solar absorption system. The life cycle savings (LCS) of solar cooling absorption system is approximately $2400/year. Furthermore, levelized cost of energy of solar absorption cooling is $0.21/kWh. Hence, the net cost of the solar system after subtracting the CO2 emission cost will be close to the present price of conventional generation in Kuwait (about $0.17/kWh). Finally, the yearly CO2 emission avoided is approximately 543 ton verifying the environmental benefits of integrated HCPV-ETC arrangements in Kuwait.展开更多
Solar energy applications could be the best alternative to the conventional fuels for the purposes of domestic,water and space heating and some industries in the sunny,arid,and hot areas.In the present study,the perfo...Solar energy applications could be the best alternative to the conventional fuels for the purposes of domestic,water and space heating and some industries in the sunny,arid,and hot areas.In the present study,the performance of an evacuated tube solar heater for water heating for months of February and March was experimentally investigated.This was performed in a hot and arid area(Nasiriya City,South of Iraq).A solar heater with ten evacuated tube solar collectors with a capacity of 100 liter was used in the experiments.Each evacuated tube had a length of 1.8m with an outside diameter of 8 cm.It was observed that for the two selected months,water temperature of the solar heater reached a maximum more than 70°C during sunny days with no heat extraction from the tank of the solar heater.Moreover,heat was extracted from the solar collector with four different flowrates 0.5,0.75,1,and 1.25 l/min,respectively.The results showed that temperature of the solar heater behaved differently from the static situation.When the heat extraction begun,there was a gradual and noticeable decrease in the water temperature of the heater.The observed decrease was slight with the lowest flowrate(0.25 l/m)and becomes sharp with the highest flowrate(1.25 l/min).However,water temperature of the solar heater remained higher than 40°C for the investigated flowrates except the case of 1.25 l/min.The results showed that evacuated tube solar heater can work efficiently in arid and hot areas in winter and spring seasons when the conditions of solar radiation are suitable.展开更多
Solar water heaters which provide a cost-effective and environmental friendly approach to hot water generation are in widespread application. Evacuated tube solar water heaters perform better than flat plate solar wat...Solar water heaters which provide a cost-effective and environmental friendly approach to hot water generation are in widespread application. Evacuated tube solar water heaters perform better than flat plate solar water heaters as a result of their greater surface area exposed for sunlight absorption. Water-in-glass evacuated tube solar water heaters are widely used as compared to heat-pipe solar water heaters due to their short payback periods. In this study, the performance of water-in-glass evacuated tube solar water heater is investigated through experiments under the climatic conditions in Kenya. The results revealed a daily efficiency range of 0.58 - 0.65 and a daily final outlet temperature greater than 55<span style="white-space:normal;">°</span>C given an initial temperature of 25°C.展开更多
The operating efficiency of evacuated tubes themselves under varying environmental conditions and installation scenarios,independent of water and space heating auxiliary equipment,are not readily available values.Furt...The operating efficiency of evacuated tubes themselves under varying environmental conditions and installation scenarios,independent of water and space heating auxiliary equipment,are not readily available values.Further,Manitoba specific data has not been established.The purpose of this research program was to measure the efficiency of evacuated tube solar collectors under various operating conditions including:the angle of inclination towards the incident solar radiation,heat transfer fluid flow rate,glazing installation,and number of evacuated tubes.The operating conditions and configurations were chosen to represent realistic or probable installation scenarios and environmental conditions.Furthermore,the research aimed to identify the suitability of evacuated tube solar collectors to each of the scenarios.These design values are of use for appropriate sizing of water or space heating systems,system configuration and optimization,and calculation of return on investment.The scope of the research project was limited to the efficiency of various configurations of a 32-tube panel,not the entire solar domestic hot water or space heating system.Thus,factors such as heat loss in the tubing,solar storage tank,and heat exchanger efficiency were not investigated.The findings indicated that efficiency varied by approximately 5%between the different collector configurations,as observed from the overlay graph of results.When the efficiency of a collector is considered within a system it is proposed that effectiveness may be a better measure of overall performance.展开更多
In order to increase the efficiency of solar collector, a methodology is proposed based on the analysis of its influencing factors, such as thermal conductivity of filled layer, structure forms of filled layer and hea...In order to increase the efficiency of solar collector, a methodology is proposed based on the analysis of its influencing factors, such as thermal conductivity of filled layer, structure forms of filled layer and heat loss coefficient. The results of analysis show that the heat transfer between pipes in evacuated tube is one of the most important factors, which can lead to the decrease of the outlet temperature of working fluid. In order to eliminate the negative influence of the heat transfer between pipes, the hollow filled-type evacuated tube with U-tube(HUFET) was developed, and the heat transfer characteristics of HUFET were analyzed by theoretical and experimental studies. The results show that the thermal resistances decrease with the increase of the thermal conductivity of filled layer. When the thermal conductivity is over 10 W/(m·K), the change of thermal resistances is very little.Furthermore, the larger the thermal conductivity of filled layer, the less the rate of the energy transfer between the two pipes to the total energy transfer, which is between the absorber tube and the working fluid. There is a little difference between the efficiencies of HUFET and UFET, with the efficiency of HUFET 2.4% higher than that of UFET. Meanwhile, the validation of the model developed was confirmed by the experiment.展开更多
System performance of solar water heaters depends upon collector and storage tank designs, solar radiation intensity and ambient temperature, amongst others. Evacuated glass tube collectors with U-tubes inside are les...System performance of solar water heaters depends upon collector and storage tank designs, solar radiation intensity and ambient temperature, amongst others. Evacuated glass tube collectors with U-tubes inside are less prone to leakages than the all-glass or the heat pipe types. U-tube solar water heaters suspended on walls and balconies could help overcome present day roof space restriction and increasing apartment-style housing. As such, their performance would depend upon its orientation when mounted in a vertical position. This paper reports the results of outdoor tests conducted on natural convection U-tube solar water heaters oriented towards different directions. Long and short term test procedures were employed to allow us to compare their performances as if they were tested simultaneously side-by-side.展开更多
基金The National Natural Science Foundation of China(No.51376110,51541604)the Major International(Regional) Joint Research Project of the National Natural Science Foundation of China(No.61320106011)
文摘The experimental study of natural convection in allglass evacuated tube solar collectors is performed through the experimental platform of the solar-assisted fuel cell system.The experimental facility includes solar collectors with different length and diameter tubes, different coating materials, and with / without guide plates, respectively. Threedimensional mathematical models on natural and forced convections in the solar collectors are established and the experimental data is validated by field synergy and entransy principles. The results of natural convection show that the water temperature increases and thermal efficiency decreases gradually with the evacuated tube length. The thermal efficiency increases when absorption rates increase from 0. 95 to 1. 0 and emission rates decrease from 0. 16 to 0. 06. The thermal efficiency of solar collectors is increased after being equipped with the guide plate, which is attributed to the disappearance of the mixed flowand the enhancement of the heat transfer at the bottom of the evacuated tube. The results of forced convertion indicate that the Reynolds, Nusselt and entransy increments of the horizontal double collectors are higher than those of the vertical single collector while the entransy dissipation is lower than that of the vertical single collector. It is concluded that the solar collectors with guide plates are suitable for natural convection while the double horizontal collectors are suitable for forced convection in the thermal field of solar-assisted fuel cell systems with lowand medium temperatures.
文摘Evacuated Tube Transport Technologies (ET3) offers the potential for more than an order of magnitude improvement in transportation efficiency, speed, cost, and effectiveness. An ET3 network may be optimized to sustainably displace most global transportation by car, ship, truck, train, and jet aircraft. To do this, ET3 standards should adhere to certain key principals: maximum value through efficiency, reliability, and simplicity; equal consideration for passenger and cargo loads; optimum size; high speed/high frequency operation; demand oriented; random accessibility; scalability; high granularity; automated control; full speed passive switching; open standards of implementation; and maximum use of existing capacities, materials, and processes.
基金provided by National Natural Science Foundation of China (No.50678152)Scientific Plan Fund of Shaanxi Province (No.2009K09-24)
文摘Evacuated tube transportation (ETT) will be one of the ultra-large-scale vacuum application areas. This paper lists some key vacuum technology issues in ETT: (1) how to construct ultra-large-scale vacuum chamber with lower cost and high reliability, (2) how to evacuate gas out of the ETT tube in short time, (3) how to release heat or reduce temperature in the vacuum tube, (4) how to avoid vacuum discharge, (5) how to make vehicles with airproof shells and life support system, and (6) how to detect leaks and find leak positions efficiently. At the same time, some solutions are proposed.
基金supported by Sichuan Science and Technology Program(No.2019YJ0227)China Postdoctoral Science Foundation(No.2019M663550)+1 种基金National Natural Science Foundation of China(No.51605397)Science and Technolgoy program of China Railway Group Limited(No.2018-S-02).
文摘The aerodynamic resistance of a train running in the open air limits the maximum speed that can be attained by the train.For this reason,evacuated tube trains(ETT)are being considered as valid alternatives to be implemented in the future.The atmosphere in the tube,the so-called blocking ratio and the length of the streamlined nose are the key factors affecting the aerodynamic performances of these trains.In the present work,we investigate evacuated tube trains with different lengths of the streamline nose on the basis of computational fluid dynamics(CFD).The three-dimensional steady compressible Navier-Stokes equations are solved.The running speed of the ETT is 800 km/h and the blocking ratio is 0.2.Results show that with the increase of the streamlined nose length,the aerodynamic drag and lift forces of the head car decrease gradually,and the drag and lift forces of the middle car change slightly.For the tail car,the drag force decreases,whereas the absolute value of the lift force increases.At a speed of 800 km/h,a slight shock wave appears at the rear of the tail car,which affects the aerodynamic forces acting on the train.
基金supported by the National Natural Science Foundation of China (No. 50678152)the Scientific Plan Fund of Shaanxi Province(No. 2009K09-24)
文摘The aerodynamic drag on a train running in an evacuated tube varies with tube air pressure, train speed and shape, as well as blockage ratio. This paper uses numerical simulations to study the effects of different factors on the aerodynamic drag of a train running at subsonic speed in an evacuated tube. Firstly, we present the assumption of a steady state, two dimensional, incompressible viscous flow with lubricity wall conditions. Subsequently, based on the Navier-Stokes equation and the k-c turbulent models, we calculate the aerodynamic drag imposed on the column train with a 3-meter diameter running under different pressure and blockage ratio conditions in an evacuated tube transporta- tion (ETT) system. The simulation is performed with FLUENT 6.3 software package. An analyses of the simulation re- sults suggest that the blockage ratio for ETT should be in the range of 0.25-0.7, and the tube internal diameter in the range of 2-4 m, with the feasible vacuum pressure in the range of 1-10 000 Pa for the future subsonic ETT trains.
基金supported by Sichuan Science and Technology Program(No.2019YJ0227)China Postdoctoral Science Foundation(No.2019M663550)+1 种基金China Postdoctoral Science Foundation(No.2019M663550)Science and Technology Program of China Railway Group Limited(No.2018-S-02).
文摘The so-called Evacuated Tube Train(ETT)is currently being proposed as a high-speed transportation system potentially competitive with airplane transportation.Aerodynamic resistance is one of the most crucial factors for the successful design of an ETT.In the present work,a three-dimensional concept ETT model has been elaborated.The aerodynamic characteristics of the subsonic ETT have been numerically simulated under different conditions.The train’s running speed varies from 600 km/h up to 1200 km/h,and the blockage ratio is in the range between 0.1 and 0.3.As the blocking ratio and running speed increase,the resistance of the head car increases greatly,while the resistance of the middle car changes slightly.The aerodynamic resistance of the tail car is affected by the shock wave emerging in the wake flow.Two different design criteria for the maximum allowed aerodynamic resistance are proposed for aerodynamic parameter matching.With an increase in the blockage ratio and running speed,the atmospheric pressure in the tube should be decreased to achieve a balance.
基金supported by the National Magnetic Confinement Fusion Science Program (No. 2011GB112001)the Program of International S&T Cooperation (No. S2013ZR0595)+1 种基金the Fundamental Research Funds for the Central Universities (Nos. SWJTU11ZT16, SWJTU11ZT31)the Science Foundation of Sichuan Province (No. 2011JY0031,2011JY0130)
文摘In order to study the relationships between the aerodynamic drag of maglev and other factors in the evacuated tube, the formula of aerodynamic drag was deduced based on the basic equations of aerodynamics and then the calculated result was confirmed at a low speed on an experimental system developed by Superconductivity and New Energy R&D Center of South Jiaotong University. With regard to this system a high temperature superconducting magnetic levitation vehicle was motivated by a linear induction motor (LIM) fixed on the permanent magnetic guideway. When the vehicle reached an expected speed, the LIM was stopped. Then the damped speed was recorded and used to calculate the experimental drag. The two results show the approximately same relationship between the aerodynamic drag on the maglev and the other factors such as the pressure in the tube, the velocity of the maglev and the blockage ratio. Thus, the pressure, the velocity, and the blockage ratio are viewed as the three important factors that contribute to the energy loss in the evacuated tube transportation.
基金supported by the Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT) of the Ministry of Education of China(IRT0751)the National High Technology Research and Development Program of China (863 program: 2007-AA03Z203)+2 种基金the National Natural Science Foundation of China (Grant Nos. 50588201 and 50872116)the Research Fund for the Doctoral Program of Higher Education of China (SRFDP200806130023)the Fundamental Research Funds for the Central Universities (SWJTU09BR152, SWJTU09ZT24, and SWJTU11CX073)
文摘Based on the Navier-Stokes (N-S) equations of incompressible viscous fluids and the standard k-ε turbu- lence model with assumptions of steady state and two dimensional conditions, a simulation of the aerodynamic drag on a maglev train in an evacuated tube was made with ANSYS/FLOTRAN software under different vacuum pressures, blockage ratios, and shapes of train head and tail. The pressure flow fields of the evacuated tube maglev train under different vacuum pressures were analyzed, and then compared under the same blockage ratio condition. The results show that the environmental pressure of 1 000 Pa in the tube is the best to achieve the effect of aerodynamic drag reduction, and there are no obvious differences in the aerodynamic drag reduction among different streamline head shapes. Overall, the blunt-shape tail and the blockage ratio of 0.25 are more efficient for drag reduction of the train at the tube pressure of 1 000 Pa.
基金support from the PCSIRT of the Ministry of Education of China(IRT0751)the National Natural Science Foundation of China (Grant Nos. 50588201, and 50872116)+3 种基金the National High Technology Research and Development Program of China (863 program: 2007AA03Z203)the Research Fund for the Doctoral Program of Higher Education of China (SRFDP200806130023)the Fundamental Research Funds for the Central Universities(SWJTU09BR152 and SWJTU09ZT24)the Doctoral Innovation Foundation of Southwest Jiaotong University (X1899124710003)
文摘The super-high speed high temperature superconductor (HTS) maglev evacuated tube transport (ETT) is a promising transport mode for the future. As a key component of the HTS maglev vehicle, the permanent magnet guide- ways (PMGs) with different geometrical configurations and iron yoke widths are analyzed by finite element method (FEM). The levitation force of a single onboard HTS maglev device over the designed PMG at different field cooling heights (FCH) is measured by magnetic levitation measurement system. Based on the designed PMG and experimental results, a preliminary scheme of subterranean super-high speed HTS maglev ETT is described in this paper. The HTS maglev ETT is mainly composed of an evacuated tube, HTS maglev vehicle, PMG, propulsion system, station, emergency rescue system, etc. In addition, a subterranean tube that consists of foundation tube and vacuum airproof layer is introduced. In order to convert the stress caused by the air pressure difference between inside and outside of the vehicle, a multi-circular vehicle body is designed. The vehicle is driven by a linear motor propulsion system under the control of a ground controlling system. The scheme of long-distance super-high speed passenger transportation is accomplished by the connection of different vehicles.
基金supported by the National Natural Science Foundation of China (No.50678152)the Scientific Plan Fund of Shaanxi Province (No.2009K09-24)
文摘Since Maglev vehicles will run in a closed vacuum tube,the layout of the terminal stations of evacuated tube transportation(ETT) will differ from the traditional railway stations.This paper deals with some possible station layouts of ETT,e.g.,a station with an airlock,a station without an airlock,above ground and underground stations,and stations with either level arrayed or rotation platforms.Then different station layouts are compared,and characteristics of each are analyzed.Finally,a more secure mode for ETT station layouts is suggested,which can be the basis for future ETT station layout and designs.
基金the fundamental Research Funds for Central Universities under Grant 2018JBZ102.
文摘Evacuated Tube Transportation(ETT)systems have been claimed to have considerable strengths,including ultra-highspeed,safety,and environmentally-friendly.However,the frequent handover caused by the high-speed brings a challenge for ETT mobile wireless communication to preserve steady link performance.Moreover,in such a special scenario,the wireless link between the base station and the passengers on the train needs to experience fading from both metal pipe and train,thus the free-wave coverage with antennas in traditional high-speed rail wireless communication systems is not suitable for ETT.Based on the characteristics of ETT,an improved architecture of wireless communication network is proposed,using distributed base stations with remote radio units(RRUs)and baseband units(BBUs)and leaky waveguides to form stable coverage.And a redundant BBUs or RRUs structure is designed for coverage enhancement.Based on this redundant architecture,a fast handover scheme is proposed to resolve the handover problem.The analytical and simulation results show that the proposed scheme is capable of reducing communication outage probability and handover failure probability remarkably.
文摘Energy consumption in buildings is considered a significant portion of gross power dissipation, so a great effort is required to design efficient construction. In severe hot weather conditions as Kuwait, energy required for building cooling and heating results in a huge energy loads and consumption and accordingly high emission rates of carbon dioxide. So, the main purpose of the current work is to convert the existing institutional building to near net-zero energy building (nNZEB) or into a net-zero energy building (NZEB). A combination of integrated high concentrated photovoltaic (HCPV) solar modules and evacuated tube collectors (ETC) are proposed to provide domestic water heating, electricity load as well as cooling consumption of an institutional facility. An equivalent circuit model for single diode is implemented to evaluate triple junction HCPV modules efficiency considering concentration level and temperature effects. A code compatible with TRNSYS subroutines is introduced to optimize evacuated tube collector efficiency. The developed models are validated through comparison with experimental data available from literature. The efficiency of integrated HCPV-ETC unit is optimized by varying the different system parameters. Transient simulation program (TRNSYS) is adapted to determine the performance of various parts of HCPV-ETC system. Furthermore, a theoretical code is introduced to evaluate the environmental effects of the proposed building when integrated with renewable energy systems. The integrated HCPV-ETC fully satisfies the energy required for building lighting and equipment. Utilizing HCPV modules of orientation 25? accomplishes a minimum energy payback time of about 8 years. Integrated solar absorption chiller provides about 64% of the annual air conditioning consumption needed for the studied building. The energy payback period (EPT) or solar cooling system is about 18 years which is significantly larger than that corresponding to HCPV due to the extra expenses of solar absorption system. The life cycle savings (LCS) of solar cooling absorption system is approximately $2400/year. Furthermore, levelized cost of energy of solar absorption cooling is $0.21/kWh. Hence, the net cost of the solar system after subtracting the CO2 emission cost will be close to the present price of conventional generation in Kuwait (about $0.17/kWh). Finally, the yearly CO2 emission avoided is approximately 543 ton verifying the environmental benefits of integrated HCPV-ETC arrangements in Kuwait.
文摘Solar energy applications could be the best alternative to the conventional fuels for the purposes of domestic,water and space heating and some industries in the sunny,arid,and hot areas.In the present study,the performance of an evacuated tube solar heater for water heating for months of February and March was experimentally investigated.This was performed in a hot and arid area(Nasiriya City,South of Iraq).A solar heater with ten evacuated tube solar collectors with a capacity of 100 liter was used in the experiments.Each evacuated tube had a length of 1.8m with an outside diameter of 8 cm.It was observed that for the two selected months,water temperature of the solar heater reached a maximum more than 70°C during sunny days with no heat extraction from the tank of the solar heater.Moreover,heat was extracted from the solar collector with four different flowrates 0.5,0.75,1,and 1.25 l/min,respectively.The results showed that temperature of the solar heater behaved differently from the static situation.When the heat extraction begun,there was a gradual and noticeable decrease in the water temperature of the heater.The observed decrease was slight with the lowest flowrate(0.25 l/m)and becomes sharp with the highest flowrate(1.25 l/min).However,water temperature of the solar heater remained higher than 40°C for the investigated flowrates except the case of 1.25 l/min.The results showed that evacuated tube solar heater can work efficiently in arid and hot areas in winter and spring seasons when the conditions of solar radiation are suitable.
文摘Solar water heaters which provide a cost-effective and environmental friendly approach to hot water generation are in widespread application. Evacuated tube solar water heaters perform better than flat plate solar water heaters as a result of their greater surface area exposed for sunlight absorption. Water-in-glass evacuated tube solar water heaters are widely used as compared to heat-pipe solar water heaters due to their short payback periods. In this study, the performance of water-in-glass evacuated tube solar water heater is investigated through experiments under the climatic conditions in Kenya. The results revealed a daily efficiency range of 0.58 - 0.65 and a daily final outlet temperature greater than 55<span style="white-space:normal;">°</span>C given an initial temperature of 25°C.
基金financial support,the Biosystems Engineering technicians and Alternative Village team for their assistance.
文摘The operating efficiency of evacuated tubes themselves under varying environmental conditions and installation scenarios,independent of water and space heating auxiliary equipment,are not readily available values.Further,Manitoba specific data has not been established.The purpose of this research program was to measure the efficiency of evacuated tube solar collectors under various operating conditions including:the angle of inclination towards the incident solar radiation,heat transfer fluid flow rate,glazing installation,and number of evacuated tubes.The operating conditions and configurations were chosen to represent realistic or probable installation scenarios and environmental conditions.Furthermore,the research aimed to identify the suitability of evacuated tube solar collectors to each of the scenarios.These design values are of use for appropriate sizing of water or space heating systems,system configuration and optimization,and calculation of return on investment.The scope of the research project was limited to the efficiency of various configurations of a 32-tube panel,not the entire solar domestic hot water or space heating system.Thus,factors such as heat loss in the tubing,solar storage tank,and heat exchanger efficiency were not investigated.The findings indicated that efficiency varied by approximately 5%between the different collector configurations,as observed from the overlay graph of results.When the efficiency of a collector is considered within a system it is proposed that effectiveness may be a better measure of overall performance.
基金Projects(2011BAJ03B12-3,2013BAJ10B02-03) supported by the National Science and Technology Program during the 12th Five-year Plan Period,ChinaProject(51378005) supported by the National Natural Science Foundation,China+1 种基金Projects(DUT14RC(3)123,DUT14RC(3)129) supported by Fundamental Research Funds for the Dalian University of Tecnology,ChinaProject(DUT14ZD210) supported by the Fundamental Research Funds for the Central Universities of China
文摘In order to increase the efficiency of solar collector, a methodology is proposed based on the analysis of its influencing factors, such as thermal conductivity of filled layer, structure forms of filled layer and heat loss coefficient. The results of analysis show that the heat transfer between pipes in evacuated tube is one of the most important factors, which can lead to the decrease of the outlet temperature of working fluid. In order to eliminate the negative influence of the heat transfer between pipes, the hollow filled-type evacuated tube with U-tube(HUFET) was developed, and the heat transfer characteristics of HUFET were analyzed by theoretical and experimental studies. The results show that the thermal resistances decrease with the increase of the thermal conductivity of filled layer. When the thermal conductivity is over 10 W/(m·K), the change of thermal resistances is very little.Furthermore, the larger the thermal conductivity of filled layer, the less the rate of the energy transfer between the two pipes to the total energy transfer, which is between the absorber tube and the working fluid. There is a little difference between the efficiencies of HUFET and UFET, with the efficiency of HUFET 2.4% higher than that of UFET. Meanwhile, the validation of the model developed was confirmed by the experiment.
文摘System performance of solar water heaters depends upon collector and storage tank designs, solar radiation intensity and ambient temperature, amongst others. Evacuated glass tube collectors with U-tubes inside are less prone to leakages than the all-glass or the heat pipe types. U-tube solar water heaters suspended on walls and balconies could help overcome present day roof space restriction and increasing apartment-style housing. As such, their performance would depend upon its orientation when mounted in a vertical position. This paper reports the results of outdoor tests conducted on natural convection U-tube solar water heaters oriented towards different directions. Long and short term test procedures were employed to allow us to compare their performances as if they were tested simultaneously side-by-side.