The coexistence of pollution from coal-fired heating and inefficient utilization of renewable resources in northern China has raised great concern.Current studies on heat-power systems are primarily focused on traditi...The coexistence of pollution from coal-fired heating and inefficient utilization of renewable resources in northern China has raised great concern.Current studies on heat-power systems are primarily focused on traditional combined heat and power(CHP)systems and are limited to static energy flow analysis or the dynamic characteristics of a single system component.Hence,it is difficult to make full use of the complementary potential of electrical energy and heat energy.This paper proposes a heat-power station(HPS)system based on renewable energy for the purpose of utilizing the surplus renewable energy to generate heat and meet heating demands.The overall architecture of the HPS system is established and its operational principle and dynamic characteristics of both the electrical and heating components in the system are analyzed and dynamic mathematical models are also presented.In addition,a coordinated electro-thermal control method based on system characteristics is designed to ensure the normal operation of a HPS.Simulation results verify the effectiveness of the model and control in the case of renewables fuctuation and heat load variations.展开更多
“双碳”目标下,为进一步降低综合能源系统(integrated energy system,IES)碳排放,提升可再生能源消纳能力,提出一种IES低碳经济运行优化策略。首先引入阶梯型碳交易机制约束IES的碳排放;然后建立耦合电转气(power to gas,P2G)和碳捕集...“双碳”目标下,为进一步降低综合能源系统(integrated energy system,IES)碳排放,提升可再生能源消纳能力,提出一种IES低碳经济运行优化策略。首先引入阶梯型碳交易机制约束IES的碳排放;然后建立耦合电转气(power to gas,P2G)和碳捕集系统(carbon capture system,CCS)模型,并细化P2G两阶段运行;接着在传统热电联产机组(combined heat and power,CHP)中引入卡琳娜循环与电锅炉联合运行,构造热电灵活输出的CHP模型;最后以系统运维成本、碳交易成本、购能成本和弃风弃光成本之和最小为优化目标,构建IES低碳经济调度模型,并设置不同运行场景对比分析。结果表明:IES碳排放减少38.45%,运行总成本降低10.37%,验证了所建模型的低碳性和经济性。展开更多
先进绝热压缩空气储能(advanced adiabatic compressed air energy storage,AA-CAES)具备天然的热电联供特性,能够有效缓解供热期出现的弃风问题。若能在规划阶段充分考虑运行需求,进而合理地配置储能容量,则能够在解决弃风问题的前提下...先进绝热压缩空气储能(advanced adiabatic compressed air energy storage,AA-CAES)具备天然的热电联供特性,能够有效缓解供热期出现的弃风问题。若能在规划阶段充分考虑运行需求,进而合理地配置储能容量,则能够在解决弃风问题的前提下,最大程度对燃煤机组进行清洁替代。为此,该文提出了多热源协同互补的AA-CAES系统容量配置模型。首先本模型在能量输入端引入电锅炉预热压缩机入口空气,以增大压缩机输气系数并提高机组产热量;其次在扩展热源端,通过太阳能反射镜场收集光热,以提高系统储热水平;并在计及储能系统各模块实际运行效率约束之余,以运行总成本最小为目标,计算储能容量配置最优解。再次,分析供热时长及环境温度等因素对投资成本回收年限的影响,并计算不同情况下本模型投资成本的回收年限,得出建设本模型可盈利的硬性条件;最后,基于东北某地区供热期及非供热期典型日负荷及气象数据在IEEE-39节点系统完成算例分析,验证所提模型有效性。展开更多
基金supported by the State Grid Corporation of China under Grant 521500190017.
文摘The coexistence of pollution from coal-fired heating and inefficient utilization of renewable resources in northern China has raised great concern.Current studies on heat-power systems are primarily focused on traditional combined heat and power(CHP)systems and are limited to static energy flow analysis or the dynamic characteristics of a single system component.Hence,it is difficult to make full use of the complementary potential of electrical energy and heat energy.This paper proposes a heat-power station(HPS)system based on renewable energy for the purpose of utilizing the surplus renewable energy to generate heat and meet heating demands.The overall architecture of the HPS system is established and its operational principle and dynamic characteristics of both the electrical and heating components in the system are analyzed and dynamic mathematical models are also presented.In addition,a coordinated electro-thermal control method based on system characteristics is designed to ensure the normal operation of a HPS.Simulation results verify the effectiveness of the model and control in the case of renewables fuctuation and heat load variations.
文摘“双碳”目标下,为进一步降低综合能源系统(integrated energy system,IES)碳排放,提升可再生能源消纳能力,提出一种IES低碳经济运行优化策略。首先引入阶梯型碳交易机制约束IES的碳排放;然后建立耦合电转气(power to gas,P2G)和碳捕集系统(carbon capture system,CCS)模型,并细化P2G两阶段运行;接着在传统热电联产机组(combined heat and power,CHP)中引入卡琳娜循环与电锅炉联合运行,构造热电灵活输出的CHP模型;最后以系统运维成本、碳交易成本、购能成本和弃风弃光成本之和最小为优化目标,构建IES低碳经济调度模型,并设置不同运行场景对比分析。结果表明:IES碳排放减少38.45%,运行总成本降低10.37%,验证了所建模型的低碳性和经济性。
文摘先进绝热压缩空气储能(advanced adiabatic compressed air energy storage,AA-CAES)具备天然的热电联供特性,能够有效缓解供热期出现的弃风问题。若能在规划阶段充分考虑运行需求,进而合理地配置储能容量,则能够在解决弃风问题的前提下,最大程度对燃煤机组进行清洁替代。为此,该文提出了多热源协同互补的AA-CAES系统容量配置模型。首先本模型在能量输入端引入电锅炉预热压缩机入口空气,以增大压缩机输气系数并提高机组产热量;其次在扩展热源端,通过太阳能反射镜场收集光热,以提高系统储热水平;并在计及储能系统各模块实际运行效率约束之余,以运行总成本最小为目标,计算储能容量配置最优解。再次,分析供热时长及环境温度等因素对投资成本回收年限的影响,并计算不同情况下本模型投资成本的回收年限,得出建设本模型可盈利的硬性条件;最后,基于东北某地区供热期及非供热期典型日负荷及气象数据在IEEE-39节点系统完成算例分析,验证所提模型有效性。