期刊文献+
共找到76篇文章
< 1 2 4 >
每页显示 20 50 100
Achieving a high-strength dissimilar joint of T91 heat-resistant steel to 316L stainless steel via friction stir welding
1
作者 Zhiwei Wang Min Zhang +6 位作者 Cong Li Fenglei Niu Hao Zhang Peng Xue Dingrui Ni Bolv Xiao Zongyi Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第1期166-176,共11页
The reliable welding of T91 heat-resistant steel to 316L stainless steel is a considerable issue for ensuring the safety in service of ultrasupercritical power generation unit and nuclear fusion reactor,but the high-q... The reliable welding of T91 heat-resistant steel to 316L stainless steel is a considerable issue for ensuring the safety in service of ultrasupercritical power generation unit and nuclear fusion reactor,but the high-quality dissimilar joint of these two steels was difficult to be obtained by traditional fusion welding methods.Here we improved the structure-property synergy in a dissimilar joint of T91 steel to 316L steel via friction stir welding.A defect-free joint with a large bonding interface was produced using a small-sized tool under a relatively high welding speed.The bonding interface was involved in a mixing zone with both mechanical mixing and metallurgical bonding.No obvious material softening was detected in the joint except a negligible hardness decline of only HV~10 in the heat-affected zone of the T91 steel side due to the formation of ferrite phase.The welded joint exhibited an excellent ultimate tensile strength as high as that of the 316L parent metal and a greatly enhanced yield strength on account of the dependable bonding and material renovation in the weld zone.This work recommends a promising technique for producing high-strength weldments of dissimilar nuclear steels. 展开更多
关键词 heat-resistant steel stainless steel friction stir welding dissimilar welding MICROSTRUCTURE mechanical property
下载PDF
Microstructure and mechanical properties of a cast heat-resistant rare-earth magnesium alloy
2
作者 Xiao-ping Zhu Jun-qing Yao +6 位作者 Hai-long Wu Xin-wang Liu Hua Liu Zi-tian Fan Shu-lin Lü Kai Wang Zi-dong Wang 《China Foundry》 SCIE CAS CSCD 2023年第4期289-298,共10页
Microstructure,mechanical properties and phase transformation of a heat-resistant rare-earth(RE)Mg-16.1Gd-3.5Nd-0.38Zn-0.26Zr-0.15Y(wt.%)alloy were investigated.The as-cast alloy is composed of equiaxedα-Mg matrix,ne... Microstructure,mechanical properties and phase transformation of a heat-resistant rare-earth(RE)Mg-16.1Gd-3.5Nd-0.38Zn-0.26Zr-0.15Y(wt.%)alloy were investigated.The as-cast alloy is composed of equiaxedα-Mg matrix,net-shaped Mg5RE and Zr-rich phases.According to aging hardening curves and tensile properties variation,the optimized condition of solution treatment at 520℃for 8 h and subsequent aging at 204℃for 12 h was selected.The continuous secondary Mg5RE phase predominantly formed at grain boundaries during solidification transforms to residual discontinuousβ-Mg5RE phase and fine cuboid REH2particles after heat treatment.The annealed alloy exhibits good comprehensive tensile property at 350℃,with ultimate tensile strength of 153 MPa and elongation to fracture of 6.9%.Segregation of RE elements and eventually RE-rich precipitation at grain boundaries are responsible for the high strength at elevated temperature. 展开更多
关键词 heat-resistant magnesium alloy rare earth microstructure phase transformation tensile property strengthening
下载PDF
The skeleton of 5,7-fused bicyclic imidazole-diazepine for heat-resistant energetic materials
3
作者 Xiaoxiao Zheng Yubing Xue +2 位作者 Changhao Dai Hongwei Yang Guangbin Cheng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期193-199,共7页
In light of the low yields and complex reaction routes of some well-known 5,5-fused and 5,6-fused bicyclic compounds,a series of 5,7-fused bicyclic imidazole-diazepine compounds were developed with high yields by only... In light of the low yields and complex reaction routes of some well-known 5,5-fused and 5,6-fused bicyclic compounds,a series of 5,7-fused bicyclic imidazole-diazepine compounds were developed with high yields by only two efficient steps.Significantly,the seven-membered heterocyclic ring has a stable energetic skeleton with multiple modifiable sites.However,the 5,7-fused bicyclic energetic compounds were rarely reported in the area of energetic materials.Three neutral compounds 1,2 and 4 were synthesized in this work.To improve the detonation performances of the 5,7-fused neutral compounds,corresponding perchlorate 1a and 2a were further developed.The physicochemical and energetic performances of all newly developed compounds were experimentally determined.All newly prepared energetic compounds exhibit high decomposition temperatures(Td:243.8-336℃)and low mechanical sensitivities(IS:>15 J,FS:>280 N).Among them,the velocities performances of 1a(Dv=7651 m/s)and 4(Dv=7600 m/s)are comparable to that of typical heat-resistant energetic material HNS(Dv=7612 m/s).Meanwhile,the high decomposition temperature and low mechanical sensitivities(Td=336℃;IS=32 J;FS>353 N)of 4 are superior to that of HNS(Td=318℃;IS=5 J;FS=250 N).Hence,the 5,7-fused bicyclic compounds with high thermostability,low sensitivities and adjustable detonation performance have a clear tendency to open up a new space for the development of heat-resistant energetic materials. 展开更多
关键词 Imidazole-diazepine heat-resistant material 5 7-Fused skeleton Energetic materials
下载PDF
Influence of Creep Strength of Weld on Interfacial Creep Damage of Dissimilar Welded Joint between Martensitic and Bainitic Heat-Resistant Steel 被引量:1
4
作者 张建强 ZHANG Guodong +1 位作者 LUO Chuanhong ZHANG Yinglin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第1期178-183,共6页
The mechanical properties, creep rupture strength, creep damage and failure characteristics of dissimilar metal welded joint (DMWJ) between martensitic (SA213T91) and bainitic heat-resistant steel (12Cr2MoWVTiB(... The mechanical properties, creep rupture strength, creep damage and failure characteristics of dissimilar metal welded joint (DMWJ) between martensitic (SA213T91) and bainitic heat-resistant steel (12Cr2MoWVTiB(G102)) have been investigated by means of pulsed argon arc welding, high temperature accelerated simulation, mechanical and creep rupture test, and scanning electronic microscope (SEM). The results show that there is a marked drop of mechanical properties of undermatching joint, and low ductility cracking along weld/G102 interface is induced due to creep damage. Creep rupture strength of overmatching joint is the least. The mechanical properties of medium matching joint are superior to those of overmatching and undermatching joint, and creep damage and failure tendency along the interface of weld/G102 are lower than those of overmatching and undermatching joint after accelerated simulation for 500 h, 1 000 h, 1 500 h, and the creep rupture strength of medium matching joint is the same as that of undermatching joint. Therefore, it is reasonable that the medium matching material is used for dissimilar welded joint between martensitic and bainitic steel. 展开更多
关键词 martensitic heat-resistant steel bainitic heat-resistant steel dissimilar metal welding joint creep damage interracial failure
下载PDF
Construction of Electrocatalytic and Heat-Resistant Self-Supporting Electrodes for High-Performance Lithium–Sulfur Batteries 被引量:5
5
作者 Xuemei Zhang Yunhong Wei +4 位作者 Boya Wang Mei Wang Yun Zhang Qian Wang Hao Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期386-402,共17页
Boosting the utilization efficiency of sulfur electrodes and suppressing the“shuttle effect”of intermediate polysulfides remain the critical challenge for high-performance lithium-sulfur batteries(LSBs).However,most... Boosting the utilization efficiency of sulfur electrodes and suppressing the“shuttle effect”of intermediate polysulfides remain the critical challenge for high-performance lithium-sulfur batteries(LSBs).However,most of reported sulfur electrodes are not competent to realize the fast conversion of polysulfides into insoluble lithium sulfides when applied with high sulfur loading,as well as to mitigate the more serious shuttle effect of polysulfides,especially when worked at an elevated temperature.Herein,we reported a unique structural engineering strategy of crafting a unique hierarchical multifunctional electrode architecture constructed by rooting MOF-derived CoS2/carbon nanoleaf arrays(CoS2-CNA)into a nitrogen-rich 3D conductive scaffold(CTNF@CoS2-CNA)for LSBs.An accelerated electrocatalytic effect and improved polysulfide redox kinetics arising from CoS2-CNA were investigated.Besides,the strong capillarity effect and chemisorption of CTNF@CoS2-CNA to polysulfides enable high loading and efficient utilization of sulfur,thus leading to high-performance LIBs performed not only at room temperature but also up to an elevated temperature(55°C).Even with the ultrahigh sulfur loading of 7.19 mg cm?2,the CTNF@CoS2-CNA/S cathode still exhibits high rate capacity at 55°C. 展开更多
关键词 Metal organic framework Lithium-sulfur BATTERIES Cobalt sulfide heat-resistant N-doped carbon foam
下载PDF
Microstructure and Corrosion Resistance of CrN and CrN/TiN Coated Heat-Resistant Steels in Molten Aluminum Alloy 被引量:1
6
作者 LinCS PengH 《特种铸造及有色合金》 CAS CSCD 北大核心 2001年第S1期168-171,共4页
The components of the equipment for processing the Al melts into the molded parts can be markedly corroded by the molten Al. In this study, a 4 μm CrN coating or CrN/TiN multilayer coating for providing the physical ... The components of the equipment for processing the Al melts into the molded parts can be markedly corroded by the molten Al. In this study, a 4 μm CrN coating or CrN/TiN multilayer coating for providing the physical and chemical barriers between the molten reactive Al and the steel substrate were deposited by Cathodic Arc Evaporation onto 10 mm-thick heat-resistant steel plates. The dipping tests were conducted in a 700℃ A356 melt for 1 to 21 h at intervals of 3 h. The damage of the coated steel was eva... 展开更多
关键词 CRN CrN/TiN heat-resistant Steels MICROSTRUCTURE Corrosion Resistance Molten Aluminum Alloy
下载PDF
Dissolution Behavior of Delta Ferrites in Martensitic Heat-resistant Steel for Ultra Supercritical Units Blades 被引量:1
7
作者 李俊儒 WANG Leiying +3 位作者 WANG Hailong ZHANG Pengfei GUO Fanghui ZHANG Xu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第4期730-734,共5页
The dissolution behavior of delta ferrites in martensitic heat-resistant steel was studied.And the reason why the dissolution rate of delta ferrites decreased with dissolution time was discussed.The experimental resul... The dissolution behavior of delta ferrites in martensitic heat-resistant steel was studied.And the reason why the dissolution rate of delta ferrites decreased with dissolution time was discussed.The experimental results show that the chemical compositions of delta ferrites negligibly change with dissolution time.The decrease of dissolution rate of delta ferrites with dissolution time should be attributed to the change of shape and distribution of delta ferrites.The shape of delta ferrites tends to transfer from polygon to sphere with dissolution time,causing the decrease of specific surface area of delta ferrites.The distribution position of delta ferrites tends to transfer from boundaries of austenite grains to interior of austenite grains with dissolution time,decreasing the diffusion coefficient of alloy atoms.Both them decrease the dissolution rate of delta ferrites. 展开更多
关键词 delta ferrites dissolution rate martensitic heat-resistant steel phase transformation carbides
下载PDF
High-temperature oxidation behavior of 9Cr‒5Si‒3Al ferritic heat-resistant steel 被引量:1
8
作者 Jun-jun Yan Xue-fei Huang Wei-gang Huang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第9期1244-1250,共7页
To improve the oxidation properties of ferritic heat-resistant steels,an Al-bearing 9Cr‒5Si‒3Al ferritic heat-resistant steel was designed.We then conducted cyclic oxidation tests to investigate the high-temperature o... To improve the oxidation properties of ferritic heat-resistant steels,an Al-bearing 9Cr‒5Si‒3Al ferritic heat-resistant steel was designed.We then conducted cyclic oxidation tests to investigate the high-temperature oxidation behavior of 9Cr‒5Si and 9Cr‒5Si‒3Al ferritic heat-resistant steels at 900 and 1000℃.The characteristics of the oxide layer were analyzed by X-ray diffraction,scanning electron microscopy,and energy dispersive spectroscopy.The results show that the oxidation kinetics curves of the two tested steels follow the parabolic law,with the parabolic rate constant kp of 9Cr‒5Si‒3Al steel being much lower than that of 9Cr‒5Si steel at both 900 and 1000℃.The oxide film on the surface of the 9Cr‒5Si alloy exhibits Cr2MnO4 and Cr2O3 phases in the outer layer after oxidation at 900 and 1000℃.However,at oxidation temperatures of 900 and 1000℃,the oxide film of the 9Cr‒5Si‒3Al alloy consists only of Al2O3 and its oxide layer is thinner than that of the 9Cr‒5Si alloy.These results indicate that the addition of Al to the 9Cr‒5Si steel can improve its high-temperature oxidation resistance,which can be attributed to the formation of a continuous and compact Al2O3 film on the surface of the steel. 展开更多
关键词 ferritic heat-resistant steel high-temperature oxidation oxidation kinetics ALUMINUM
下载PDF
Inhibitory effects of scorpion venom heat-resistant protein on neurotoxicity of exogenous amyloid beta peptide 1-40
9
作者 Shengbo Yu Jin Gong +5 位作者 Haibin Gao Yanyan Chi Yan Peng Hongjin Sui Jie Zhao Wanqin Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第12期1030-1036,共7页
BACKGROUND: Studies have shown that scorpion venom heat-resistant protein (SVHRP) exhibits protective effects on primary cultured hippocampal neurons. OBJECTIVE: To determine the effects of SVHRP on astrocyte acti... BACKGROUND: Studies have shown that scorpion venom heat-resistant protein (SVHRP) exhibits protective effects on primary cultured hippocampal neurons. OBJECTIVE: To determine the effects of SVHRP on astrocyte activity and synaptic density in the hippocampus induced by amyloid β peptide 1-40 (Aβ1-40) neurotoxicity. DESIGN, TIME AND SETTING: The randomized, controlled, animal experiment was performed at the Central Laboratory, the Laboratory of Human Anatomy, and the Laboratory of Physiology, in Dalian Medical University between March 2006 and June 2008. MATERIALS: Aβ1-40 was provided by Biosource, USA; SVHRP was a patented biological product of Dalian Medical University (No. ZL01 1 06166.9). METHODS: A total of 27 healthy, 2-month-old, male SD rats were randomly assigned to 3 groups: control, Aβ, and SVHRP, with 9 rats in each group. Alzheimer's disease was simulated with 10 μg Aβ1-40 bilaterally injected into the hippocampus of the Aβ and SVHRP groups. The control group was injected with 2 μL 0.05% trifluoroacetic acid. One day following model establishment, the SVHRP group received an intraperitoneal injection of 2 μg/100 g SVHRP, while the control group and Aβ group received 0.5 mL/100 g tri-distilled water, once per day, for 10 consecutive days. MAIN OUTCOME MEASURES: At 16 days following model establishment, synaptophysin (p38) expression in CA1-CA4 regions of the rat hippocampus was determined by immunohistochemistry. Glial fibrillary acidic protein (GFAP) expression surrounding the hippocampal Aβ1-40 injected area was also detected. At 11 days following model establishment, escape latency, swimming time, and distance to target quadrant were measured using the Morris water maze. RESULTS: Compared with the control group, the Aβ group exhibited notably reduced p38 expression (P 〈 0.05) and notably increased GFAP expression in the rat hippocampus (P 〈 0.05). Water maze results demonstrated that escape latency was prolonged (P 〈 0.05), and swimming time and distance to the target quadrant were shortened in the Aβ group. Compared with the Aβ group, the SVHRP group exhibited notably increased p38 expression (P 〈 0.05) and notably decreased GFAP expression in the rat hippocampus (P 〈 0.05). Water maze results demonstrated that escape latency was significantly reduced (P 〈 0.05), and swimming time and distance to the target quadrant were significantly prolonged. CONCLUSION: SVHRP inhibited exogenous Aβ1-40-induced astrocyte activation and synaptic density decline in the rat hippocampus. Place navigation and spatial searching results showed that SVHRP blocked Aβ1-40-induced impaired learning and memory. 展开更多
关键词 amyloid β peptide 1-40 Alzheimer's disease scorpion venom heat-resistant protein Morris water maze SYNAPTOPHYSIN glial fibrillary acidic protein
下载PDF
EFFECT OF W ON MECHANICAL PROPERTIES OF 12%Cr HEAT-RESISTANT STEEL
10
作者 FUJITA Toshio 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1992年第2期95-100,共6页
The effect of W on mechanical properties of 12% Cr-W-V-Nb heat resistant steel at high temperatures and room temperature is reported.The experimental results indicated that if the W content was about 2.2—3.0 wt-%,the... The effect of W on mechanical properties of 12% Cr-W-V-Nb heat resistant steel at high temperatures and room temperature is reported.The experimental results indicated that if the W content was about 2.2—3.0 wt-%,there was no obviously change of R.T.tensile strength, but impact toughness decreased with the rise of W content.On the other hand,the increase of W content enhanced the short time stress rupture strength,but did not for the long time one. The increase of W have two effects on the precipitation behavior,promoting Laves formation of type Fe_2W,increasing the precipitated phase amount and speeding up the coarsening pro- cess of precipitated phase at high temperatures.The effect of W on the mechanical properties is closely associated with precipitation behaviors.When the rupture life is short,there has no enough time to coarsen the precipitated phases,so the increase of precipitated phases results in strengthening effect,i.e.the W increases the high temperature strength.After prolonged expo- sure,the evident coarsening took plaee,that decreased the effect of precipitation. 展开更多
关键词 12%Cr-W-V-Nb steel martensitic heat-resistant steel Laves phase precipitation behavior
下载PDF
Mechanical and Electrical Properties of Y-containing Al-Zr Heat-resistant Alloy Produced by Dynamic ECAE Process
11
作者 周天国 谢海波 姜正义 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第1期123-129,共7页
The influence of rare earth Y on the microstructure and mechanical properties of Al-Zr alloy produced by dynamic ECAE was studied by OLYMPUS-BX51M optical microscope(OM),S4800 energy disperse spectroscopy(EDS)and SANS... The influence of rare earth Y on the microstructure and mechanical properties of Al-Zr alloy produced by dynamic ECAE was studied by OLYMPUS-BX51M optical microscope(OM),S4800 energy disperse spectroscopy(EDS)and SANS CMT5105 electronic universal material testing machine,and the corresponding equivalent conductivity was also investigated by using QJ48 DC electric bridge.The results show that the tensile strength of Al-Zr conductor first increases and then decreases with the increase of the aging time and temperature,and the highest tensile value can be obtained under the aging temperature of 160°C for 4 h.The ductility and the resistivity of the Al-Zr alloy have inverse proportion to the aging time.The rare earth Y has significantly improved the electrical and mechanical properties of Al-0.3%Zr heat-resistant alloy.In this study,the tensile strength and the elongation of the Al-0.3%Zr-0.2%Y alloy,after aging treatment at 220°C for 14 h,are about 278.49 MPa and 6.7%,respectively,and the equivalent conductivity is about 59.6 IACS.Hence the synthetical properties of the Y-containing alloy are significantly improved compared with traditional Al-0.3%Zr alloy. 展开更多
关键词 Al-Zr heat-resistant alloy ECAE process equivalent conductivity aging treatment
下载PDF
Development and Application of a Heat-resistant Low Ni Steel Modified by Rare Earth for Furnace Roller
12
作者 张庆登 《Journal of Rare Earths》 SCIE EI CAS CSCD 1991年第1期51-56,共6页
The low Ni steel modified hy rare earth(3Cr24NiTSiN with an addition of 0.3% Ce)for furnace roller has been developed.Due to the RE(rare earth)addition,a dense oxide film is formed on the steel surface at high tempera... The low Ni steel modified hy rare earth(3Cr24NiTSiN with an addition of 0.3% Ce)for furnace roller has been developed.Due to the RE(rare earth)addition,a dense oxide film is formed on the steel surface at high temperature,and the oxidation rate is decreased.This film has so good adhesion to the matrix that it will not be peeled off easily.The RE modified steel has excellent oxidation resistance and thermal strength even if being used continuously for a long period at high temperature.This steel roller has a service life of about 4 years com- parable to high Ni steel ones,so the low Ni steel can replace high Ni steel to make furnace roller.The Ni content of this material can be reduced by 65% in comparison with Cr25Ni20Si2 steel,The low Ni steel has better pro- eessing properties including melting,casting and working properties than that of high Ni ones. 展开更多
关键词 Rare earth heat-resistant low Ni steel turnace roller
下载PDF
Investigation on the strengthening mechanism of S30432 austenitic heat-resistant steel
13
作者 ZHU Lihui~(1)),ZHANG Yujie~(1)),WANG Qijiang~(2)) and XU Songqian~(2)) 1) School of Materials Science and Engineering,Shanghai University,Shanghai 200072,China 2) Baoshan Iron & Steel Co.,Ltd.,Shanghai 200940,China 《Baosteel Technical Research》 CAS 2010年第S1期71-,共1页
From the viewpoint of energy-saving and environment protection,it is necessary to develop Ultra Super Critical(USC) fossil-fired power plants.In order to ensure the reliable operation of power plants under high steam ... From the viewpoint of energy-saving and environment protection,it is necessary to develop Ultra Super Critical(USC) fossil-fired power plants.In order to ensure the reliable operation of power plants under high steam conditions,good mechanical properties(particularly high creep strength),corrosion resistance and fabricability are generally required for the heat resistant steels used in USC boilers.Among these heat-resistant steels,S30432 austenitic heat-resistant steels are of interest due to high creep strength,excellent oxidation and corrosion resistance at temperatures up to 650 -700℃.In this paper,the strengthening mechanism of S30432 austenitic heat-resistant steel was investigated based on the precipitation behavior of S30432 during aging and creep at 650℃.Results show that the microstructure of as-supplied S30432 steel is austenite,the main precipitation consists of only Nb(C,N).After aged for 10 000 h or crept for 10 712 h,there is a slight increase in the size of fine Nb(C,N),but the transformation from Nb(C,N) to NbCrN does not occur.Aging and creep results in the precipitation ofε-Cu and M_(23)C_6.The coarsening velocity ofε-Cu particles diminishes greatly and they are still very fine in the long-term creep range.With the increase of aging and creep time M_(23)C_6 carbides tend to coarsen gradually.The size of M_(23)C_6 is larger and the coarsening is easier in contrast toε-Cu and Nb(C,N).Nb(C,N) precipitates in the as-supplied microstructure,while aging and creep result in the precipitation ofε-Cu and M_(23)C_6.High creep rupture strength of S30432 steel is attributed to the precipitation hardening ofε-Cu,Nb(C,N) and M_(23)C_6.Extremely,ε-Cu plays an important role in improving the creep rupture strength of S30432,and at least 61%of the creep rupture strength of S30432 at 650℃results from the precipitation hardening ofε-Cu particles. 展开更多
关键词 heat-resistant steel strengthening mechanism precipitation hardening
下载PDF
Deformation behavior of 9Cr-3W-3Co martensitic heat-resistant steel
14
作者 LUO Suzhen 《Baosteel Technical Research》 CAS 2020年第4期24-32,共9页
The deformation behavior of 9 Cr-3 W-3 Co heat-resistant steel at a high-temperature range of 1 060-1 260 ℃ and a strain rate of 0.3 s^(-1) was studied using a Gleeble 3800 heat-simulating test machine. The microstru... The deformation behavior of 9 Cr-3 W-3 Co heat-resistant steel at a high-temperature range of 1 060-1 260 ℃ and a strain rate of 0.3 s^(-1) was studied using a Gleeble 3800 heat-simulating test machine. The microstructure and precipitation phases of the steel at different temperatures were studied by optical microscopy,scanning electron microscopy,and transmission electron microscopy. The results show that due to its low melting point,coarse grain size,and the segregation of P,S,and Cu at the grain boundary,the thermoplasticity of 9 Cr-3 W-3 Co steel is poor at temperatures higher than 1 200 ℃.The bulk ferrite phase was the main factor affecting the thermoplasticity at 1 100-1 200 ℃. 展开更多
关键词 heat-resistant martensitic steel 9Cr-3W-3Co hot deformation THERMOPLASTICITY
下载PDF
HEAT-RESISTANT COMPOSITES CURED BY ELECTRON BEAM
15
作者 Jian-wen Bao Yang Li Xiang-bao Chen Feng-mei Li 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2001年第1期53-57,共5页
Electron beam (EB) curing of composites has many advantages. Heat-resistant EB-curing composites could substitute polyimide composites used in aeronautical engines. In this paper, the effects of catalyst and dose on t... Electron beam (EB) curing of composites has many advantages. Heat-resistant EB-curing composites could substitute polyimide composites used in aeronautical engines. In this paper, the effects of catalyst and dose on the cured resin were investigated. The heat-resistance of the resin cured by EB was evaluated by dynamic mechanical analysis (DMA). The experimental results show that the mechanical properties of the composites cured by EB could meet the specifications of aeronautical engines at 250 degreesC. 展开更多
关键词 electron beam curing COMPOSITES EPOXY heat-resistANCE
下载PDF
Strengthening and control of second-phase particle precipitation in ferritic/austenitic/martensitic heat-resistant alloys:a review
16
作者 Xue-cheng Peng Han-jie Guo +5 位作者 Xin-fang Zhang Yi-wa Luo Ye Sun Jing Guo Rong-guang Yang Xiao-dan Zheng 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2024年第1期3-23,共21页
Heat-resistant alloys with excellent mechanical properties are widely used in various fields,and further improvement in their properties is essential to meet the requirements in new-generation advanced supercritical b... Heat-resistant alloys with excellent mechanical properties are widely used in various fields,and further improvement in their properties is essential to meet the requirements in new-generation advanced supercritical boilers,nuclear reactors,superheaters,and other new materials applications.To effectively enhance the comprehensive performance of heat-resistant alloys,second-phase particle strengthening has been widely studied,and in the face of different service envi-ronments of advanced heat-resistant steels,the selection of suitable second-phase particles is essential to maximize the performance of these alloys.To this end,three major types of reinforcing phases in heat-resistant alloys such as carbides,rare earth oxides,and intermetallic compounds are summarized.A comparative analysis of the precipitation behavior of the reinforcing phases with different types as well as the risks and means of controlling their use in service,is presented.Key parameters for the application of various types of second-phase particles in heat-resistant alloys are provided to support the design and preparation of new ultrahigh-performance heat-resistant alloys. 展开更多
关键词 heat-resistant alloy Second-phase particle CARBIDE Rare earth oxide Intermetallic compound Strengthening
原文传递
Lightweight,Strong and High Heat-Resistant Poly(lactide acid)Foams via Microcellular Injection Molding with Self-Assembly Nucleating Agent
17
作者 Xiao-Hu Bing Wen-Yu Ma +5 位作者 Ming-Hui Wu Peng Gao Xiao Zhou Hai-Bin Luo Long Wang Wen-Ge Zheng 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第6期739-750,共12页
Poly(lactide acid)(PLA)foams have shown considerable promise as eco-friendly alternatives to nondegradable plastic foams,such as polystyrene(PS)foams.Nevertheless,PLA foam typically suffers from low heat-resistance an... Poly(lactide acid)(PLA)foams have shown considerable promise as eco-friendly alternatives to nondegradable plastic foams,such as polystyrene(PS)foams.Nevertheless,PLA foam typically suffers from low heat-resistance and poor cellular structure stemming from its inherent slow crystallization rate and low melt strength.In this study,a high-performance PLA foam with well-defined cell morphology,exceptional strength and enhanced heat-resistance was successfully fabricated via a core-back microcellular injection molding(MIM)process.Differential scanning calorimetry(DSC)results revealed that the added hydrazine-based nucleating agent(HNA)significantly increased the crystallization temperature and accelerated the crystallization process of PLA.Remarkably,the addition of a 1.5 wt%of HNA led to a significant reduction in PLA’s cell size,from 43.5µm to 2.87µm,and a remarkable increase in cell density,from 1.08×10^(7)cells/cm^(3)to 2.15×10^(10)cells/cm^(3).This enhancement resulted in a final crystallinity of approximately 55.7%for the PLA blend foam,a marked improvement compared to the pure PLA foam.Furthermore,at 1.5 wt%HNA concentration,the tensile strength and tensile toughness of PLA blend foams demonstrated remarkable improvements of 136%and 463%,respectively.Additionally,the Vicat softening temperature of PLA blend foam increased significantly to 134.8°C,whereas the pure PLA foam exhibited only about 59.7℃.These findings underscore the potential for the preparation of lightweight injection-molded PLA foam with enhanced toughness and heat-resistance,which offers a viable approach for the production of high-performance PLA foams suitable for large-scale applications. 展开更多
关键词 Poly(lactide acid) Nucleating agent Microcellular injection molding heat-resistANCE Toughness
原文传递
Effect of cerium on microstructure,eutectic carbides and Laves phase in electroslag remelted 15Cr-22Ni-1Nb austenitic heat-resistant steel
18
作者 Xin Zhu Cheng-bin Shi +2 位作者 Shi-jun Wang Peng Lan Jing Li 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2023年第2期338-349,共12页
The dendrites,eutectic carbides,Laves phase and microsegregation of alloying element in electroslag remelted 15Cr-22Ni-1Nb austenitic heat-resistant steel with varying cerium contents were studied.The liquidus and sol... The dendrites,eutectic carbides,Laves phase and microsegregation of alloying element in electroslag remelted 15Cr-22Ni-1Nb austenitic heat-resistant steel with varying cerium contents were studied.The liquidus and solidus temperatures of the steel were determined to reveal the effect of cerium on solidification temperature interval and local solidification time of the steel.The secondary dendrite arm spacing decreases from 57.10 to 40.18μm with increasing the cerium content from 0 to 0.0630 wt.%.The eutectic NbC and Laves phase in as-cast ingots exhibit blocky and honeycomb morphology,respectively.The area fractions and sizes of eutectic NbC and Laves phase in as-cast ingots decrease with the increase in cerium content.The atomic percentage of Laves phase-forming element(Ni,Nb,Cr,Mo and Si)decreases with the increase in cerium content of the steel.The microsegregation of Mo,Ni,Si,Cr and Nb decreases with increasing the cerium content,which is favorable to reducing both the amount and sizes of eutectic NbC and Laves phase in as-cast ingots.The solidification temperature interval and local solidification time of the steel decrease as the cerium content is increased from 0 to 0.0630 wt.%,which inhibits the growth of dendrites,eutectic NbC and Laves phase. 展开更多
关键词 heat-resistant steel Rare earth cerium Eutectic NbC Laves phase MICROSEGREGATION Solidification characteristics
原文传递
Effect of removing Al and Ti elements on peak flow stress of nickel-based heat-resistant alloy 617
19
作者 Chen Dong Zheng-zong Chen +3 位作者 Zheng-dong Liu Han-sheng Bao Zhen Liu Zheng-jun Wang 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2023年第2期384-391,共8页
The hot deformation behavior and the microstructure characteristics of alloy 617 and alloy C-HRA-2 were compared and analyzed.The removal of Al and Ti elements has a significant change in the hot deformation of the al... The hot deformation behavior and the microstructure characteristics of alloy 617 and alloy C-HRA-2 were compared and analyzed.The removal of Al and Ti elements has a significant change in the hot deformation of the alloy,and there are two opposite effects on the flow stress before and after recrystallization.The results show that the removal of Al and Ti elements increases the flow stress of the alloy under high temperature or low strain rate deformation conditions.This is mainly due to the increase in the stacking fault energy of the alloy so that the alloy contains a higher twin boundary fraction after dynamic recrystallization(DRX).However,before DRX occurs,that is,at low temperature and high strain rate,the flow stress of this alloy is relatively reduced.This is due to the reduction in Peierls-Nabarro stress,making the alloy more prone to dislocation slip. 展开更多
关键词 Peak flow stress Nickel-based heat-resistant alloy Slip band Stacking fault energy
原文传递
Robust and High-Wettability Pristine Poly(ether ether ketone) Nanofiber Separator for Heat-Resistant and Safe Lithium-Ion Battery
20
作者 Xin-Ke Dai Feng-Shan Yu +5 位作者 Jia-Wei Wen Chun-Xia Wang Xin-Long Ma Wang Yang Guo-Yong Huang Hai-Mu Ye 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2023年第12期1937-1946,I0009,共11页
Separator is a pivotal component of lithium-ion batteries(LIBs)and determines the electrochemical performance and safety.However,with the increase in energy density and application scenarios,commercial polyolefin sepa... Separator is a pivotal component of lithium-ion batteries(LIBs)and determines the electrochemical performance and safety.However,with the increase in energy density and application scenarios,commercial polyolefin separators are increasingly unable to undertake heavy responsibility of battery safety protection.Herein,a new kind of nanofiber separator based on poly(ether ether ketone)(PEEK)with excellent thermal stability,self-extinguishing,and superior electrochemical properties is reported.Effective inheritance of intrinsic properties from raw PEEK materials and optimized hot-pressing operation endows the separator with high robustness and wettability,showing tensile strength of 15.8 MPa and a contact angle of 17.2°.The high thermal stability of PEEK can ensure the separator to preserve the structural integrity and microstructure at temperatures beyond 300℃,and the excellent self-extinguishing peculiarity of PEEK capacitates the high safety of LIB.Notably,benefitting from high porosity and polar surface,the PEEK separator shows high electrolyte uptake of 245.5%and exhibits a wider electrochemical window and faster lithium-ion transport number than commercial polyolefin separators.Furthermore,cells assembled with PEEK separator display better performance than the ones with PE separator,and the PEEK LIB has been successfully used to light up a lamp at a high temperature of 150℃. 展开更多
关键词 SEPARATOR Lithium-ion battery heat-resistANCE PEEK
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部