Internal curing agents (ICA) based on super absorbent polymer have poor alkali tolerance and reduce the early strength of concrete.An alkali tolerate internal curing agent (CAA-ICA) was designed and prepared by using ...Internal curing agents (ICA) based on super absorbent polymer have poor alkali tolerance and reduce the early strength of concrete.An alkali tolerate internal curing agent (CAA-ICA) was designed and prepared by using sodium carboxymethyl starch (CMS) with high hydrophilicity,acrylic acid (AA) containing anionic carboxylic group and acrylamide (AM) containing non-ionic amide group as the main raw materials.The results show that the ratio of CAA-ICA alkali absorption solution is higher than that existing ICA,which solves the low water absorption ratio of the ICA in alkali environment.The water absorption ratio of CAA-ICA in saturated Ca(OH)_(2) solution is 95.8 g·g^(-1),and the alkali tolerance coefficient is 3.4.The application of CAA-ICA in cement-based materials can increase the internal relative humidity and miniaturize the pore structure.The compressive strength of mortar increases up to 12.95%at 28 d,which provids a solution to overcome the reduction of the early strength.展开更多
By using HDI and TMP as the main raw materials,polyethylene glycol 400(PEG400)is used as a non-ionic hydrophilic modifier,and sodium hydroxyethyl sulfonate is used as an ionic hydrophilic modifier to synthesize a dual...By using HDI and TMP as the main raw materials,polyethylene glycol 400(PEG400)is used as a non-ionic hydrophilic modifier,and sodium hydroxyethyl sulfonate is used as an ionic hydrophilic modifier to synthesize a dual hydrophilic modified polyurethane curing agent.Research revealed that introducing PEG400 for hydrophilic chain segments and sodium hydroxyethyl sulfonate for hydrophilic ionic groups in the polyurethane curing agent component leads to a uniform distribution of hydrophilic components,significantly enhancing compatibility with the aqueous polyol component,and results in excellent film performance.The synthesis process and film were characterized using Fourier transform infrared spectroscopy and high-resolution scanning electron microscopy in the study.展开更多
Electron beam (EB) curing of composites has many advantages. Heat-resistant EB-curing composites could substitute polyimide composites used in aeronautical engines. In this paper, the effects of catalyst and dose on t...Electron beam (EB) curing of composites has many advantages. Heat-resistant EB-curing composites could substitute polyimide composites used in aeronautical engines. In this paper, the effects of catalyst and dose on the cured resin were investigated. The heat-resistance of the resin cured by EB was evaluated by dynamic mechanical analysis (DMA). The experimental results show that the mechanical properties of the composites cured by EB could meet the specifications of aeronautical engines at 250 degreesC.展开更多
Poly(lactide acid)(PLA)foams have shown considerable promise as eco-friendly alternatives to nondegradable plastic foams,such as polystyrene(PS)foams.Nevertheless,PLA foam typically suffers from low heat-resistance an...Poly(lactide acid)(PLA)foams have shown considerable promise as eco-friendly alternatives to nondegradable plastic foams,such as polystyrene(PS)foams.Nevertheless,PLA foam typically suffers from low heat-resistance and poor cellular structure stemming from its inherent slow crystallization rate and low melt strength.In this study,a high-performance PLA foam with well-defined cell morphology,exceptional strength and enhanced heat-resistance was successfully fabricated via a core-back microcellular injection molding(MIM)process.Differential scanning calorimetry(DSC)results revealed that the added hydrazine-based nucleating agent(HNA)significantly increased the crystallization temperature and accelerated the crystallization process of PLA.Remarkably,the addition of a 1.5 wt%of HNA led to a significant reduction in PLA’s cell size,from 43.5µm to 2.87µm,and a remarkable increase in cell density,from 1.08×10^(7)cells/cm^(3)to 2.15×10^(10)cells/cm^(3).This enhancement resulted in a final crystallinity of approximately 55.7%for the PLA blend foam,a marked improvement compared to the pure PLA foam.Furthermore,at 1.5 wt%HNA concentration,the tensile strength and tensile toughness of PLA blend foams demonstrated remarkable improvements of 136%and 463%,respectively.Additionally,the Vicat softening temperature of PLA blend foam increased significantly to 134.8°C,whereas the pure PLA foam exhibited only about 59.7℃.These findings underscore the potential for the preparation of lightweight injection-molded PLA foam with enhanced toughness and heat-resistance,which offers a viable approach for the production of high-performance PLA foams suitable for large-scale applications.展开更多
A novel waterborne epoxy curing agent was prepared using 3-glycidoxypropyl trimethoxysilane (GPTMS) as a termination agent of adduct, which was synthesized by triethylene tetramine (TETA) and liquid epoxy resin (...A novel waterborne epoxy curing agent was prepared using 3-glycidoxypropyl trimethoxysilane (GPTMS) as a termination agent of adduct, which was synthesized by triethylene tetramine (TETA) and liquid epoxy resin (E-51). The effects of the reaction temperature and time on the synthesis process were investigated experimentally. The particle size and the distribution of water dispersion of the curing agent were measured by dynamic light scattering(DLS). The structure of the products was characterized by Fourier transform infrared spec-trometer (FTIR) and ^1H-nuclear magnetic resonance (^1H NMR). The properties of the synthesized curing agent and the epoxy resin film cured by it were also measured. The results showed that the appropriate temperature for the synthesis of adduct was at 65-75℃ and the reaction time was 4-5h, and that the suitable reaction temperature of curing agent synthesis was 75-85℃ and the reaction time was 3-4h. When the mass ratios of GPTMS and acetic acid were 3%-5% and 5%-10% respectively, the hardness, water resistance and adhesion of the cured film were improved significantly.展开更多
A novel novolac curing agent containing both naphthalene and dicyclopentadiene (DCPD) moieties was prepared to produce a highly heat-resistant cured polymer network. The chemical structure was characterized using Four...A novel novolac curing agent containing both naphthalene and dicyclopentadiene (DCPD) moieties was prepared to produce a highly heat-resistant cured polymer network. The chemical structure was characterized using Fourier transform infrared spectroscopy, nuclear magnetic resonance, mass spectrometry, and gel permeation chro-matography analyses. The thermal properties of the resulting polymer from diglycidyl ether of bisphenol A epoxy resin cured with the novel curing agent were evaluated using dynamic mechanical thermal analysis and thermogra-vimetric analysis. Compared with the conventional curing agent, the resulting polymer cured with naphtha-lene/DCPD navolac shows considerable improvement in heat resistant properties such as higher glass transition temperature (Tg) and thermal stability. The result also shows better moisture resistance because of the hydrophobic nature of naphthalene/DCPD structure.展开更多
One of the challenges faced by sewage sludge treatment and disposal is its higher water content,and how to efficient dewater those hazardous materials properly is welcome in practice. This study stabilized the sewage ...One of the challenges faced by sewage sludge treatment and disposal is its higher water content,and how to efficient dewater those hazardous materials properly is welcome in practice. This study stabilized the sewage sludge via the using of conventional curing agents and calcined aluminum salts,and the corresponding dewatering mechanisms and structural changes of the stabilized sludge were further comparable analyzed.Experimental results showed that wollastonite and kaolin exhibit a relative higher dewatering efficiency as compared to other conventional curing agents; however the releasing rate of heavy metals of Cu,Cr,Ni for kaolin solidification and Zn,Pb for wollastonite solidification is higher than the sludge samples solidified by other curing agents. For comparison,the sludge samples solidified by calcined aluminum salts (AS),calcium ash,Mg-based curing agent,tricalcium aluminate( C_3A) show a lower heavy metals leaching potential and unconfined compressive strength. In addition,the economic characteristics and local availability of AS,calcium ash,C_3A and CaO makes it have a broad prospect in extension and application. These findings are of great significance for stabilization and dewatering of sewage sludge.展开更多
Thermosetting acrylic coatings were prepared by using carboxyl acid group-containing acrylic oligomer and curing with titanium-oxo-clusters which were first pre-hydrolyzed from titanium n-butoxide.The curing ability o...Thermosetting acrylic coatings were prepared by using carboxyl acid group-containing acrylic oligomer and curing with titanium-oxo-clusters which were first pre-hydrolyzed from titanium n-butoxide.The curing ability of the titanium-oxo-cluster was examined using a microdielectric analytical(DEA)curing monitor,Fourier transformed infrared spectroscopy(FTIR),and Soxhlet extraction experiments,and the properties of the resulted coatings were investigated with pendulum hardness tester,dynamic mechanical analysis(DMA),thermogravimetric analysis(TGA)and ultraviolet-visible spectrometer.The effect of titania-oxo-cluster in leading acrylic oligomers to form thermosetting acrylic coatings was confirmed.An increasing pendulum hardness and modulus of acrylic coatings with increasing titania content was observed, which resulted from the increment of crosslinking degree rather than of the titania content.The thermosetting acrylic/titania coatings also showed better thermal stability and higher UV-blocking properties than those coatings using organic curing agent.展开更多
Cracks easily generate in concrete at early age owing to the shrinkage deformation.CaO-based expansion agent(CEA)and superabsorbent polymers(SAP)have been extensively used for the mitigation of concrete shrinkage.The ...Cracks easily generate in concrete at early age owing to the shrinkage deformation.CaO-based expansion agent(CEA)and superabsorbent polymers(SAP)have been extensively used for the mitigation of concrete shrinkage.The macroscopic properties of concrete are highly determined by the microstructure.In this study,the influence of CEA and SAP addition on the pore structure evolution of cement paste under different curing temperatures was evaluated via low-field nuclear magnetic resonance spectroscopy.Test results indicated that,in cement paste,a higher CEA content led to a higher porosity and a larger most probable pore diameter(MPPD).Meanwhile,SAP addition increased the porosity and MPPD of CEA cement paste at early age but decreased them after 7 d,and a higher SAP content always brought a higher porosity and MPPD.Furthermore,the addition of SAP led to a lower porosity and MPPD of CEA cement paste than that of plain cement paste after 14 d.Moreover,the porosity and MPPD of CEA cement paste decreased first and subsequently increased as the curing temperature raised.展开更多
基金Funded by the National Key Research and Development Program of China (No.2019YFC1906202)the Guangxi Key Research and Development Plan (Nos.Guike AA18242007-3, Guike AB19259008, and Guike AB20297014)。
文摘Internal curing agents (ICA) based on super absorbent polymer have poor alkali tolerance and reduce the early strength of concrete.An alkali tolerate internal curing agent (CAA-ICA) was designed and prepared by using sodium carboxymethyl starch (CMS) with high hydrophilicity,acrylic acid (AA) containing anionic carboxylic group and acrylamide (AM) containing non-ionic amide group as the main raw materials.The results show that the ratio of CAA-ICA alkali absorption solution is higher than that existing ICA,which solves the low water absorption ratio of the ICA in alkali environment.The water absorption ratio of CAA-ICA in saturated Ca(OH)_(2) solution is 95.8 g·g^(-1),and the alkali tolerance coefficient is 3.4.The application of CAA-ICA in cement-based materials can increase the internal relative humidity and miniaturize the pore structure.The compressive strength of mortar increases up to 12.95%at 28 d,which provids a solution to overcome the reduction of the early strength.
文摘By using HDI and TMP as the main raw materials,polyethylene glycol 400(PEG400)is used as a non-ionic hydrophilic modifier,and sodium hydroxyethyl sulfonate is used as an ionic hydrophilic modifier to synthesize a dual hydrophilic modified polyurethane curing agent.Research revealed that introducing PEG400 for hydrophilic chain segments and sodium hydroxyethyl sulfonate for hydrophilic ionic groups in the polyurethane curing agent component leads to a uniform distribution of hydrophilic components,significantly enhancing compatibility with the aqueous polyol component,and results in excellent film performance.The synthesis process and film were characterized using Fourier transform infrared spectroscopy and high-resolution scanning electron microscopy in the study.
文摘Electron beam (EB) curing of composites has many advantages. Heat-resistant EB-curing composites could substitute polyimide composites used in aeronautical engines. In this paper, the effects of catalyst and dose on the cured resin were investigated. The heat-resistance of the resin cured by EB was evaluated by dynamic mechanical analysis (DMA). The experimental results show that the mechanical properties of the composites cured by EB could meet the specifications of aeronautical engines at 250 degreesC.
基金supported by the National Natural Science Foundation of China(No.52003280)the Zhejiang Provincial Natural Science Foundation of China(No.LQ21B040003)+1 种基金the S&T Innovation 2025 Major Special Programme of Ningbo(No.2021Z052)the Chinese Academy of Sciences Pioneer Hundred Talents Program.
文摘Poly(lactide acid)(PLA)foams have shown considerable promise as eco-friendly alternatives to nondegradable plastic foams,such as polystyrene(PS)foams.Nevertheless,PLA foam typically suffers from low heat-resistance and poor cellular structure stemming from its inherent slow crystallization rate and low melt strength.In this study,a high-performance PLA foam with well-defined cell morphology,exceptional strength and enhanced heat-resistance was successfully fabricated via a core-back microcellular injection molding(MIM)process.Differential scanning calorimetry(DSC)results revealed that the added hydrazine-based nucleating agent(HNA)significantly increased the crystallization temperature and accelerated the crystallization process of PLA.Remarkably,the addition of a 1.5 wt%of HNA led to a significant reduction in PLA’s cell size,from 43.5µm to 2.87µm,and a remarkable increase in cell density,from 1.08×10^(7)cells/cm^(3)to 2.15×10^(10)cells/cm^(3).This enhancement resulted in a final crystallinity of approximately 55.7%for the PLA blend foam,a marked improvement compared to the pure PLA foam.Furthermore,at 1.5 wt%HNA concentration,the tensile strength and tensile toughness of PLA blend foams demonstrated remarkable improvements of 136%and 463%,respectively.Additionally,the Vicat softening temperature of PLA blend foam increased significantly to 134.8°C,whereas the pure PLA foam exhibited only about 59.7℃.These findings underscore the potential for the preparation of lightweight injection-molded PLA foam with enhanced toughness and heat-resistance,which offers a viable approach for the production of high-performance PLA foams suitable for large-scale applications.
文摘A novel waterborne epoxy curing agent was prepared using 3-glycidoxypropyl trimethoxysilane (GPTMS) as a termination agent of adduct, which was synthesized by triethylene tetramine (TETA) and liquid epoxy resin (E-51). The effects of the reaction temperature and time on the synthesis process were investigated experimentally. The particle size and the distribution of water dispersion of the curing agent were measured by dynamic light scattering(DLS). The structure of the products was characterized by Fourier transform infrared spec-trometer (FTIR) and ^1H-nuclear magnetic resonance (^1H NMR). The properties of the synthesized curing agent and the epoxy resin film cured by it were also measured. The results showed that the appropriate temperature for the synthesis of adduct was at 65-75℃ and the reaction time was 4-5h, and that the suitable reaction temperature of curing agent synthesis was 75-85℃ and the reaction time was 3-4h. When the mass ratios of GPTMS and acetic acid were 3%-5% and 5%-10% respectively, the hardness, water resistance and adhesion of the cured film were improved significantly.
文摘A novel novolac curing agent containing both naphthalene and dicyclopentadiene (DCPD) moieties was prepared to produce a highly heat-resistant cured polymer network. The chemical structure was characterized using Fourier transform infrared spectroscopy, nuclear magnetic resonance, mass spectrometry, and gel permeation chro-matography analyses. The thermal properties of the resulting polymer from diglycidyl ether of bisphenol A epoxy resin cured with the novel curing agent were evaluated using dynamic mechanical thermal analysis and thermogra-vimetric analysis. Compared with the conventional curing agent, the resulting polymer cured with naphtha-lene/DCPD navolac shows considerable improvement in heat resistant properties such as higher glass transition temperature (Tg) and thermal stability. The result also shows better moisture resistance because of the hydrophobic nature of naphthalene/DCPD structure.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51408159)the China Postdoctoral Science Foundation of China(Grant No.2013T60375 and 2012M520744)
文摘One of the challenges faced by sewage sludge treatment and disposal is its higher water content,and how to efficient dewater those hazardous materials properly is welcome in practice. This study stabilized the sewage sludge via the using of conventional curing agents and calcined aluminum salts,and the corresponding dewatering mechanisms and structural changes of the stabilized sludge were further comparable analyzed.Experimental results showed that wollastonite and kaolin exhibit a relative higher dewatering efficiency as compared to other conventional curing agents; however the releasing rate of heavy metals of Cu,Cr,Ni for kaolin solidification and Zn,Pb for wollastonite solidification is higher than the sludge samples solidified by other curing agents. For comparison,the sludge samples solidified by calcined aluminum salts (AS),calcium ash,Mg-based curing agent,tricalcium aluminate( C_3A) show a lower heavy metals leaching potential and unconfined compressive strength. In addition,the economic characteristics and local availability of AS,calcium ash,C_3A and CaO makes it have a broad prospect in extension and application. These findings are of great significance for stabilization and dewatering of sewage sludge.
基金supported by the National Natural Science Foundation of China(No.20774023)Shanghai Leading Academic Discipline Project(No.B113).
文摘Thermosetting acrylic coatings were prepared by using carboxyl acid group-containing acrylic oligomer and curing with titanium-oxo-clusters which were first pre-hydrolyzed from titanium n-butoxide.The curing ability of the titanium-oxo-cluster was examined using a microdielectric analytical(DEA)curing monitor,Fourier transformed infrared spectroscopy(FTIR),and Soxhlet extraction experiments,and the properties of the resulted coatings were investigated with pendulum hardness tester,dynamic mechanical analysis(DMA),thermogravimetric analysis(TGA)and ultraviolet-visible spectrometer.The effect of titania-oxo-cluster in leading acrylic oligomers to form thermosetting acrylic coatings was confirmed.An increasing pendulum hardness and modulus of acrylic coatings with increasing titania content was observed, which resulted from the increment of crosslinking degree rather than of the titania content.The thermosetting acrylic/titania coatings also showed better thermal stability and higher UV-blocking properties than those coatings using organic curing agent.
基金Projects(51878245,U1965105)supported by the National Natural Science Foundation of ChinaProject(2019GSF110006)supported by the Key Research and Development Program of Shandong Province,China+2 种基金Project(2020Z035)supported by the Ningbo 2025 Science and Technology Major Project,ChinaProject(KJ2017B01)supported by the Scientific Research Project of Department of Education of Anhui Province,ChinaProject(2019CEM001)supported by the State Key Laboratory of High Performance Civil Engineering Materials,China。
文摘Cracks easily generate in concrete at early age owing to the shrinkage deformation.CaO-based expansion agent(CEA)and superabsorbent polymers(SAP)have been extensively used for the mitigation of concrete shrinkage.The macroscopic properties of concrete are highly determined by the microstructure.In this study,the influence of CEA and SAP addition on the pore structure evolution of cement paste under different curing temperatures was evaluated via low-field nuclear magnetic resonance spectroscopy.Test results indicated that,in cement paste,a higher CEA content led to a higher porosity and a larger most probable pore diameter(MPPD).Meanwhile,SAP addition increased the porosity and MPPD of CEA cement paste at early age but decreased them after 7 d,and a higher SAP content always brought a higher porosity and MPPD.Furthermore,the addition of SAP led to a lower porosity and MPPD of CEA cement paste than that of plain cement paste after 14 d.Moreover,the porosity and MPPD of CEA cement paste decreased first and subsequently increased as the curing temperature raised.