Nafion as a universal polymer ionomer was widely applied for nanocatalysts electrode preparation.However,the effect of Nafion on electrocatalytic performance was often overlooked,especially for CO_(2)electrolysis.Here...Nafion as a universal polymer ionomer was widely applied for nanocatalysts electrode preparation.However,the effect of Nafion on electrocatalytic performance was often overlooked,especially for CO_(2)electrolysis.Herein,the key roles of Nafion for CO_(2)RR were systematically studied on Cu nanoparticles(NPs)electrocatalyst.We found that Nafion modifier not only inhibit hydrogen evolution reaction(HER)by decreasing the accessibility of H_(2)O from electrolyte to Cu NPs,and increase the CO_(2)concentration at electrocatalyst interface for enhancing the CO_(2)mass transfer process,but also activate CO_(2)molecule by Lewis acid-base interaction between Nafion and CO_(2)to accelerate the formation of^(*)CO,which favor of C–C coupling for boosting C_(2)product generation.Owing to these features,the HER selectivity was suppressed from 40.6%to 16.8%on optimal Cu@Nafion electrode at-1.2 V versus reversible hydrogen electrode(RHE),and as high as 73.5%faradaic efficiencies(FEs)of C_(2)products were achieved at the same applied potential,which was 2.6 times higher than that on bare Cu electrode(~28.3%).In addition,Nafion also contributed to the long-term stability by hinder Cu NPs morphology reconstruction.Thus,this work provides insights into the impact of Nafion on electrocatalytic CO_(2)RR performance.展开更多
Heat-resistant energetic materials refer to a type of energetic materials that possess a high melting point,high stability and operational safety. By studying the structures of these energetic materials has showed tha...Heat-resistant energetic materials refer to a type of energetic materials that possess a high melting point,high stability and operational safety. By studying the structures of these energetic materials has showed that the thermal stability can be enhanced by introducing amino groups to form intra/inter-molecular hydrogen bonds, constructing conjugate systems and designing symmetrical structures. This article aims to review the physical and chemical properties of ultra-high temperature heat-resistant energetic compounds and provide valuable theoretical insights for the preparation of ultra-high temperature heatresistant energetic materials. We also analyze the selected 20 heat-resistant energetic materials with decomposition temperatures higher than 350℃, serving as templates for the synthesis of various highperformance heat-resistant energetic materials.展开更多
Advanced photovoltaics,such as ultra-flexible perovskite solar cells(UF-PSCs),which are known for their lightweight design and high power-to-mass ratio,have been a long-standing goal that we,as humans,have continuousl...Advanced photovoltaics,such as ultra-flexible perovskite solar cells(UF-PSCs),which are known for their lightweight design and high power-to-mass ratio,have been a long-standing goal that we,as humans,have continuously pursued.Unlike normal PSCs fabricated on rigid substrates,producing high-efficiency UF-PSCs remains a challenge due to the difficulty in achieving full coverage and minimizing defects of metal halide perovskite(MHP)films.In this study,we utilized Al_(2)O_(3) nanoparticles(NPs)as an inorganic surface modifier to enhance the wettability and reduce the roughness of poly-bis(4-phenyl)(2,4,6-trimethylphenyl)amine simultaneously.This approach proves essentials in fabricating UF-PSCs,enabling the deposition of uniform and dense MHP films with full coverage and fewer defects.We systematically investigated the effect of Al_(2)O_(3) NPs on film formation,combining simulation with experiments.Our strategy not only significantly increases the power conversion efficiency(PCE)from 11.96%to 16.33%,but also promotes reproducibility by effectively addressing the short circuit issue commonly encountered in UF-PSCs.Additionally,our UF-PSCs demonstrates good mechanical stability,maintaining 98.6%and 79.0%of their initial PCEs after 10,000 bending cycles with radii of 1.0 and 0.5 mm,respectively.展开更多
Spinal cord injury and treatment opportunities:The adult mammalian spinal cord has a very limited capacity for spontaneous regeneration due to various intrinsic molecular and cellular factors.Although the spinal cord ...Spinal cord injury and treatment opportunities:The adult mammalian spinal cord has a very limited capacity for spontaneous regeneration due to various intrinsic molecular and cellular factors.Although the spinal cord neurons have the capacity to regenerate their axons,the expression of growth inhibitory factors,lack or suppression of proper guidance cues,and profound inflammatory responses do not permit successful regeneration(Khyeam et al.,2021).展开更多
The low Ni steel modified hy rare earth(3Cr24NiTSiN with an addition of 0.3% Ce)for furnace roller has been developed.Due to the RE(rare earth)addition,a dense oxide film is formed on the steel surface at high tempera...The low Ni steel modified hy rare earth(3Cr24NiTSiN with an addition of 0.3% Ce)for furnace roller has been developed.Due to the RE(rare earth)addition,a dense oxide film is formed on the steel surface at high temperature,and the oxidation rate is decreased.This film has so good adhesion to the matrix that it will not be peeled off easily.The RE modified steel has excellent oxidation resistance and thermal strength even if being used continuously for a long period at high temperature.This steel roller has a service life of about 4 years com- parable to high Ni steel ones,so the low Ni steel can replace high Ni steel to make furnace roller.The Ni content of this material can be reduced by 65% in comparison with Cr25Ni20Si2 steel,The low Ni steel has better pro- eessing properties including melting,casting and working properties than that of high Ni ones.展开更多
The microstructures and phase compositions of the as-cast and die-cast Mg-6.02Al-1.03 Sm, Mg-6.05Al-0.98Sm-0.56 Bi and Mg-5.95Al-1.01Sm-0.57 Zn alloys were investigated. Meanwhile, the tensile mechanical and flow prop...The microstructures and phase compositions of the as-cast and die-cast Mg-6.02Al-1.03 Sm, Mg-6.05Al-0.98Sm-0.56 Bi and Mg-5.95Al-1.01Sm-0.57 Zn alloys were investigated. Meanwhile, the tensile mechanical and flow properties were tested. The results show that the as-cast microstructure of Mg-6.02Al-1.03 Sm alloy is composed of δ-Mg matrix, discontinuous δ-Mg17Al12 phase and small block Al2 Sm phase with high thermal stability. Rod Mg3Bi2 phase precipitates when Bi is added, while the added metal Zn dissolves into δ-Mg matrix and δ-Mg17Al12 phase. The as-cast alloys exhibit the excellent tensile mechanical property. The tensile strength(δb) and elongation(δ) can reach 205-235 MPa and 8.5%-16.0% at ambient temperature, respectively. Meanwhile, they can also exceed 160 MPa and 14.0% at 423 K, respectively. The die-cast microstructures are refined obviously, and meanwhile the broken second phases distribute dispersedly. The die-cast alloys exhibit better tensile mechanical properties with the values of δb and δ of 240-285 MPa and 8.5%-16.5% at ambient temperature, respectively, and excellent flow property with the flow length of 1870-2420 mm. The die-cast tensile fractures at ambient temperature exhibit a typical character of ductile fracture.展开更多
Wood-polymer composites (WPC) were prepared from wood fiber and four kinds of plastics such as PE, PS, ABS, and SAN. The effects of different modifiers on the mechanical properties of the composites were studied. The ...Wood-polymer composites (WPC) were prepared from wood fiber and four kinds of plastics such as PE, PS, ABS, and SAN. The effects of different modifiers on the mechanical properties of the composites were studied. The results showed modifiers could raise the bonding strength of wood fiber with polymer and improve the mechanical properties of the composites. Different modifiers had different effects on the properties of wood-polymer composites, and comparatively the modifier of isocyanate produced a better result. Wood-polymer composite takes not only the advantages of both wood fiber and polymer, but waterproof, dimensional stability and dynamic strength are also significantly improved. Key word Wood fiber - Thermoplastic polyester - Wood-polymer composites - Modifier - Mechanical properties CLC number TB332 Document code A Foundation item: This study was supported by the Harbin Technology Tackle Key Plan (Development Research of Wood-Polymer Composites with High Wood Matrix) and by Heilongjing Nature Science Fund (Composite Mechanism Study of the Wood Polymer).Biography: XU Min (1963-), Female, Associate professor in Material Science and Engineering College, Northeast Forestry University, Harbin 150040, P. R. China.Responsible editor: Chai Ruihai展开更多
Various of modifiers were used to modify the surface activity of white carbon black. The oil absorption, viscosity, hydrophobic rate and burning loss of white carbon black and the mechanical propertiess of silicone ru...Various of modifiers were used to modify the surface activity of white carbon black. The oil absorption, viscosity, hydrophobic rate and burning loss of white carbon black and the mechanical propertiess of silicone rubber were measured. The influences of the modifiers on the properties of white carbon black and the mechanical properties of silicone rubber were discussed.展开更多
Boosting the utilization efficiency of sulfur electrodes and suppressing the“shuttle effect”of intermediate polysulfides remain the critical challenge for high-performance lithium-sulfur batteries(LSBs).However,most...Boosting the utilization efficiency of sulfur electrodes and suppressing the“shuttle effect”of intermediate polysulfides remain the critical challenge for high-performance lithium-sulfur batteries(LSBs).However,most of reported sulfur electrodes are not competent to realize the fast conversion of polysulfides into insoluble lithium sulfides when applied with high sulfur loading,as well as to mitigate the more serious shuttle effect of polysulfides,especially when worked at an elevated temperature.Herein,we reported a unique structural engineering strategy of crafting a unique hierarchical multifunctional electrode architecture constructed by rooting MOF-derived CoS2/carbon nanoleaf arrays(CoS2-CNA)into a nitrogen-rich 3D conductive scaffold(CTNF@CoS2-CNA)for LSBs.An accelerated electrocatalytic effect and improved polysulfide redox kinetics arising from CoS2-CNA were investigated.Besides,the strong capillarity effect and chemisorption of CTNF@CoS2-CNA to polysulfides enable high loading and efficient utilization of sulfur,thus leading to high-performance LIBs performed not only at room temperature but also up to an elevated temperature(55°C).Even with the ultrahigh sulfur loading of 7.19 mg cm?2,the CTNF@CoS2-CNA/S cathode still exhibits high rate capacity at 55°C.展开更多
The effect of RE addition on solidification process and high-temperature strength of Al-12%Si-4%Cu-1.6%Mn(in wt.%)heat-resistant alloy was investigated by microstructure observation and tensile test.A great number of ...The effect of RE addition on solidification process and high-temperature strength of Al-12%Si-4%Cu-1.6%Mn(in wt.%)heat-resistant alloy was investigated by microstructure observation and tensile test.A great number of fine needle-like RE-rich phases are observed in the alloys with RE addition. Solutionizing treatment does not change their morphologies and sizes, indicating that they have good thermal stability. The addition of RE totally alters the solidification process of eutectic CruAl2 phase, from network-like phase in the form of segregation at the final eutectic grain boundaries to discretely blocky phase growing on the hair-filamentous RE-rich needles. In the alloys with Ce addition, blocky CuAl2, particulate Al15Mn3Si2 and needle-like RE-rich needle phases grow together, but they did not occur in the alloy with only La addition. The addition of RE does not considerably improve the strength of the alloy at high temperatures. The formation of RE-rich phases also does not significantly alter the originating and propagating of micro-cracks in the alloy during tensile test.展开更多
A novel method for the determination of nickel and palladium in environmental samples by low temperature ETV-ICP-OES with dimethylglyoxime(DMG) as both the extractant and chemical modifier has been developed. In thi...A novel method for the determination of nickel and palladium in environmental samples by low temperature ETV-ICP-OES with dimethylglyoxime(DMG) as both the extractant and chemical modifier has been developed. In this study, it was found that nickel and palladium can form complexes with dimethylglyoxime(0. 05%, mass fraction) at pH 6.0 and can be extracted into chloroform quantitatively. The complexes can be evaporated into plasma at a suita-ble temperature( 1400℃) for ICP-OES detection. Under the optimized conditions, the detection limits of nickel and palladium are 0.48 and 0. 40 ng/mL, respectively, while the RSD values are separately 5.0% and 3.1% (p = 50 ng/mL, n = 7). The proposed method was applied to the determination of the target analytes in environmental sam-ples with satisfactory results.展开更多
By means of the wet chemical surface modification,the surface of CeO_2 was modified by vinyltrimethoxysilane (VTMS).Infrared spectroscopy was used to investigate the structure of the modified CeO_2 and the result show...By means of the wet chemical surface modification,the surface of CeO_2 was modified by vinyltrimethoxysilane (VTMS).Infrared spectroscopy was used to investigate the structure of the modified CeO_2 and the result showed that VTMS has been attached onto the surface of CeO_2.Effect of VTMS concentration on the active index of the modified CeO_2 was also studied,and the result indicated that the active index of the modified CeO_2 increases with the increase of VTMS concentration and the optimal concentration o...展开更多
Using SrC12-6H2O and Na2CO3 as the main raw materials and adding different complexons as modifiers with simple co-precipitation method, SrCO3 crystals with distinct morphologies like spherical, bundle-like, overlappin...Using SrC12-6H2O and Na2CO3 as the main raw materials and adding different complexons as modifiers with simple co-precipitation method, SrCO3 crystals with distinct morphologies like spherical, bundle-like, overlapping plate-like, hexagonal star-like, dumbbell-like, etc. can be synthesized in the ethanol-water mixtures. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectrograph (FT-IR). The interrelated effect mechanism is presented in the end. Results show that the modifier carboxyl groups play a significant role in controlling the SrCO3 crystal morphologies, which can alter the crystal growth unit (Sr^2+) supply mode and induce the crystal formation with the morphologies matching their spatial configurations.展开更多
In order to find the effect of different viscosity modifier dosages on asphalt binder's performance in bus rapid transit lanes in the city of Chengdu, three different viscosity modifiers were analyzed: TAFPACK-super...In order to find the effect of different viscosity modifier dosages on asphalt binder's performance in bus rapid transit lanes in the city of Chengdu, three different viscosity modifiers were analyzed: TAFPACK-super (TPS), high-viscosity additive (HVA) and road-science- technology (RST), and four different asphalt binders were investigated through laboratory experiments. The percent- ages of the viscosity modifiers used were: TPS (0%, 8%, 10%, 12%, 14% and 16%) and RST and HVA (8% and 12%) depending on the type of asphalt binder. Technical indicators of modifier asphalt were tested through con- ventional and unconventional binder tests. It has been found out that only a percentage greater than or equal to 14% TPS is reasonable to achieve the requirement set by 20,000 Pa. s for the 60℃ dynamic viscosity on local #70 grade asphalt. The results indicate that conventional bin- ders did not meet the requirements of the 60℃ dynamic viscosity when 12% of TPS or HVA modifiers were used. In addition, the B-type styrene-butadienne-styrene (SBS) modified asphalt binder has better viscosity balance than the A-type SBS modified when 8% of each of the three different kinds of viscosity modifiers is used. Therefore, the B-type modified SBS thus appears to be a suitable choice in asphalt mixtures for bus rapid transit lane with the 60℃ dynamic viscosity.展开更多
Just now,pre-modifiers are used more and more frequent than post-modifier in the development of Modern English.The post-modifier also a means of modification has received relatively little attention.In this paper,a ba...Just now,pre-modifiers are used more and more frequent than post-modifier in the development of Modern English.The post-modifier also a means of modification has received relatively little attention.In this paper,a basic analysis will be made regarding the types,directions and some comparisons of post-modifiers in forms of examples.Also included are methods suggested to cope with the problems on choosing exact usages.展开更多
The reliable welding of T91 heat-resistant steel to 316L stainless steel is a considerable issue for ensuring the safety in service of ultrasupercritical power generation unit and nuclear fusion reactor,but the high-q...The reliable welding of T91 heat-resistant steel to 316L stainless steel is a considerable issue for ensuring the safety in service of ultrasupercritical power generation unit and nuclear fusion reactor,but the high-quality dissimilar joint of these two steels was difficult to be obtained by traditional fusion welding methods.Here we improved the structure-property synergy in a dissimilar joint of T91 steel to 316L steel via friction stir welding.A defect-free joint with a large bonding interface was produced using a small-sized tool under a relatively high welding speed.The bonding interface was involved in a mixing zone with both mechanical mixing and metallurgical bonding.No obvious material softening was detected in the joint except a negligible hardness decline of only HV~10 in the heat-affected zone of the T91 steel side due to the formation of ferrite phase.The welded joint exhibited an excellent ultimate tensile strength as high as that of the 316L parent metal and a greatly enhanced yield strength on account of the dependable bonding and material renovation in the weld zone.This work recommends a promising technique for producing high-strength weldments of dissimilar nuclear steels.展开更多
A new kind of inelastomer impact modifier with a coreshell structure was synthesized by employing a multistep composite emulsion polymerization technique, the size and morphology structure of the coreshell particles c...A new kind of inelastomer impact modifier with a coreshell structure was synthesized by employing a multistep composite emulsion polymerization technique, the size and morphology structure of the coreshell particles could be controlled by the multistep composite emulsion polymerization technique. The study of the impact strength and the elongation at break of the PVC/CPE blend with different contents of coreshell particles(CS) indicated that the mechanical properties of PVC/CPE/CS composite were the best when the concentration of the particle was 25%(mass fraction) which showed the different regularities and characteristics of elastomer toughening plastic.展开更多
The mechanical properties, creep rupture strength, creep damage and failure characteristics of dissimilar metal welded joint (DMWJ) between martensitic (SA213T91) and bainitic heat-resistant steel (12Cr2MoWVTiB(...The mechanical properties, creep rupture strength, creep damage and failure characteristics of dissimilar metal welded joint (DMWJ) between martensitic (SA213T91) and bainitic heat-resistant steel (12Cr2MoWVTiB(G102)) have been investigated by means of pulsed argon arc welding, high temperature accelerated simulation, mechanical and creep rupture test, and scanning electronic microscope (SEM). The results show that there is a marked drop of mechanical properties of undermatching joint, and low ductility cracking along weld/G102 interface is induced due to creep damage. Creep rupture strength of overmatching joint is the least. The mechanical properties of medium matching joint are superior to those of overmatching and undermatching joint, and creep damage and failure tendency along the interface of weld/G102 are lower than those of overmatching and undermatching joint after accelerated simulation for 500 h, 1 000 h, 1 500 h, and the creep rupture strength of medium matching joint is the same as that of undermatching joint. Therefore, it is reasonable that the medium matching material is used for dissimilar welded joint between martensitic and bainitic steel.展开更多
The effects of modifiers on the anti-wetting and anti-icing property of the prepared rough aluminum surface were investigated.The rough aluminum substrates were obtained through electrochemical oxidization with 15 wt%...The effects of modifiers on the anti-wetting and anti-icing property of the prepared rough aluminum surface were investigated.The rough aluminum substrates were obtained through electrochemical oxidization with 15 wt% sulfuric acid solution as the electrolyte at the constant current of 4 mA for 3 h.And then they were modified with octadecanoic acid (C18),polyethylene (PE),polystyrene (PS),polyethylene glycol (PEG) and hexamethylenetetramine (HMTA),respectively,whose surface free energies were 27.6,31.0,33.0,61.6 and 70.0 mN/m,respectively.The contact angles (CA) were 154.6°,128.4°,127.6°,5.0° and 0.0°,respectively,and the ice adhesion pressures were 15.9,36.3,55.9,155.3 and 216.1 kPa,respectively.The ice adhesion strengths decrease along with the increasing anti-wetting property of aluminum surfaces and the decreasing of the surface energy of modifiers.These provide some new insights when designing the aluminum surface with anti-icing properties in some special applications.展开更多
The dissolution behavior of delta ferrites in martensitic heat-resistant steel was studied.And the reason why the dissolution rate of delta ferrites decreased with dissolution time was discussed.The experimental resul...The dissolution behavior of delta ferrites in martensitic heat-resistant steel was studied.And the reason why the dissolution rate of delta ferrites decreased with dissolution time was discussed.The experimental results show that the chemical compositions of delta ferrites negligibly change with dissolution time.The decrease of dissolution rate of delta ferrites with dissolution time should be attributed to the change of shape and distribution of delta ferrites.The shape of delta ferrites tends to transfer from polygon to sphere with dissolution time,causing the decrease of specific surface area of delta ferrites.The distribution position of delta ferrites tends to transfer from boundaries of austenite grains to interior of austenite grains with dissolution time,decreasing the diffusion coefficient of alloy atoms.Both them decrease the dissolution rate of delta ferrites.展开更多
基金financially supported by the Natural Science Foundation of Guangdong Province (2022A1515012359)the National Natural Science Foundation of China (21902121)+1 种基金the STU Scientific Research Foundation for Talents (NTF21020)the 2020 Li Ka Shing Foundation Cross-Disciplinary Research Grant (2020LKSFG09A)。
文摘Nafion as a universal polymer ionomer was widely applied for nanocatalysts electrode preparation.However,the effect of Nafion on electrocatalytic performance was often overlooked,especially for CO_(2)electrolysis.Herein,the key roles of Nafion for CO_(2)RR were systematically studied on Cu nanoparticles(NPs)electrocatalyst.We found that Nafion modifier not only inhibit hydrogen evolution reaction(HER)by decreasing the accessibility of H_(2)O from electrolyte to Cu NPs,and increase the CO_(2)concentration at electrocatalyst interface for enhancing the CO_(2)mass transfer process,but also activate CO_(2)molecule by Lewis acid-base interaction between Nafion and CO_(2)to accelerate the formation of^(*)CO,which favor of C–C coupling for boosting C_(2)product generation.Owing to these features,the HER selectivity was suppressed from 40.6%to 16.8%on optimal Cu@Nafion electrode at-1.2 V versus reversible hydrogen electrode(RHE),and as high as 73.5%faradaic efficiencies(FEs)of C_(2)products were achieved at the same applied potential,which was 2.6 times higher than that on bare Cu electrode(~28.3%).In addition,Nafion also contributed to the long-term stability by hinder Cu NPs morphology reconstruction.Thus,this work provides insights into the impact of Nafion on electrocatalytic CO_(2)RR performance.
基金supported by the National Natural Science Foundation of China(Grant Nos.21975127,22105102,and 22135003)Young Elite Scientist Sponsorship Program by CAST(Grant No.YESS20210074)the Fundamental Research Funds for the Central Universities(Grant No.30921011204)。
文摘Heat-resistant energetic materials refer to a type of energetic materials that possess a high melting point,high stability and operational safety. By studying the structures of these energetic materials has showed that the thermal stability can be enhanced by introducing amino groups to form intra/inter-molecular hydrogen bonds, constructing conjugate systems and designing symmetrical structures. This article aims to review the physical and chemical properties of ultra-high temperature heat-resistant energetic compounds and provide valuable theoretical insights for the preparation of ultra-high temperature heatresistant energetic materials. We also analyze the selected 20 heat-resistant energetic materials with decomposition temperatures higher than 350℃, serving as templates for the synthesis of various highperformance heat-resistant energetic materials.
基金supported by the National Natural Science Foundation of China(22005043,52272193)the National Key Research and Development Program of China(2019YFA0709102 and 2020YFA0714502)+1 种基金the Liaoning Revitalization Talents Program(XLYC2007038,XLYC2008032)the Fundamental Research Funds for the Central Universities(DUT22LAB602,DUT22GJ201).
文摘Advanced photovoltaics,such as ultra-flexible perovskite solar cells(UF-PSCs),which are known for their lightweight design and high power-to-mass ratio,have been a long-standing goal that we,as humans,have continuously pursued.Unlike normal PSCs fabricated on rigid substrates,producing high-efficiency UF-PSCs remains a challenge due to the difficulty in achieving full coverage and minimizing defects of metal halide perovskite(MHP)films.In this study,we utilized Al_(2)O_(3) nanoparticles(NPs)as an inorganic surface modifier to enhance the wettability and reduce the roughness of poly-bis(4-phenyl)(2,4,6-trimethylphenyl)amine simultaneously.This approach proves essentials in fabricating UF-PSCs,enabling the deposition of uniform and dense MHP films with full coverage and fewer defects.We systematically investigated the effect of Al_(2)O_(3) NPs on film formation,combining simulation with experiments.Our strategy not only significantly increases the power conversion efficiency(PCE)from 11.96%to 16.33%,but also promotes reproducibility by effectively addressing the short circuit issue commonly encountered in UF-PSCs.Additionally,our UF-PSCs demonstrates good mechanical stability,maintaining 98.6%and 79.0%of their initial PCEs after 10,000 bending cycles with radii of 1.0 and 0.5 mm,respectively.
文摘Spinal cord injury and treatment opportunities:The adult mammalian spinal cord has a very limited capacity for spontaneous regeneration due to various intrinsic molecular and cellular factors.Although the spinal cord neurons have the capacity to regenerate their axons,the expression of growth inhibitory factors,lack or suppression of proper guidance cues,and profound inflammatory responses do not permit successful regeneration(Khyeam et al.,2021).
文摘The low Ni steel modified hy rare earth(3Cr24NiTSiN with an addition of 0.3% Ce)for furnace roller has been developed.Due to the RE(rare earth)addition,a dense oxide film is formed on the steel surface at high temperature,and the oxidation rate is decreased.This film has so good adhesion to the matrix that it will not be peeled off easily.The RE modified steel has excellent oxidation resistance and thermal strength even if being used continuously for a long period at high temperature.This steel roller has a service life of about 4 years com- parable to high Ni steel ones,so the low Ni steel can replace high Ni steel to make furnace roller.The Ni content of this material can be reduced by 65% in comparison with Cr25Ni20Si2 steel,The low Ni steel has better pro- eessing properties including melting,casting and working properties than that of high Ni ones.
基金Project(2013AA031001)supported by the National High-tech Research and Development Program of ChinaProject(2011A080403008)supported by the Major Science and Technology Project of Guangdong Province,China
文摘The microstructures and phase compositions of the as-cast and die-cast Mg-6.02Al-1.03 Sm, Mg-6.05Al-0.98Sm-0.56 Bi and Mg-5.95Al-1.01Sm-0.57 Zn alloys were investigated. Meanwhile, the tensile mechanical and flow properties were tested. The results show that the as-cast microstructure of Mg-6.02Al-1.03 Sm alloy is composed of δ-Mg matrix, discontinuous δ-Mg17Al12 phase and small block Al2 Sm phase with high thermal stability. Rod Mg3Bi2 phase precipitates when Bi is added, while the added metal Zn dissolves into δ-Mg matrix and δ-Mg17Al12 phase. The as-cast alloys exhibit the excellent tensile mechanical property. The tensile strength(δb) and elongation(δ) can reach 205-235 MPa and 8.5%-16.0% at ambient temperature, respectively. Meanwhile, they can also exceed 160 MPa and 14.0% at 423 K, respectively. The die-cast microstructures are refined obviously, and meanwhile the broken second phases distribute dispersedly. The die-cast alloys exhibit better tensile mechanical properties with the values of δb and δ of 240-285 MPa and 8.5%-16.5% at ambient temperature, respectively, and excellent flow property with the flow length of 1870-2420 mm. The die-cast tensile fractures at ambient temperature exhibit a typical character of ductile fracture.
基金Supported by the Harbin Technology Tackle Key Plan (Development Research of Wood-Polymer Composites with High Wood Matrix) and by Heilongjing Nature Science Fund (Composite Mechanism Study of the Wood Polymer).
文摘Wood-polymer composites (WPC) were prepared from wood fiber and four kinds of plastics such as PE, PS, ABS, and SAN. The effects of different modifiers on the mechanical properties of the composites were studied. The results showed modifiers could raise the bonding strength of wood fiber with polymer and improve the mechanical properties of the composites. Different modifiers had different effects on the properties of wood-polymer composites, and comparatively the modifier of isocyanate produced a better result. Wood-polymer composite takes not only the advantages of both wood fiber and polymer, but waterproof, dimensional stability and dynamic strength are also significantly improved. Key word Wood fiber - Thermoplastic polyester - Wood-polymer composites - Modifier - Mechanical properties CLC number TB332 Document code A Foundation item: This study was supported by the Harbin Technology Tackle Key Plan (Development Research of Wood-Polymer Composites with High Wood Matrix) and by Heilongjing Nature Science Fund (Composite Mechanism Study of the Wood Polymer).Biography: XU Min (1963-), Female, Associate professor in Material Science and Engineering College, Northeast Forestry University, Harbin 150040, P. R. China.Responsible editor: Chai Ruihai
文摘Various of modifiers were used to modify the surface activity of white carbon black. The oil absorption, viscosity, hydrophobic rate and burning loss of white carbon black and the mechanical propertiess of silicone rubber were measured. The influences of the modifiers on the properties of white carbon black and the mechanical properties of silicone rubber were discussed.
基金financial support from the National Key Research and Development Program of China(2018YFB0104201).
文摘Boosting the utilization efficiency of sulfur electrodes and suppressing the“shuttle effect”of intermediate polysulfides remain the critical challenge for high-performance lithium-sulfur batteries(LSBs).However,most of reported sulfur electrodes are not competent to realize the fast conversion of polysulfides into insoluble lithium sulfides when applied with high sulfur loading,as well as to mitigate the more serious shuttle effect of polysulfides,especially when worked at an elevated temperature.Herein,we reported a unique structural engineering strategy of crafting a unique hierarchical multifunctional electrode architecture constructed by rooting MOF-derived CoS2/carbon nanoleaf arrays(CoS2-CNA)into a nitrogen-rich 3D conductive scaffold(CTNF@CoS2-CNA)for LSBs.An accelerated electrocatalytic effect and improved polysulfide redox kinetics arising from CoS2-CNA were investigated.Besides,the strong capillarity effect and chemisorption of CTNF@CoS2-CNA to polysulfides enable high loading and efficient utilization of sulfur,thus leading to high-performance LIBs performed not only at room temperature but also up to an elevated temperature(55°C).Even with the ultrahigh sulfur loading of 7.19 mg cm?2,the CTNF@CoS2-CNA/S cathode still exhibits high rate capacity at 55°C.
基金Project(BM2007204)supported by the Jiangsu Key Laboratory of Advanced Metallic Materials,ChinaProject(2242016K40011)supported by the Fundamental Research Funds for the Central Universities,China
文摘The effect of RE addition on solidification process and high-temperature strength of Al-12%Si-4%Cu-1.6%Mn(in wt.%)heat-resistant alloy was investigated by microstructure observation and tensile test.A great number of fine needle-like RE-rich phases are observed in the alloys with RE addition. Solutionizing treatment does not change their morphologies and sizes, indicating that they have good thermal stability. The addition of RE totally alters the solidification process of eutectic CruAl2 phase, from network-like phase in the form of segregation at the final eutectic grain boundaries to discretely blocky phase growing on the hair-filamentous RE-rich needles. In the alloys with Ce addition, blocky CuAl2, particulate Al15Mn3Si2 and needle-like RE-rich needle phases grow together, but they did not occur in the alloy with only La addition. The addition of RE does not considerably improve the strength of the alloy at high temperatures. The formation of RE-rich phases also does not significantly alter the originating and propagating of micro-cracks in the alloy during tensile test.
基金Supported by the National Natural Science Foundation of China(No.20575048).
文摘A novel method for the determination of nickel and palladium in environmental samples by low temperature ETV-ICP-OES with dimethylglyoxime(DMG) as both the extractant and chemical modifier has been developed. In this study, it was found that nickel and palladium can form complexes with dimethylglyoxime(0. 05%, mass fraction) at pH 6.0 and can be extracted into chloroform quantitatively. The complexes can be evaporated into plasma at a suita-ble temperature( 1400℃) for ICP-OES detection. Under the optimized conditions, the detection limits of nickel and palladium are 0.48 and 0. 40 ng/mL, respectively, while the RSD values are separately 5.0% and 3.1% (p = 50 ng/mL, n = 7). The proposed method was applied to the determination of the target analytes in environmental sam-ples with satisfactory results.
基金the Science and Technology Department of Zhejiang Province(No.2006C21072)
文摘By means of the wet chemical surface modification,the surface of CeO_2 was modified by vinyltrimethoxysilane (VTMS).Infrared spectroscopy was used to investigate the structure of the modified CeO_2 and the result showed that VTMS has been attached onto the surface of CeO_2.Effect of VTMS concentration on the active index of the modified CeO_2 was also studied,and the result indicated that the active index of the modified CeO_2 increases with the increase of VTMS concentration and the optimal concentration o...
基金the Key Scientific and Technological Project of Sichuan Province(No.03GG021-002)
文摘Using SrC12-6H2O and Na2CO3 as the main raw materials and adding different complexons as modifiers with simple co-precipitation method, SrCO3 crystals with distinct morphologies like spherical, bundle-like, overlapping plate-like, hexagonal star-like, dumbbell-like, etc. can be synthesized in the ethanol-water mixtures. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectrograph (FT-IR). The interrelated effect mechanism is presented in the end. Results show that the modifier carboxyl groups play a significant role in controlling the SrCO3 crystal morphologies, which can alter the crystal growth unit (Sr^2+) supply mode and induce the crystal formation with the morphologies matching their spatial configurations.
文摘In order to find the effect of different viscosity modifier dosages on asphalt binder's performance in bus rapid transit lanes in the city of Chengdu, three different viscosity modifiers were analyzed: TAFPACK-super (TPS), high-viscosity additive (HVA) and road-science- technology (RST), and four different asphalt binders were investigated through laboratory experiments. The percent- ages of the viscosity modifiers used were: TPS (0%, 8%, 10%, 12%, 14% and 16%) and RST and HVA (8% and 12%) depending on the type of asphalt binder. Technical indicators of modifier asphalt were tested through con- ventional and unconventional binder tests. It has been found out that only a percentage greater than or equal to 14% TPS is reasonable to achieve the requirement set by 20,000 Pa. s for the 60℃ dynamic viscosity on local #70 grade asphalt. The results indicate that conventional bin- ders did not meet the requirements of the 60℃ dynamic viscosity when 12% of TPS or HVA modifiers were used. In addition, the B-type styrene-butadienne-styrene (SBS) modified asphalt binder has better viscosity balance than the A-type SBS modified when 8% of each of the three different kinds of viscosity modifiers is used. Therefore, the B-type modified SBS thus appears to be a suitable choice in asphalt mixtures for bus rapid transit lane with the 60℃ dynamic viscosity.
文摘Just now,pre-modifiers are used more and more frequent than post-modifier in the development of Modern English.The post-modifier also a means of modification has received relatively little attention.In this paper,a basic analysis will be made regarding the types,directions and some comparisons of post-modifiers in forms of examples.Also included are methods suggested to cope with the problems on choosing exact usages.
基金financially supported by the National Natural Science Foundation of China (Nos. 52171057, 52034005, 51901225, and 12027813)the Liaoning Province Excellent Youth Foundation, China (No. 2021-YQ-01)the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. Y2021061)
文摘The reliable welding of T91 heat-resistant steel to 316L stainless steel is a considerable issue for ensuring the safety in service of ultrasupercritical power generation unit and nuclear fusion reactor,but the high-quality dissimilar joint of these two steels was difficult to be obtained by traditional fusion welding methods.Here we improved the structure-property synergy in a dissimilar joint of T91 steel to 316L steel via friction stir welding.A defect-free joint with a large bonding interface was produced using a small-sized tool under a relatively high welding speed.The bonding interface was involved in a mixing zone with both mechanical mixing and metallurgical bonding.No obvious material softening was detected in the joint except a negligible hardness decline of only HV~10 in the heat-affected zone of the T91 steel side due to the formation of ferrite phase.The welded joint exhibited an excellent ultimate tensile strength as high as that of the 316L parent metal and a greatly enhanced yield strength on account of the dependable bonding and material renovation in the weld zone.This work recommends a promising technique for producing high-strength weldments of dissimilar nuclear steels.
文摘A new kind of inelastomer impact modifier with a coreshell structure was synthesized by employing a multistep composite emulsion polymerization technique, the size and morphology structure of the coreshell particles could be controlled by the multistep composite emulsion polymerization technique. The study of the impact strength and the elongation at break of the PVC/CPE blend with different contents of coreshell particles(CS) indicated that the mechanical properties of PVC/CPE/CS composite were the best when the concentration of the particle was 25%(mass fraction) which showed the different regularities and characteristics of elastomer toughening plastic.
基金Funded by State Key Lab of Advanced Welding and Joint,Harbin Institute of Technology(No.09014)the Natural Science Foundation of Hubei Province in China(No.2007ABA040)
文摘The mechanical properties, creep rupture strength, creep damage and failure characteristics of dissimilar metal welded joint (DMWJ) between martensitic (SA213T91) and bainitic heat-resistant steel (12Cr2MoWVTiB(G102)) have been investigated by means of pulsed argon arc welding, high temperature accelerated simulation, mechanical and creep rupture test, and scanning electronic microscope (SEM). The results show that there is a marked drop of mechanical properties of undermatching joint, and low ductility cracking along weld/G102 interface is induced due to creep damage. Creep rupture strength of overmatching joint is the least. The mechanical properties of medium matching joint are superior to those of overmatching and undermatching joint, and creep damage and failure tendency along the interface of weld/G102 are lower than those of overmatching and undermatching joint after accelerated simulation for 500 h, 1 000 h, 1 500 h, and the creep rupture strength of medium matching joint is the same as that of undermatching joint. Therefore, it is reasonable that the medium matching material is used for dissimilar welded joint between martensitic and bainitic steel.
基金Funded by National Natural Science Foundation of China(No.51801058)the Special Program for Guiding Local Science and Technology Development by the Central Government of Hubei Province(No.2019ZYYD006)Hubei Provincial Natural Science Foundation of China(No.2018CFB759)。
文摘The effects of modifiers on the anti-wetting and anti-icing property of the prepared rough aluminum surface were investigated.The rough aluminum substrates were obtained through electrochemical oxidization with 15 wt% sulfuric acid solution as the electrolyte at the constant current of 4 mA for 3 h.And then they were modified with octadecanoic acid (C18),polyethylene (PE),polystyrene (PS),polyethylene glycol (PEG) and hexamethylenetetramine (HMTA),respectively,whose surface free energies were 27.6,31.0,33.0,61.6 and 70.0 mN/m,respectively.The contact angles (CA) were 154.6°,128.4°,127.6°,5.0° and 0.0°,respectively,and the ice adhesion pressures were 15.9,36.3,55.9,155.3 and 216.1 kPa,respectively.The ice adhesion strengths decrease along with the increasing anti-wetting property of aluminum surfaces and the decreasing of the surface energy of modifiers.These provide some new insights when designing the aluminum surface with anti-icing properties in some special applications.
基金Funded by the National Natural Science Foundation of China(No.51701100)the China Postdoctoral Science Foundation(No.2020T130552)the Science and Technology Support Plan for Youth Innovation of Colleges in Shandong Province。
文摘The dissolution behavior of delta ferrites in martensitic heat-resistant steel was studied.And the reason why the dissolution rate of delta ferrites decreased with dissolution time was discussed.The experimental results show that the chemical compositions of delta ferrites negligibly change with dissolution time.The decrease of dissolution rate of delta ferrites with dissolution time should be attributed to the change of shape and distribution of delta ferrites.The shape of delta ferrites tends to transfer from polygon to sphere with dissolution time,causing the decrease of specific surface area of delta ferrites.The distribution position of delta ferrites tends to transfer from boundaries of austenite grains to interior of austenite grains with dissolution time,decreasing the diffusion coefficient of alloy atoms.Both them decrease the dissolution rate of delta ferrites.