As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crud...As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.展开更多
Early and timely diagnosis of stroke is critical for effective treatment,and the electroencephalogram(EEG)offers a low-cost,non-invasive solution.However,the shortage of high-quality patient EEG data often hampers the...Early and timely diagnosis of stroke is critical for effective treatment,and the electroencephalogram(EEG)offers a low-cost,non-invasive solution.However,the shortage of high-quality patient EEG data often hampers the accuracy of diagnostic classification methods based on deep learning.To address this issue,our study designed a deep data amplification model named Progressive Conditional Generative Adversarial Network with Efficient Approximating Self Attention(PCGAN-EASA),which incrementally improves the quality of generated EEG features.This network can yield full-scale,fine-grained EEG features from the low-scale,coarse ones.Specially,to overcome the limitations of traditional generative models that fail to generate features tailored to individual patient characteristics,we developed an encoder with an effective approximating self-attention mechanism.This encoder not only automatically extracts relevant features across different patients but also reduces the computational resource consumption.Furthermore,the adversarial loss and reconstruction loss functions were redesigned to better align with the training characteristics of the network and the spatial correlations among electrodes.Extensive experimental results demonstrate that PCGAN-EASA provides the highest generation quality and the lowest computational resource usage compared to several existing approaches.Additionally,it significantly improves the accuracy of subsequent stroke classification tasks.展开更多
As the demands of massive connections and vast coverage rapidly grow in the next wireless communication networks, rate splitting multiple access(RSMA) is considered to be the new promising access scheme since it can p...As the demands of massive connections and vast coverage rapidly grow in the next wireless communication networks, rate splitting multiple access(RSMA) is considered to be the new promising access scheme since it can provide higher efficiency with limited spectrum resources. In this paper, combining spectrum splitting with rate splitting, we propose to allocate resources with traffic offloading in hybrid satellite terrestrial networks. A novel deep reinforcement learning method is adopted to solve this challenging non-convex problem. However, the neverending learning process could prohibit its practical implementation. Therefore, we introduce the switch mechanism to avoid unnecessary learning. Additionally, the QoS constraint in the scheme can rule out unsuccessful transmission. The simulation results validates the energy efficiency performance and the convergence speed of the proposed algorithm.展开更多
We consider the problem of energy efficiency aware dynamic adaptation of data transmission rate and transmission power of the users in carrier sensing based Wireless Local Area Networks(WLANs)in the presence of path l...We consider the problem of energy efficiency aware dynamic adaptation of data transmission rate and transmission power of the users in carrier sensing based Wireless Local Area Networks(WLANs)in the presence of path loss,Rayleigh fading and log-normal shadowing.For a data packet transmission,we formulate an optimization problem,solve the problem,and propose a rate and transmission power adaptation scheme with a restriction methodology of data packet transmission for achieving the optimal energy efficiency.In the restriction methodology of data packet transmission,a user does not transmit a data packet if the instantaneous channel gain of the user is lower than a threshold.To evaluate the performance of the proposed scheme,we develop analytical models for computing the throughput and energy efficiency of WLANs under the proposed scheme considering a saturation traffic condition.We then validate the analytical models via simulation.We find that the proposed scheme provides better throughput and energy efficiency with acceptable throughput fairness if the restriction methodology of data packet transmission is included.By means of the analytical models and simulations,we demonstrate that the proposed scheme provides significantly higher throughput,energy efficiency and fairness index than a traditional non-adaptive scheme and an existing most relevant adaptive scheme.Throughput and energy efficiency gains obtained by the proposed scheme with respect to the existing adapting scheme are about 75%and 103%,respectively,for a fairness index of 0.8.We also study the effect of various system parameters on throughput and energy efficiency and provide various engineering insights.展开更多
Wireless Body Area Network(WBAN)is a cutting-edge technology that is being used in healthcare applications to monitor critical events in the human body.WBAN is a collection of in-body and on-body sensors that monitor ...Wireless Body Area Network(WBAN)is a cutting-edge technology that is being used in healthcare applications to monitor critical events in the human body.WBAN is a collection of in-body and on-body sensors that monitor human physical parameters such as temperature,blood pressure,pulse rate,oxygen level,body motion,and so on.They sense the data and communicate it to the Body Area Network(BAN)Coordinator.The main challenge for the WBAN is energy consumption.These issues can be addressed by implementing an effective Medium Access Control(MAC)protocol that reduces energy consumption and increases network lifetime.The purpose of the study is to minimize the energy consumption and minimize the delay using IEEE 802.15.4 standard.In our proposed work,if any critical events have occurred the proposed work is to classify and prioritize the data.We gave priority to the highly critical data to get the Guarantee Tine Slots(GTS)in IEEE 802.15.4 standard superframe to achieve greater energy efficiency.The proposed MAC provides higher data rates for critical data based on the history and current condition and also provides the best reliable service to high critical data and critical data by predicting node similarity.As an outcome,we proposed a MAC protocol for Variable Data Rates(MVDR).When compared to existing MAC protocols,the MVDR performed very well with low energy intake,less interruption,and an enhanced packet-sharing ratio.展开更多
In this study, an orthogonal array experiment is conducted by using a transparent fracture network replica. Image processing and theoretical analysis are performed to investigate the model sealing efficiency(SE), fact...In this study, an orthogonal array experiment is conducted by using a transparent fracture network replica. Image processing and theoretical analysis are performed to investigate the model sealing efficiency(SE), factors influencing SE, and the effect of flowing water on propagation. The results show that grout propagation can be classified into three patterns in the fracture network: sealing off, partial sealing,and major erosion. The factors controlling the SE in a descending order of the amount of influence are the initial water flow speed, fracture aperture, grout take, and gel time. An optimal value for the combination of the gel time and grout take(artificial factors) can result in a good SE. The grouting and seepage pressures are measured, and the results reveal that their variations can indicate the SE to some extent. The SE is good when the seepage pressure at each point increases overall;the frequent fluctuations in the seepage pressure indicate a moderately poor SE, and an overall decline in the seepage pressure indicates a major erosion type. The deflection effect of grouting shows an approximately elliptical propagation with the long axis expanding along the wider fracture opening, demonstrating further application in grouting design.展开更多
The inter-bank market network models are constructed based on the inter-bank credit lending relationships, and the network efficiency characters of the Chinese inter-bank market are studied. Since it is impossible to ...The inter-bank market network models are constructed based on the inter-bank credit lending relationships, and the network efficiency characters of the Chinese inter-bank market are studied. Since it is impossible to obtain the specific credit data among banks, this paper estimates the inter-bank lending matrix based on the partial information of banks. Thus, directed network models of the Chinese inter-bank market are constructed by using the threshold method. The network efficiency measures and the effects of random attacks and selective attacks on the global efficiency of the inter-bank network are analyzed based on the network models of the inter-bank market. Empirical results suggest that the efficiency measures are sensitive to the threshold, and that the global efficiency is little affected by random attacks, while it is highly sensitive to selective attacks. Properties such as inter-bank market network efficiency would be useful for risk management and stability of the inter-bank market.展开更多
To maintain their capacity,transportation infrastructures are in need of regular maintenance and rehabilitation.The major challenge facing transportation engineers is the network-level policies to maintain the deterio...To maintain their capacity,transportation infrastructures are in need of regular maintenance and rehabilitation.The major challenge facing transportation engineers is the network-level policies to maintain the deteriorating roads at an acceptable level of serviceability.In this work,a quantitative transportation network efficiency measure is presented and then how to determine optimally network-level road maintenance policy depending on the road importance to the network performance has been demonstrated.The examples show that the different roads should be set different maintenance time points in terms of the retention capacities of the roads,because the different roads play different roles in network and have different important degrees to the network performance.This network-level road maintenance optimization method could not only save lots of infrastructure investments,but also ensure the service level of the existing transportation system.展开更多
Efficiency is an important factor in quantitative and qualitative analysis of radionuclides, and the gamma point source efficiency is related to the radial angle,detection distance, and gamma-ray energy. In this work,...Efficiency is an important factor in quantitative and qualitative analysis of radionuclides, and the gamma point source efficiency is related to the radial angle,detection distance, and gamma-ray energy. In this work, on the basis of a back-propagation(BP) neural network model,a method to determine the gamma point source efficiency is developed and validated. The efficiency of the point sources ^(137)Cs and ^(60)Co at discrete radial angles, detection distances, and gamma-ray energies is measured, and the BP neural network prediction model is constructed using MATLAB. The gamma point source efficiencies at different radial angles, detection distances, and gamma-ray energies are predicted quickly and accurately using this nonlinear prediction model. The results show that the maximum error between the predicted and experimental values is 3.732% at 661.661 keV, 11π/24, and 35 cm, and those under other conditions are less than 3%. The gamma point source efficiencies obtained using the BP neural network model are in good agreement with experimental data.展开更多
The Poisson point process(PPP) has been widely used in wireless network modeling and performance analysis due to the independence between its nodes. Therefore, it may not be a suitable model for many of the exclusive ...The Poisson point process(PPP) has been widely used in wireless network modeling and performance analysis due to the independence between its nodes. Therefore, it may not be a suitable model for many of the exclusive networks between the nodes. This paper analyzes the energy efficiency(EE) and optimizes the two-tier heterogeneous cellular networks(Het Nets). Considering the mutual exclusion between macro base stations(MBSs) distribution, the deployment of MBSs is modeled by the Matérn hard-core point process(MHCPP), and the deployment of pico base stations(PBSs) is modeled by the PPP. We adopt a simple approximation method to study the signal to interference ratio(SIR) distribution in two-tier MHCPP-PPP networks and then derive the coverage probabilities, the average data rates and the energy efficiency of Het Nets. Finally, an optimization algorithm is proposed to improve the EE of Het Nets by controlling the transmit power of PBSs. The simulation results show that the EE of a system can be effectively improved by selecting the appropriate transmit power for the PBSs. In addition, two-tier MHCPP-PPP Het Nets have higher energy efficiency than two-tier PPP-PPP Het Nets.展开更多
We investigated forest road networks and forestry operations before and after mechanization on aggregated forestry operation sites. We developed equations to estimate densities of road networks with average slope angl...We investigated forest road networks and forestry operations before and after mechanization on aggregated forestry operation sites. We developed equations to estimate densities of road networks with average slope angles, operational efficiency of bunching operations with road network density, and average forwarding distances with operation site areas. Subsequently, we analyzed the effects of aggregating forests, establishing forest road networks, and mechanization on operational efficiency and costs. Six ha proved to be an appropriate operation site area with minimum operation expenses. The operation site areas of the forest owners' cooperative in this region aggregated approximately 6 ha and the cooperative conducted forestry operations on aggregated sites. Therefore, 6 ha would be an appropriate operation site area in this region. Regarding road network density, higher-density road networks increased operational expenses due to the higher direct operational expenses of strip road establishment. Therefore, road network density should be reduced to approximately 200 m.展开更多
In every network,delay and energy are crucial for communication and network life.In wireless sensor networks,many tiny nodes create networks with high energy consumption and compute routes for better communication.Wir...In every network,delay and energy are crucial for communication and network life.In wireless sensor networks,many tiny nodes create networks with high energy consumption and compute routes for better communication.Wireless Sensor Networks(WSN)is a very complex scenario to compute minimal delay with data aggregation and energy efficiency.In this research,we compute minimal delay and energy efficiency for improving the quality of service of any WSN.The proposed work is based on energy and distance parameters as taken dependent variables with data aggregation.Data aggregation performs on different models,namely Hybrid-Low Energy Adaptive Clustering Hierarchy(H-LEACH),Low Energy Adaptive Clustering Hierarchy(LEACH),and Multi-Aggregator-based Multi-Cast(MAMC).The main contribution of this research is to a reduction in delay and optimized energy solution,a novel hybrid model design in this research that ensures the quality of service in WSN.This model includes a whale optimization technique that involves heterogeneous functions and performs optimization to reach optimized results.For cluster head selection,Stable Election Protocol(SEP)protocol is used and Power-Efficient Gathering in Sensor Information Systems(PEGASIS)is used for driven-path in routing.Simulation results evaluate that H-LEACH provides minimal delay and energy consumption by sensor nodes.In the comparison of existing theories and our proposed method,HLEACH is providing energy and delay reduction and improvement in quality of service.MATLAB 2019 is used for simulation work.展开更多
With the rising frequency and severity of wildfires across the globe,researchers have been actively searching for a reliable solution for early-stage forest fire detection.In recent years,Convolutional Neural Networks...With the rising frequency and severity of wildfires across the globe,researchers have been actively searching for a reliable solution for early-stage forest fire detection.In recent years,Convolutional Neural Networks(CNNs)have demonstrated outstanding performances in computer vision-based object detection tasks,including forest fire detection.Using CNNs to detect forest fires by segmenting both flame and smoke pixels not only can provide early and accurate detection but also additional information such as the size,spread,location,and movement of the fire.However,CNN-based segmentation networks are computationally demanding and can be difficult to incorporate onboard lightweight mobile platforms,such as an Uncrewed Aerial Vehicle(UAV).To address this issue,this paper has proposed a new efficient upsampling technique based on transposed convolution to make segmentation CNNs lighter.This proposed technique,named Reversed Depthwise Separable Transposed Convolution(RDSTC),achieved F1-scores of 0.78 for smoke and 0.74 for flame,outperforming U-Net networks with bilinear upsampling,transposed convolution,and CARAFE upsampling.Additionally,a Multi-signature Fire Detection Network(MsFireD-Net)has been proposed in this paper,having 93%fewer parameters and 94%fewer computations than the RDSTC U-Net.Despite being such a lightweight and efficient network,MsFireD-Net has demonstrated strong results against the other U-Net-based networks.展开更多
Opportunistic routing(OR) is an effective way to guarantee transmission reliability in wireless multi-hop networks.However,little research focuses on transmission efficiency.Thus,an analytical model based on open queu...Opportunistic routing(OR) is an effective way to guarantee transmission reliability in wireless multi-hop networks.However,little research focuses on transmission efficiency.Thus,an analytical model based on open queuing network with Markov chains was proposed to evaluate the efficiency.By analyzing two typical ORs,we find duplicate transmission and collision avoidance overhead are the root reasons behind inefficiency.Therefore,a new scheme called dual priority cooperative opportunistic routing(DPCOR) was proposed.In DPCOR,forwarding candidates are configured with dual priority,which enables the network to classify forwarding candidates more effectively so as to reduce the back-off time and obtain more diversity gain.Theoretical analysis and simulation results show DPCOR achieves significant performance improvement with less time overhead compared with traditional routings and typical ORs.展开更多
With increasing global shortage of fresh water resources,many countries are prioritizing desalination as a means of utilizing abundantly available seawater resources.Integrated energy efficiency evaluation is a scient...With increasing global shortage of fresh water resources,many countries are prioritizing desalination as a means of utilizing abundantly available seawater resources.Integrated energy efficiency evaluation is a scientific method for the quantitative analysis of energy efficiency based on multiple indicators and is very useful for investment,construction,and scientific decision-making for desalination projects.In this paper,the energy efficiency evaluation of the micro energy network (MEN) of desalination for multi-source and multi-load is studied,and the basic idea of comprehensive energy efficiency evaluation is analyzed.The process includes the use of a MEN model to establish an integrated energy efficiency evaluation index system,taking into consideration energy,equipment,economic,environmental,and social factors.A combined evaluation method considering subjective and objective comprehensive weights for multi-source multi-load desalination MENs is proposed to evaluate the energy efficiency of desalination and from multiple perspectives.展开更多
One of the major constraints of wireless sensor networks is limited energy available to sensor nodes because of the small size of the batteries they use as source of power. Clustering is one of the routing techniques ...One of the major constraints of wireless sensor networks is limited energy available to sensor nodes because of the small size of the batteries they use as source of power. Clustering is one of the routing techniques that have been using to minimize sensor nodes’ energy consumption during operation. In this paper, A Novel Clustering Algorithm for Energy Efficiency in Wireless Sensor Networks (ANCAEE) has been proposed. The algorithm achieves good performance in terms of minimizing energy consumption during data transmission and energy consumptions are distributed uniformly among all nodes. ANCAEE uses a new method of clusters formation and election of cluster heads. The algorithm ensures that a node transmits its data to the cluster head with a single hop transmission and cluster heads forward their data to the base station with multi-hop transmissions. Simulation results show that our approach consumes less energy and effectively extends network utilization.展开更多
In this paper,we develop a 6G wireless powered Internet of Things(IoT)system assisted by unmanned aerial vehicles(UAVs)to intelligently supply energy and collect data at the same time.In our dual-UAV scheme,UAV-E,with...In this paper,we develop a 6G wireless powered Internet of Things(IoT)system assisted by unmanned aerial vehicles(UAVs)to intelligently supply energy and collect data at the same time.In our dual-UAV scheme,UAV-E,with a constant power supply,transmits energy to charge the IoT devices on the ground,whereas UAV-B serves the IoT devices by data collection as a base station.In this framework,the system's energy efficiency is maximized,which we define as a ratio of the sum rate of IoT devices to the energy consumption of two UAVs during a fixed working duration.With the constraints of duration,transmit power,energy,and mobility,a difficult non-convex issue is presented by optimizing the trajectory,time duration allocation,and uplink transmit power of concurrently.To tackle the non-convex fractional optimization issue,we deconstruct it into three subproblems and we solve each of them iteratively using the descent method in conjunction with sequential convex approximation(SCA)approaches and the Dinkelbach algorithm.The simulation findings indicate that the suggested cooperative design has the potential to greatly increase the energy efficiency of the 6G intelligent UAV-assisted wireless powered IoT system when compared to previous benchmark systems.展开更多
To meet the communication services with diverse requirements,dynamic resource allocation has shown increasing importance.In this paper,we consider the multi-slot and multi-user resource allocation(MSMU-RA)in a downlin...To meet the communication services with diverse requirements,dynamic resource allocation has shown increasing importance.In this paper,we consider the multi-slot and multi-user resource allocation(MSMU-RA)in a downlink cellular scenario with the aim of maximizing system spectral efficiency while guaranteeing user fairness.We first model the MSMURA problem as a dual-sequence decision-making process,and then solve it by a novel Transformerbased deep reinforcement learning(TDRL)approach.Specifically,the proposed TDRL approach can be achieved based on two aspects:1)To adapt to the dynamic wireless environment,the proximal policy optimization(PPO)algorithm is used to optimize the multi-slot RA strategy.2)To avoid co-channel interference,the Transformer-based PPO algorithm is presented to obtain the optimal multi-user RA scheme by exploring the mapping between user sequence and resource sequence.Experimental results show that:i)the proposed approach outperforms both the traditional and DRL methods in spectral efficiency and user fairness,ii)the proposed algorithm is superior to DRL approaches in terms of convergence speed and generalization performance.展开更多
The seamless integration of intelligent Internet of Things devices with conventional wireless sensor networks has revolutionized data communication for different applications,such as remote health monitoring,industria...The seamless integration of intelligent Internet of Things devices with conventional wireless sensor networks has revolutionized data communication for different applications,such as remote health monitoring,industrial monitoring,transportation,and smart agriculture.Efficient and reliable data routing is one of the major challenges in the Internet of Things network due to the heterogeneity of nodes.This paper presents a traffic-aware,cluster-based,and energy-efficient routing protocol that employs traffic-aware and cluster-based techniques to improve the data delivery in such networks.The proposed protocol divides the network into clusters where optimal cluster heads are selected among super and normal nodes based on their residual energies.The protocol considers multi-criteria attributes,i.e.,energy,traffic load,and distance parameters to select the next hop for data delivery towards the base station.The performance of the proposed protocol is evaluated through the network simulator NS3.40.For different traffic rates,number of nodes,and different packet sizes,the proposed protocol outperformed LoRaWAN in terms of end-to-end packet delivery ratio,energy consumption,end-to-end delay,and network lifetime.For 100 nodes,the proposed protocol achieved a 13%improvement in packet delivery ratio,10 ms improvement in delay,and 10 mJ improvement in average energy consumption over LoRaWAN.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(52074089 and 52104064)Natural Science Foundation of Heilongjiang Province of China(LH2019E019).
文摘As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.
基金supported by the General Program under grant funded by the National Natural Science Foundation of China(NSFC)(No.62171307)the Basic Research Program of Shanxi Province under grant funded by the Department of Science and Technology of Shanxi Province(China)(No.202103021224113).
文摘Early and timely diagnosis of stroke is critical for effective treatment,and the electroencephalogram(EEG)offers a low-cost,non-invasive solution.However,the shortage of high-quality patient EEG data often hampers the accuracy of diagnostic classification methods based on deep learning.To address this issue,our study designed a deep data amplification model named Progressive Conditional Generative Adversarial Network with Efficient Approximating Self Attention(PCGAN-EASA),which incrementally improves the quality of generated EEG features.This network can yield full-scale,fine-grained EEG features from the low-scale,coarse ones.Specially,to overcome the limitations of traditional generative models that fail to generate features tailored to individual patient characteristics,we developed an encoder with an effective approximating self-attention mechanism.This encoder not only automatically extracts relevant features across different patients but also reduces the computational resource consumption.Furthermore,the adversarial loss and reconstruction loss functions were redesigned to better align with the training characteristics of the network and the spatial correlations among electrodes.Extensive experimental results demonstrate that PCGAN-EASA provides the highest generation quality and the lowest computational resource usage compared to several existing approaches.Additionally,it significantly improves the accuracy of subsequent stroke classification tasks.
文摘As the demands of massive connections and vast coverage rapidly grow in the next wireless communication networks, rate splitting multiple access(RSMA) is considered to be the new promising access scheme since it can provide higher efficiency with limited spectrum resources. In this paper, combining spectrum splitting with rate splitting, we propose to allocate resources with traffic offloading in hybrid satellite terrestrial networks. A novel deep reinforcement learning method is adopted to solve this challenging non-convex problem. However, the neverending learning process could prohibit its practical implementation. Therefore, we introduce the switch mechanism to avoid unnecessary learning. Additionally, the QoS constraint in the scheme can rule out unsuccessful transmission. The simulation results validates the energy efficiency performance and the convergence speed of the proposed algorithm.
文摘We consider the problem of energy efficiency aware dynamic adaptation of data transmission rate and transmission power of the users in carrier sensing based Wireless Local Area Networks(WLANs)in the presence of path loss,Rayleigh fading and log-normal shadowing.For a data packet transmission,we formulate an optimization problem,solve the problem,and propose a rate and transmission power adaptation scheme with a restriction methodology of data packet transmission for achieving the optimal energy efficiency.In the restriction methodology of data packet transmission,a user does not transmit a data packet if the instantaneous channel gain of the user is lower than a threshold.To evaluate the performance of the proposed scheme,we develop analytical models for computing the throughput and energy efficiency of WLANs under the proposed scheme considering a saturation traffic condition.We then validate the analytical models via simulation.We find that the proposed scheme provides better throughput and energy efficiency with acceptable throughput fairness if the restriction methodology of data packet transmission is included.By means of the analytical models and simulations,we demonstrate that the proposed scheme provides significantly higher throughput,energy efficiency and fairness index than a traditional non-adaptive scheme and an existing most relevant adaptive scheme.Throughput and energy efficiency gains obtained by the proposed scheme with respect to the existing adapting scheme are about 75%and 103%,respectively,for a fairness index of 0.8.We also study the effect of various system parameters on throughput and energy efficiency and provide various engineering insights.
文摘Wireless Body Area Network(WBAN)is a cutting-edge technology that is being used in healthcare applications to monitor critical events in the human body.WBAN is a collection of in-body and on-body sensors that monitor human physical parameters such as temperature,blood pressure,pulse rate,oxygen level,body motion,and so on.They sense the data and communicate it to the Body Area Network(BAN)Coordinator.The main challenge for the WBAN is energy consumption.These issues can be addressed by implementing an effective Medium Access Control(MAC)protocol that reduces energy consumption and increases network lifetime.The purpose of the study is to minimize the energy consumption and minimize the delay using IEEE 802.15.4 standard.In our proposed work,if any critical events have occurred the proposed work is to classify and prioritize the data.We gave priority to the highly critical data to get the Guarantee Tine Slots(GTS)in IEEE 802.15.4 standard superframe to achieve greater energy efficiency.The proposed MAC provides higher data rates for critical data based on the history and current condition and also provides the best reliable service to high critical data and critical data by predicting node similarity.As an outcome,we proposed a MAC protocol for Variable Data Rates(MVDR).When compared to existing MAC protocols,the MVDR performed very well with low energy intake,less interruption,and an enhanced packet-sharing ratio.
基金supported by the Natural Science Foundation of China under (Nos. 42172293, 4190020747, and 41472268)。
文摘In this study, an orthogonal array experiment is conducted by using a transparent fracture network replica. Image processing and theoretical analysis are performed to investigate the model sealing efficiency(SE), factors influencing SE, and the effect of flowing water on propagation. The results show that grout propagation can be classified into three patterns in the fracture network: sealing off, partial sealing,and major erosion. The factors controlling the SE in a descending order of the amount of influence are the initial water flow speed, fracture aperture, grout take, and gel time. An optimal value for the combination of the gel time and grout take(artificial factors) can result in a good SE. The grouting and seepage pressures are measured, and the results reveal that their variations can indicate the SE to some extent. The SE is good when the seepage pressure at each point increases overall;the frequent fluctuations in the seepage pressure indicate a moderately poor SE, and an overall decline in the seepage pressure indicates a major erosion type. The deflection effect of grouting shows an approximately elliptical propagation with the long axis expanding along the wider fracture opening, demonstrating further application in grouting design.
基金The National Natural Science Foundation of China (No.70671025)the Scientific Research Foundation of Graduate School of Southeast University (No.YBJJ1014)
文摘The inter-bank market network models are constructed based on the inter-bank credit lending relationships, and the network efficiency characters of the Chinese inter-bank market are studied. Since it is impossible to obtain the specific credit data among banks, this paper estimates the inter-bank lending matrix based on the partial information of banks. Thus, directed network models of the Chinese inter-bank market are constructed by using the threshold method. The network efficiency measures and the effects of random attacks and selective attacks on the global efficiency of the inter-bank network are analyzed based on the network models of the inter-bank market. Empirical results suggest that the efficiency measures are sensitive to the threshold, and that the global efficiency is little affected by random attacks, while it is highly sensitive to selective attacks. Properties such as inter-bank market network efficiency would be useful for risk management and stability of the inter-bank market.
基金Project(71101155)supported by the National Natural Science Foundation of ChinaProject(2015JJ2184)supported by the Natural Science Foundation of Hunan Province,China
文摘To maintain their capacity,transportation infrastructures are in need of regular maintenance and rehabilitation.The major challenge facing transportation engineers is the network-level policies to maintain the deteriorating roads at an acceptable level of serviceability.In this work,a quantitative transportation network efficiency measure is presented and then how to determine optimally network-level road maintenance policy depending on the road importance to the network performance has been demonstrated.The examples show that the different roads should be set different maintenance time points in terms of the retention capacities of the roads,because the different roads play different roles in network and have different important degrees to the network performance.This network-level road maintenance optimization method could not only save lots of infrastructure investments,but also ensure the service level of the existing transportation system.
基金supported by the National Natural Science Foundation of China(Nos.41374130 and 41604154)Science and Technology Program of Sichuan,China(No.2017GZ0359)+1 种基金Science and Technology Support Program of Sichuan,China(No.2015JY0007)Open Foundation for Artificial Intelligence Key Laboratory of Sichuan Province of China(No.2016RYJ08)
文摘Efficiency is an important factor in quantitative and qualitative analysis of radionuclides, and the gamma point source efficiency is related to the radial angle,detection distance, and gamma-ray energy. In this work, on the basis of a back-propagation(BP) neural network model,a method to determine the gamma point source efficiency is developed and validated. The efficiency of the point sources ^(137)Cs and ^(60)Co at discrete radial angles, detection distances, and gamma-ray energies is measured, and the BP neural network prediction model is constructed using MATLAB. The gamma point source efficiencies at different radial angles, detection distances, and gamma-ray energies are predicted quickly and accurately using this nonlinear prediction model. The results show that the maximum error between the predicted and experimental values is 3.732% at 661.661 keV, 11π/24, and 35 cm, and those under other conditions are less than 3%. The gamma point source efficiencies obtained using the BP neural network model are in good agreement with experimental data.
基金partly supported by the National Natural Science Foundation of China(Grant No.61871241,No.61701221)the Natural Science Foundation of Jiangsu Province(No.BK20160781)+1 种基金Nantong Science and Technology Project(No.JC2018127,No.JC2019117)the Research Innovation Project for College Graduates of Jiangsu Province(No.KYLX16_0662)。
文摘The Poisson point process(PPP) has been widely used in wireless network modeling and performance analysis due to the independence between its nodes. Therefore, it may not be a suitable model for many of the exclusive networks between the nodes. This paper analyzes the energy efficiency(EE) and optimizes the two-tier heterogeneous cellular networks(Het Nets). Considering the mutual exclusion between macro base stations(MBSs) distribution, the deployment of MBSs is modeled by the Matérn hard-core point process(MHCPP), and the deployment of pico base stations(PBSs) is modeled by the PPP. We adopt a simple approximation method to study the signal to interference ratio(SIR) distribution in two-tier MHCPP-PPP networks and then derive the coverage probabilities, the average data rates and the energy efficiency of Het Nets. Finally, an optimization algorithm is proposed to improve the EE of Het Nets by controlling the transmit power of PBSs. The simulation results show that the EE of a system can be effectively improved by selecting the appropriate transmit power for the PBSs. In addition, two-tier MHCPP-PPP Het Nets have higher energy efficiency than two-tier PPP-PPP Het Nets.
文摘We investigated forest road networks and forestry operations before and after mechanization on aggregated forestry operation sites. We developed equations to estimate densities of road networks with average slope angles, operational efficiency of bunching operations with road network density, and average forwarding distances with operation site areas. Subsequently, we analyzed the effects of aggregating forests, establishing forest road networks, and mechanization on operational efficiency and costs. Six ha proved to be an appropriate operation site area with minimum operation expenses. The operation site areas of the forest owners' cooperative in this region aggregated approximately 6 ha and the cooperative conducted forestry operations on aggregated sites. Therefore, 6 ha would be an appropriate operation site area in this region. Regarding road network density, higher-density road networks increased operational expenses due to the higher direct operational expenses of strip road establishment. Therefore, road network density should be reduced to approximately 200 m.
基金The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Collaboration Funding program Grant Code NU/RC/SERC/11/7.
文摘In every network,delay and energy are crucial for communication and network life.In wireless sensor networks,many tiny nodes create networks with high energy consumption and compute routes for better communication.Wireless Sensor Networks(WSN)is a very complex scenario to compute minimal delay with data aggregation and energy efficiency.In this research,we compute minimal delay and energy efficiency for improving the quality of service of any WSN.The proposed work is based on energy and distance parameters as taken dependent variables with data aggregation.Data aggregation performs on different models,namely Hybrid-Low Energy Adaptive Clustering Hierarchy(H-LEACH),Low Energy Adaptive Clustering Hierarchy(LEACH),and Multi-Aggregator-based Multi-Cast(MAMC).The main contribution of this research is to a reduction in delay and optimized energy solution,a novel hybrid model design in this research that ensures the quality of service in WSN.This model includes a whale optimization technique that involves heterogeneous functions and performs optimization to reach optimized results.For cluster head selection,Stable Election Protocol(SEP)protocol is used and Power-Efficient Gathering in Sensor Information Systems(PEGASIS)is used for driven-path in routing.Simulation results evaluate that H-LEACH provides minimal delay and energy consumption by sensor nodes.In the comparison of existing theories and our proposed method,HLEACH is providing energy and delay reduction and improvement in quality of service.MATLAB 2019 is used for simulation work.
文摘With the rising frequency and severity of wildfires across the globe,researchers have been actively searching for a reliable solution for early-stage forest fire detection.In recent years,Convolutional Neural Networks(CNNs)have demonstrated outstanding performances in computer vision-based object detection tasks,including forest fire detection.Using CNNs to detect forest fires by segmenting both flame and smoke pixels not only can provide early and accurate detection but also additional information such as the size,spread,location,and movement of the fire.However,CNN-based segmentation networks are computationally demanding and can be difficult to incorporate onboard lightweight mobile platforms,such as an Uncrewed Aerial Vehicle(UAV).To address this issue,this paper has proposed a new efficient upsampling technique based on transposed convolution to make segmentation CNNs lighter.This proposed technique,named Reversed Depthwise Separable Transposed Convolution(RDSTC),achieved F1-scores of 0.78 for smoke and 0.74 for flame,outperforming U-Net networks with bilinear upsampling,transposed convolution,and CARAFE upsampling.Additionally,a Multi-signature Fire Detection Network(MsFireD-Net)has been proposed in this paper,having 93%fewer parameters and 94%fewer computations than the RDSTC U-Net.Despite being such a lightweight and efficient network,MsFireD-Net has demonstrated strong results against the other U-Net-based networks.
基金supported by the National Science and Technology Major Projects under Grant No.2011ZX03001-007-03
文摘Opportunistic routing(OR) is an effective way to guarantee transmission reliability in wireless multi-hop networks.However,little research focuses on transmission efficiency.Thus,an analytical model based on open queuing network with Markov chains was proposed to evaluate the efficiency.By analyzing two typical ORs,we find duplicate transmission and collision avoidance overhead are the root reasons behind inefficiency.Therefore,a new scheme called dual priority cooperative opportunistic routing(DPCOR) was proposed.In DPCOR,forwarding candidates are configured with dual priority,which enables the network to classify forwarding candidates more effectively so as to reduce the back-off time and obtain more diversity gain.Theoretical analysis and simulation results show DPCOR achieves significant performance improvement with less time overhead compared with traditional routings and typical ORs.
基金supported by the State Grid Corporation of China project titled “Study on Multisource and Multi-load Coordination and Optimization Technology Considering Desalination of Sea Water”(SGTJDK00DWJS1800011)
文摘With increasing global shortage of fresh water resources,many countries are prioritizing desalination as a means of utilizing abundantly available seawater resources.Integrated energy efficiency evaluation is a scientific method for the quantitative analysis of energy efficiency based on multiple indicators and is very useful for investment,construction,and scientific decision-making for desalination projects.In this paper,the energy efficiency evaluation of the micro energy network (MEN) of desalination for multi-source and multi-load is studied,and the basic idea of comprehensive energy efficiency evaluation is analyzed.The process includes the use of a MEN model to establish an integrated energy efficiency evaluation index system,taking into consideration energy,equipment,economic,environmental,and social factors.A combined evaluation method considering subjective and objective comprehensive weights for multi-source multi-load desalination MENs is proposed to evaluate the energy efficiency of desalination and from multiple perspectives.
文摘One of the major constraints of wireless sensor networks is limited energy available to sensor nodes because of the small size of the batteries they use as source of power. Clustering is one of the routing techniques that have been using to minimize sensor nodes’ energy consumption during operation. In this paper, A Novel Clustering Algorithm for Energy Efficiency in Wireless Sensor Networks (ANCAEE) has been proposed. The algorithm achieves good performance in terms of minimizing energy consumption during data transmission and energy consumptions are distributed uniformly among all nodes. ANCAEE uses a new method of clusters formation and election of cluster heads. The algorithm ensures that a node transmits its data to the cluster head with a single hop transmission and cluster heads forward their data to the base station with multi-hop transmissions. Simulation results show that our approach consumes less energy and effectively extends network utilization.
基金supported by the Natural Science Foundation of Beijing Municipality under Grant L192034。
文摘In this paper,we develop a 6G wireless powered Internet of Things(IoT)system assisted by unmanned aerial vehicles(UAVs)to intelligently supply energy and collect data at the same time.In our dual-UAV scheme,UAV-E,with a constant power supply,transmits energy to charge the IoT devices on the ground,whereas UAV-B serves the IoT devices by data collection as a base station.In this framework,the system's energy efficiency is maximized,which we define as a ratio of the sum rate of IoT devices to the energy consumption of two UAVs during a fixed working duration.With the constraints of duration,transmit power,energy,and mobility,a difficult non-convex issue is presented by optimizing the trajectory,time duration allocation,and uplink transmit power of concurrently.To tackle the non-convex fractional optimization issue,we deconstruct it into three subproblems and we solve each of them iteratively using the descent method in conjunction with sequential convex approximation(SCA)approaches and the Dinkelbach algorithm.The simulation findings indicate that the suggested cooperative design has the potential to greatly increase the energy efficiency of the 6G intelligent UAV-assisted wireless powered IoT system when compared to previous benchmark systems.
基金supported by the National Natural Science Foundation of China(No.62071354)the Key Research and Development Program of Shaanxi(No.2022ZDLGY05-08)supported by the ISN State Key Laboratory。
文摘To meet the communication services with diverse requirements,dynamic resource allocation has shown increasing importance.In this paper,we consider the multi-slot and multi-user resource allocation(MSMU-RA)in a downlink cellular scenario with the aim of maximizing system spectral efficiency while guaranteeing user fairness.We first model the MSMURA problem as a dual-sequence decision-making process,and then solve it by a novel Transformerbased deep reinforcement learning(TDRL)approach.Specifically,the proposed TDRL approach can be achieved based on two aspects:1)To adapt to the dynamic wireless environment,the proximal policy optimization(PPO)algorithm is used to optimize the multi-slot RA strategy.2)To avoid co-channel interference,the Transformer-based PPO algorithm is presented to obtain the optimal multi-user RA scheme by exploring the mapping between user sequence and resource sequence.Experimental results show that:i)the proposed approach outperforms both the traditional and DRL methods in spectral efficiency and user fairness,ii)the proposed algorithm is superior to DRL approaches in terms of convergence speed and generalization performance.
基金This work was supported by the Basic Science Research Program through the NationalResearch Foundation ofKorea(NRF)funded by the Ministry of Education under Grant RS-2023-00237300 and Korea Institute of Planning and Evaluation for Technology in Food,Agriculture and Forestry(IPET)through the Agriculture and Food Convergence Technologies Program for Research Manpower Development,funded by Ministry of Agriculture,Food and Rural Affairs(MAFRA)(Project No.RS-2024-00397026).
文摘The seamless integration of intelligent Internet of Things devices with conventional wireless sensor networks has revolutionized data communication for different applications,such as remote health monitoring,industrial monitoring,transportation,and smart agriculture.Efficient and reliable data routing is one of the major challenges in the Internet of Things network due to the heterogeneity of nodes.This paper presents a traffic-aware,cluster-based,and energy-efficient routing protocol that employs traffic-aware and cluster-based techniques to improve the data delivery in such networks.The proposed protocol divides the network into clusters where optimal cluster heads are selected among super and normal nodes based on their residual energies.The protocol considers multi-criteria attributes,i.e.,energy,traffic load,and distance parameters to select the next hop for data delivery towards the base station.The performance of the proposed protocol is evaluated through the network simulator NS3.40.For different traffic rates,number of nodes,and different packet sizes,the proposed protocol outperformed LoRaWAN in terms of end-to-end packet delivery ratio,energy consumption,end-to-end delay,and network lifetime.For 100 nodes,the proposed protocol achieved a 13%improvement in packet delivery ratio,10 ms improvement in delay,and 10 mJ improvement in average energy consumption over LoRaWAN.