期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
Synthesis strategies of covalent organic frameworks: An overview from nonconventional heating methods and reaction media
1
作者 Jing Xiao Jia Chen +2 位作者 Juewen Liu Hirotaka Ihara Hongdeng Qiu 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第6期1596-1618,共23页
Covalent organic frameworks(COFs), as an emerging class of porous crystalline materials constructed by covalent links between the building monomers, have gained tremendous attention. Over the past 15 years, COFs have ... Covalent organic frameworks(COFs), as an emerging class of porous crystalline materials constructed by covalent links between the building monomers, have gained tremendous attention. Over the past 15 years, COFs have made rapid progress and substantial development in the chemistry and materials fields. However, the synthesis of COFs has been dominated by solvothermal methods for a long time and it usually involves high temperature, high pressure and toxic organic solvents, which created many challenges for environmental considerations. Recently,the exploration of new approaches for facile fabrication of COFs has aroused extensive interest. Hence, in this review, we comprehensively describe the synthetic strategies of COFs from the aspects of nonconventional heating methods and reaction media. In addition, the advantages,limitations and properties of the preparation methods are compared. Finally, we outline the main challenges and development prospects of the synthesis of COFs in the future and propose some possible solutions. 展开更多
关键词 Covalent organic frameworks heating methods Reaction media Synthesis strategy Formation mechanism
下载PDF
Catalytic CVD Growth of Carbon Nanotubes by Electric Heating Method
2
作者 徐先锋 欧阳甜 +3 位作者 CHAI Lingzhi ZENG Lingsheng LI Gang CHEN Yue 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第1期136-139,共4页
Carbon nanotubes(CNTs) were synthesized by the electric heating catalytic chemical deposition method(CCVD) using acetylene(C2H2) as the carbon source and nitrogen(N2) as carrier gas,and nickel catalyst was loa... Carbon nanotubes(CNTs) were synthesized by the electric heating catalytic chemical deposition method(CCVD) using acetylene(C2H2) as the carbon source and nitrogen(N2) as carrier gas,and nickel catalyst was loaded by electroplating.The electric heating method,as a new method,electrifies the carbon fiber directly by using its conductivity.The morphology and structure of CNTs were characterized by SEM and TEM,and the surface properties of carbon fibers before and after the growth of CNT were characterized by Raman spectroscopy.The experimental results show that the electric heating method is a new method to produce CNT,and can grow a large number of CNTs in a short time,the crystallization degree and surface average crystallite size of carbon fiber increased after the growth of CNT on it.In addition,electroplating loading catalyst can also be used as an ideal loading way,which can control the number,shape,and distribution of nickel particles by controlling the plating time. 展开更多
关键词 electric heating method catalytic CVD nickel plating carbon nanotubes
下载PDF
Preheating method of lithium-ion batteries in an electric vehicle 被引量:2
3
作者 Zhiguo LEI Chengning ZHANG +2 位作者 Junqiu LI Guangchong FAN Zhewei LIN 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2015年第2期289-296,共8页
To improve the low-temperature charge-discharge performance of lithium-ion battery,low-temperature experiments of the charge-discharge characteristics of 35 Ah high-power lithium-ion batteries have been conducted,and ... To improve the low-temperature charge-discharge performance of lithium-ion battery,low-temperature experiments of the charge-discharge characteristics of 35 Ah high-power lithium-ion batteries have been conducted,and the wide-line metal film method for heating batteries is presented.At-40℃,heating and charge-discharge experiments have been performed on the battery pack.The results indicate the charge-discharge performance is substantially worse in cold climates,and can be significantly improved by heating the battery pack with a wide-line metal film.Pulse charge-discharge experiments show that at-40℃ambient temperature,the heated battery pack can charge or discharge at high current and offer almost80%power. 展开更多
关键词 Lithium-ion battery Charge-discharge characteristics Low-temperature performance Electric vehicles heating method
原文传递
Study on the Pyrolytic Carbon Generated by the Electric Heating CVD Method 被引量:1
4
作者 徐先锋 欧阳甜 +1 位作者 ZENG Lingsheng CHAI Lingzhi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第2期409-413,共5页
A new method of fabricating C/C composite materials, namely electric heating CVD method, was used, which electrified the carbon fiber directly by using the conductivity of itself. Acetylene was used as the carbon sour... A new method of fabricating C/C composite materials, namely electric heating CVD method, was used, which electrified the carbon fiber directly by using the conductivity of itself. Acetylene was used as the carbon source with nitrogen as dilution gas, and the pyrolytic carbon started to deposit on the carbon fiber surface when the deposition temperature was reached. The morphology of pyrolytic carbon was characterized by SEM, and the surface properties of carbon fibers before and after CVD were characterized by Raman spectroscopy. The experimental results show that the electric heating method is a novel method to fabricate C/C composite materials, which can form a dense C/C composite material in a short time. The order degree and the average crystallite size of the carbon fiber surface were decreased after the experiment. 展开更多
关键词 C/C composite materials electric heating method chemical vapor deposition pyrolytic carbon
下载PDF
CoNi nanoparticles anchored inside carbon nanotube networks by transient heating:Low loading and high activity for oxygen reduction and evolution
5
作者 Chengfeng Zhu Wei Yang +5 位作者 Jiangtao Di Sha Zeng Jian Qiao Xiaona Wang Bo Lv Qingwen Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期63-71,共9页
Transitional metal alloy and compounds have been developed as the low cost and efficient bifunctional electrocatalysts for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).However,a high mass loading o... Transitional metal alloy and compounds have been developed as the low cost and efficient bifunctional electrocatalysts for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).However,a high mass loading of these catalysts is commonly needed to achieve acceptable catalytic performance,which could cause such problems as battery weight gain,mass transport blocking,and catalyst loss.We report herein the preparation of fine CoNi nanoparticles(5-6 nm)anchored inside a nitrogendoped defective carbon nanotube network(CoNi@N-DCNT)by a transient Joule heating method.When utilized as an electrocatalyst for oxygen reduction and evolution in alkaline media,the CoNi@N-DCNT film catalyst with a very low mass loading of 0.06 mg cm^(-2) showed excellent bifunctional catalytic performance.For ORR,the onset potential(Eonset)and the half-wave potential(E_(1/2))were 0.92 V versus reversible hydrogen electrode(vs.RHE)and 0.83 V(vs.RHE),respectively.For OER,the potential at the current density(J)of 10 mA cm^(-2)(E_(10))was 1.53 V,resulting in an overpotential of 300 mV much lower than that of the commercial RuO_(2) catalyst(320 mV).The potential gap between E_(1/2) and E_(10) was as small as 0.7 V.Considering the low mass loading,the mass activity at E_(10) reached at 123.2 A g^(-1),much larger than that of the RuO_(2) catalyst and literature results of transitional metal-based bifunctional catalysts.Moreover,the CoNi@N-DCNT film catalyst showed very good long-term stability during the ORR and OER test.The excellent bifunctional catalytic performance could be attributed to the synergistic effect of the bimetal alloy. 展开更多
关键词 Transient Joule heating method Carbon nanotubes Nano alloy Low loading Bifunctional catalyst
下载PDF
Analysis of Steel Slag Treatment Process and Comprehensive Utilization
6
作者 Youhua Wu Minqing Song 《Frontiers of Metallurgical Industry》 2024年第2期47-51,共5页
As a by-product of steel enterprises,steel slag has a huge output and is rich in valuable minerals,but its comprehensive utilization rate is very low.The article mainly introduces the hot splashing method,hot sealing ... As a by-product of steel enterprises,steel slag has a huge output and is rich in valuable minerals,but its comprehensive utilization rate is very low.The article mainly introduces the hot splashing method,hot sealing method,and drum method for the treatment of steel slag outside the furnace,and compares and analyzes the advantages and disadvantages of the production operation process and steel slag treatment process.At the same time,it also introduces the residual slag+double slag process and gasification dephosphorization slag circulation steelmaking technology for steel slag treatment inside the furnace,providing direction for steel enterprises to clean and comprehensively utilize steel slag. 展开更多
关键词 drum method heat splashing method heat stuffiness method gasification dephosphorization slag residue+double residue
下载PDF
A new hybrid method—combined heat flux method with Monte-Carlo method to analyze thermal radiation 被引量:2
7
作者 Zengwu Zhao Daqiang Cang +2 位作者 Wenfei Wu Yike Li Baowei Li 《Journal of University of Science and Technology Beijing》 CSCD 2006年第1期25-28,共4页
A new hybrid method, Monte-Carlo-Heat-Flux (MCHF) method, was presented to analyze the radiative heat transfer of participating medium in a three-dimensional rectangular enclosure using combined the Monte-Carlo meth... A new hybrid method, Monte-Carlo-Heat-Flux (MCHF) method, was presented to analyze the radiative heat transfer of participating medium in a three-dimensional rectangular enclosure using combined the Monte-Carlo method with the heat flux method. Its accuracy and reliability was proved by comparing the computational results with exact results from classical "Zone Method". 展开更多
关键词 radiation heat transfer SCATTERING numerical simulation Monte-Carlo method heat flux method
下载PDF
Combining the complex variable reproducing kernel particle method and the finite element method for solving transient heat conduction problems 被引量:2
8
作者 陈丽 马和平 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第5期67-74,共8页
In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE metho... In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE method not only conveniently imposes the essential boundary conditions, but also exploits the advantages of the individual methods while avoiding their disadvantages, then the computational efficiency is higher. A hybrid approximation function is applied to combine the CVRKP method with the FE method, and the traditional difference method for two-point boundary value problems is selected as the time discretization scheme. The corresponding formulations of the CVRKP-FE method are presented in detail. Several selected numerical examples of the transient heat conduction problems are presented to illustrate the performance of the CVRKP-FE method. 展开更多
关键词 complex variable reproducing kernel particle method finite element method combined method transient heat conduction
下载PDF
Streamline upwind finite element method for conjugate heat transfer problems 被引量:3
9
作者 Niphon Wansophark Atipong Malatip Pramote Dechaumphai 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第5期436-443,共8页
This paper presents a combined finite element method for solving conjugate heat transfer problems where heat conduction in a solid is coupled with heat convection in viscous fluid flow. The streamline upwind finite el... This paper presents a combined finite element method for solving conjugate heat transfer problems where heat conduction in a solid is coupled with heat convection in viscous fluid flow. The streamline upwind finite element method is used for the analysis of thermal viscous flow in the fluid region, whereas the analysis of heat conduction in solid region is performed by the Galerkin method. The method uses the three-node triangular element with equal-order interpolation functions for all the variables of the velocity components, the pressure and the temperature. The main advantage of the proposed method is to consistently couple heat transfer along the fluid-solid interface. Three test cases, i.e. conjugate Couette flow problem in parallel plate channel, counter-flow in heat exchanger, and conjugate natural convection in a square cavity with a conducting wall, are selected to evaluate the efficiency of the present method. 展开更多
关键词 Streamline upwind.Conjugate heat transfer.Finite element method
下载PDF
Interval finite difference method for steady-state temperature field prediction with interval parameters 被引量:4
10
作者 Chong Wang Zhi-Ping Qiu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第2期161-166,共6页
A new numerical technique named interval finite difference method is proposed for the steady-state temperature field prediction with uncertainties in both physical parameters and boundary conditions. Interval variable... A new numerical technique named interval finite difference method is proposed for the steady-state temperature field prediction with uncertainties in both physical parameters and boundary conditions. Interval variables are used to quantitatively describe the uncertain parameters with limited information. Based on different Taylor and Neumann series, two kinds of parameter perturbation methods are presented to approximately yield the ranges of the uncertain temperature field. By comparing the results with traditional Monte Carlo simulation, a numerical example is given to demonstrate the feasibility and effectiveness of the proposed method for solving steady-state heat conduction problem with uncertain-but-bounded parameters. 展开更多
关键词 Steady-state heat conduction Interval finite dif-ference Temperature field prediction Parameter perturba-tion method Interval uncertainties
下载PDF
A calculation method of the sensible heat flux by sodar
11
作者 Lu Naiping, Li Shiming, Chen Jingnan, Zheng Yueming Zhou Mingyu National Recsearch Center for Marine Environmcntul Forecasts, Beijing, China 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1989年第2期191-198,共8页
During the second course of USA - PRC joint air sea interaction experiment in 1986, the temperature structure parameters CT2 were measured by sodar over the Western Pacific Ocean. Based on similarity theory, a method ... During the second course of USA - PRC joint air sea interaction experiment in 1986, the temperature structure parameters CT2 were measured by sodar over the Western Pacific Ocean. Based on similarity theory, a method is discussed to calculate the sensible heat flux over the ocean in unstable stratification. Becausehumidity is great over the ocean, so we have to consider the influence of water vapor structure parameter Ce2and the correlation coefficient betweene and T on the calculation of sensible heat flux using CT2 profiles measured by sodar. A new formula is suggested in terms of parameterization. The sensible heat flux calculated by sodar measurements is compared with that by bulk transfer method, and the results agree well. 展开更多
关键词 HEAT A calculation method of the sensible heat flux by sodar
下载PDF
Design and optimization of a SiC thermal emitter/absorber composed of periodic microstructures based on a non-linear method
12
作者 王卫杰 赵振国 +2 位作者 赵艺 周海京 符策基 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第9期276-283,共8页
Spectral and directional control of thermal emission based on excitation of confined electromagnetic resonant modes paves a viable way for the design and construction of microscale thermal emitters/absorbers. In this ... Spectral and directional control of thermal emission based on excitation of confined electromagnetic resonant modes paves a viable way for the design and construction of microscale thermal emitters/absorbers. In this paper, we present numerical simulation results of the thermal radiative properties of a silicon carbide(Si C) thermal emitter/absorber composed of periodic microstructures. We illustrate different electromagnetic resonant modes which can be excited with the structure,such as surface phonon polaritons, magnetic polaritons and photonic crystal modes, and the process of radiation spectrum optimization based on a non-linear optimization algorithm. We show that the spectral and directional control of thermal emission/absorption can be efficiently achieved by adjusting the geometrical parameters of the structure. Moreover, the optimized spectrum is insensitive to 3% dimension modification. 展开更多
关键词 silicon carbide radiative heat transfer photonic crystal optimization method
下载PDF
Melting and floating processes of inorganic materials in molten steel:Visualization physical simulation and mathematical modelling
13
作者 Jin-hu Lai Sheng Yu +4 位作者 Yang-jian Xu Dan-qing Jiang San-san Shuai Jiang Wang Zhong-ming Ren 《China Foundry》 SCIE CAS CSCD 2023年第2期89-98,共10页
It has been demonstrated that heat absorption method by using the inorganic material rod to cool the molten steel can significantly reduce the macrosegregation level of the large steel ingot.However,owing to the opaci... It has been demonstrated that heat absorption method by using the inorganic material rod to cool the molten steel can significantly reduce the macrosegregation level of the large steel ingot.However,owing to the opacity of the molten steel,the physical mechanism of the heat absorption method is not clear.In this work,a transparent hydraulic physical model with water and paraffin wax was built to simulate the melting and floating processes of inorganic materials in the molten steel.A mathematical simulation was also carried out to analyze the connection between the actual ingot and the physical model.Results show that it is feasible to simulate the molten steel and inorganic materials with water and paraffin wax.With the help of the physical model,the process of the melting of paraffin wax and its floating to the surface of water were clearly observed,during which the temperature of water at some characteristic positions in the mold was recorded.The visualization findings demonstrate that the melting and floating processes of paraffin wax can help to bring the heat from the center of the mold to the top surface more quickly,which reduces the superheat and significantly accelerates the cooling rate of water.The experimental results show that for the water with a certain superheat,the use of a larger mass of paraffin wax can accelerate the cooling of the water,but there is a risk of incomplete melting of the paraffin wax.A higher superheat of water will lead to a quicker melting rate for a given mass of paraffin wax,while a lower superheat leads to the incomplete melting of paraffin wax as well. 展开更多
关键词 water and paraffin wax heat absorption method physical simulation SUPERHEAT large steel ingot
下载PDF
The Solving of the Inverse Thermal Conductivity Problem for Study the Short Linear Heat Pipes
14
作者 Arkady Vladimirovich Seryakov 《Engineering(科研)》 2022年第6期185-216,共32页
The results of studies by solving the inverse thermal conductivity problem of the heat capacity of evaporator of the short linear heat pipes (HP’s) with a Laval nozzle-liked vapour channel and intended for cooling sp... The results of studies by solving the inverse thermal conductivity problem of the heat capacity of evaporator of the short linear heat pipes (HP’s) with a Laval nozzle-liked vapour channel and intended for cooling spacecraft and satellites with strict take-off mass regulation are presented. Mathematical formulation of the inverse problem for the HP’s thermal conductivity in one-dimensional coordinate system is accompanied by the measurement results using the monotonic heating method in a vacuum adiabatic calorimeter the HP’s surface temperatures along the longitudinal axis over the entire temperature load range, thermal resistance, and arrays of thermal power data on the evaporator Q<sub>ev</sub> and vortex flow calorimeter Q<sub>cond</sub> for the condensation surface allow us to estimate the average value of the evaporator heat capacity C<sub>ev</sub> by solving the inverse thermal conductivity problem in the HP’s evaporator region. Since at the beginning of working fluid boiling for a certain time interval, the temperature of the capillary-porous evaporator remains close to constant, and with the continuation of heating and by solving the inverse thermal conductivity problem, it becomes possible to calculate the heat capacity of the working evaporator and the evaporation specific heat of the boiling working fluid and compare it with the table values. 展开更多
关键词 Short Linear HP’s The Inverse Problem of Thermal Conductivity The Monotonic heating method Thermal Resistance and Heat Capacity
下载PDF
Analysis of All-Carbon Brick Bottom and Ceramic Cup Synthetic Hearth Bottom 被引量:6
15
作者 ZHAO Hong-bo CHENG Shu-sen ZHAO Min-ge 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2007年第2期6-12,共7页
One of the bottlenecks of the blast furnace (BF) campaign is the life length of hearth bottom. The basic reason for the erosion of hearth bottom is its direct contact with hot metal. According to the theory of heat ... One of the bottlenecks of the blast furnace (BF) campaign is the life length of hearth bottom. The basic reason for the erosion of hearth bottom is its direct contact with hot metal. According to the theory of heat transfer, models of BF hearth bottom are built based on the actual examples using software and VC language, and the calculated results are in good agreement with the data of BF dissection after blowing out. The temperature distribution and the capability of the resistance to erosion for different structures of hearth bottom are analyzed, especially the two prevalent kinds of hearth bottom arrangements called "the method of heat transfer" for all-carbon brick bottom and "the method of heat isolation" for ceramic synthetic hearth bottom. Features of the two kinds of hearth bottoms are analyzed. Also the different ways of protecting the hearth bottom are clarified, according to some actual examples. After that, the same essence of prolonging life, and the fact that the existence of a "protective skull" with low thermal conductivity between the hot metal and brick layers is of utmost importance are shown. 展开更多
关键词 hearth bottom heat transfer method heat isolation method long life
下载PDF
Response of saturated porous media subjected to local thermal loading on the surface of semi-infinite space 被引量:5
16
作者 Bing Bai 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第1期54-61,共8页
Heat source function method is adopted in the present paper to derive elementary solutions of coupled thermo-hydro-mechanical consolidation for saturated porous media under conjunct actions of instantaneous point heat... Heat source function method is adopted in the present paper to derive elementary solutions of coupled thermo-hydro-mechanical consolidation for saturated porous media under conjunct actions of instantaneous point heat source, instantaneous point fluid source and constant volume force. By using the so-called fictitious heat source method and images method, the solutions of a semi-infinite saturated porous medium subjected to a local heat source with time-varied intensity on its free surface are developed from elementary solutions. The numerical integral methods for calculating the unsteady temperature, pore pressure and displacement fields are given. The thermomechanical response are analyzed for the case of a circular planar heat source. Besides, the thermal consolidation characteristics of a saturated porous medium subjected to a harmonic thermal loading are also given, and the fluctuation processes of the field variables located below the center of heat source are analyzed. 展开更多
关键词 Saturated porous media Thermal consolidation Elementary solution Heat source method of images
下载PDF
AB_5-type Hydrogen Storage Alloy Modified with Ti/Zr Used as Anodic Materials in Borohydride Fuel Cell 被引量:1
17
作者 Lianbang WANG Chunan MA +2 位作者 Xinbiao MAO Yuanming SUN Seijiro SUDA 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第6期831-835,共5页
Fuel cell using borohydride as the fuel has received much attention. AB5-type hydrogen storage alloy used as the anodic material instead of noble metals has been investigated. In order to restrain the generation of hy... Fuel cell using borohydride as the fuel has received much attention. AB5-type hydrogen storage alloy used as the anodic material instead of noble metals has been investigated. In order to restrain the generation of hydrogen and enhance the utilization of borohydride, Ti/Zr metal powders has been added into the parent LmNi4.78Mn0.22 (where Lm is La-richened mischmetal) alloy (LNM) by ball milling and heat treatment methods. It is found that the addition of Ti/Zr metal powders lowers the electrochemical catalytic activity of the electrodes, at the same time, restrains the generation of hydrogen and enhances the utilization of the fuel. All the results show that the hydrogen generation rate or the utilization of the fuel is directly relative to the electrochemical catalytic activity or the discharge capability of the electrodes. The utilization of the fuel increases with discharge current density. It is very important to find a balance between the discharge capability and the utilization of the fuel. 展开更多
关键词 Fuel cell BOROHYDRIDE AB5-type hydrogen storage alloy Ball-milling method Heat treatment method
下载PDF
Modeling natural convection boundary layer flow of micropolar nanofluid over vertical permeable cone with variable wall temperature 被引量:2
18
作者 S.E.AHMED 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第8期1171-1180,共10页
This paper discusses the natural convection boundary layer flow of a micropo- lax nanofluid over a vertical permeable cone with variable wall temperatures. Non-similax solutions are obtained. The nonlineaxly coupled d... This paper discusses the natural convection boundary layer flow of a micropo- lax nanofluid over a vertical permeable cone with variable wall temperatures. Non-similax solutions are obtained. The nonlineaxly coupled differential equations under the boundary layer approximations governing the flow axe solved numerically using an efficient, itera- tive, tri-diagonal, implicit finite difference method. Different experimental correlations for both nanofluid effective viscosity and nanofluid thermal conductivity are considered. It is found that as the vortex-viscosity parameter increases, both the velocity profiles and the local Nusselt number decrease. Also, among all the nanoparticles considered in this investigation, Cu gives a good convection. 展开更多
关键词 micropolar nanofluid non-similar solution CONE finite difference method non-uniform heating
下载PDF
Characteristics of the stem sap flux of Populus euphratica in the lower reaches of the Heihe River Basin, Northwest China 被引量:1
19
作者 XiaoYou Zhang JianHua Si 《Research in Cold and Arid Regions》 2009年第5期458-466,共9页
关键词 sap flow Populus euphratica heat diffusion method environmental factors
下载PDF
A meshless model for transient heat conduction analyses of 3D axisymmetric functionally graded solids 被引量:3
20
作者 李庆华 陈莘莘 曾骥辉 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期51-57,共7页
A meshless numerical model is developed for analyzing transient heat conductions in three-dimensional (3D) axisymmetric continuously nonhomogeneous functionally graded materials (FGMs). Axial symmetry of geometry ... A meshless numerical model is developed for analyzing transient heat conductions in three-dimensional (3D) axisymmetric continuously nonhomogeneous functionally graded materials (FGMs). Axial symmetry of geometry and boundary conditions reduces the original 3D initial-boundary value problem into a two-dimensional (2D) problem. Local weak forms are derived for small polygonal sub-domains which surround nodal points distributed over the cross section. In order to simplify the treatment of the essential boundary conditions, spatial variations of the temperature and heat flux at discrete time instants are interpolated by the natural neighbor interpolation. Moreover, the using of three-node triangular finite element method (FEM) shape functions as test functions reduces the orders of integrands involved in domain integrals. The semi-discrete heat conduction equation is solved numerically with the traditional two-point difference technique in the time domain. Two numerical examples are investigated and excellent results are obtained, demonstrating the potential application of the proposed approach. 展开更多
关键词 meshless method transient heat conduction problem axisymmetric functionally graded materials natural neighbor interpolation
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部