This study presents experimental results focused on a performance comparison of a transcritical CO2 ejector system without an internal heat exchanger(IHX) (EJE-S) to a transcritical CO2 ejector system with an IHX(EJE-...This study presents experimental results focused on a performance comparison of a transcritical CO2 ejector system without an internal heat exchanger(IHX) (EJE-S) to a transcritical CO2 ejector system with an IHX(EJE-IHX-S) . The comparison includes the effects of changes in operating conditions such as cooling water flow rate and inlet temperature. Experiments are conducted to assess the influence of the IHX on the heating coefficient of performance(COPr) ,heating capacity,entrainment ratio,pressure lift,and other parameters. The primary flow rate of the EJE-IHX-S is higher than that of the EJE-S. The pressure lift and actual ejector work recovery are reduced when the IHX is added to the transcritical CO2 ejector system. Using a more practical performance calculation,the compression ratio in the EJE-S is reduced by 10.0%-12.1%,while that of EJE-IHX-S is reduced only by 5.6%-6.7% compared to that of a conventional transcritical CO2 system. Experimental results are used to validate the findings that the IHX weakens the contribution of the ejector to the system performance.展开更多
The flow and thermal breakthrough phenomenon in a forced external circulation standing column well(FECSCW)directly affects heat transfer efficiency and load-carrying capacity.A numerical model for FECSCW is developed ...The flow and thermal breakthrough phenomenon in a forced external circulation standing column well(FECSCW)directly affects heat transfer efficiency and load-carrying capacity.A numerical model for FECSCW is developed to analyze the migration of the temperature and velocity front under the flow and thermal breakthrough.The results indicated that thermal breakthrough began after simulation running 2.5 min and was completely formed after 12 min.The inlet water,which directly entered the production well without heat exchange with the aquifer,accounted for 12.8%.When the porosity of the backfill material decreased from 0.35 to 0,the coefficient of per-formance(COP)of the heat pump unit increased by 1.6%on average,and the thermal breakthrough strength decreased by an average of 45.3%within 25 min.Where seepage velocity near the well wall was greater than 1×10^(−3) m·s^(−1),faster velocity front migration was observed,while the migration advantage of the temperature front was more prominent outside of this region.Through quantitative analysis of flow and thermal breakthrough,temperature and velocity front migration,and COP change of heat pump unit,theoretical suggestions were pro-vided for the thermal transfer mechanism near the thermal well wall.The extended research in this study can be applied to the design and optimization of forced external circulation standing column well system.展开更多
基金Project supported by the National Basic Research Program (973) of China (No.2010CB227304)the National Key Technologies R & D Program in China (No.2006BAJ01A10)
文摘This study presents experimental results focused on a performance comparison of a transcritical CO2 ejector system without an internal heat exchanger(IHX) (EJE-S) to a transcritical CO2 ejector system with an IHX(EJE-IHX-S) . The comparison includes the effects of changes in operating conditions such as cooling water flow rate and inlet temperature. Experiments are conducted to assess the influence of the IHX on the heating coefficient of performance(COPr) ,heating capacity,entrainment ratio,pressure lift,and other parameters. The primary flow rate of the EJE-IHX-S is higher than that of the EJE-S. The pressure lift and actual ejector work recovery are reduced when the IHX is added to the transcritical CO2 ejector system. Using a more practical performance calculation,the compression ratio in the EJE-S is reduced by 10.0%-12.1%,while that of EJE-IHX-S is reduced only by 5.6%-6.7% compared to that of a conventional transcritical CO2 system. Experimental results are used to validate the findings that the IHX weakens the contribution of the ejector to the system performance.
基金This work was supported by the National Natural Science Foundation of China(41002085,41602278)China Postdoctoral Science Founda-tion(2016M601129)North China University of Technology Programs(18XN154-006,110052972027-031).
文摘The flow and thermal breakthrough phenomenon in a forced external circulation standing column well(FECSCW)directly affects heat transfer efficiency and load-carrying capacity.A numerical model for FECSCW is developed to analyze the migration of the temperature and velocity front under the flow and thermal breakthrough.The results indicated that thermal breakthrough began after simulation running 2.5 min and was completely formed after 12 min.The inlet water,which directly entered the production well without heat exchange with the aquifer,accounted for 12.8%.When the porosity of the backfill material decreased from 0.35 to 0,the coefficient of per-formance(COP)of the heat pump unit increased by 1.6%on average,and the thermal breakthrough strength decreased by an average of 45.3%within 25 min.Where seepage velocity near the well wall was greater than 1×10^(−3) m·s^(−1),faster velocity front migration was observed,while the migration advantage of the temperature front was more prominent outside of this region.Through quantitative analysis of flow and thermal breakthrough,temperature and velocity front migration,and COP change of heat pump unit,theoretical suggestions were pro-vided for the thermal transfer mechanism near the thermal well wall.The extended research in this study can be applied to the design and optimization of forced external circulation standing column well system.