This study investigates the heat dissipation mechanism of the insulation layer and other plane insulation layers in the polar drilling rig system.Combining the basic theory of heat transfer with the environmental requ...This study investigates the heat dissipation mechanism of the insulation layer and other plane insulation layers in the polar drilling rig system.Combining the basic theory of heat transfer with the environmental requirements of polar drilling operations and the characteristics of polar drilling processes,we analyze the factors that affect the insulation effect of the drilling rig system.These factors include the thermal conductivity of the insulation material,the thickness of the insulation layer,ambient temperature,and wind speed.We optimize the thermal insulation material of the polar drilling rig system using a steady-state method to measure solid thermal conductivity.By analyzing the distribution of temperature in space after heating,we optimize the distribution and air outlet angle of the heater using Fluent hydrodynamics software.The results demonstrate that under polar conditions,polyisocyanurate with stable thermodynamic properties is selected as the thermal insulation material.The selection of thermal insulation material and thickness significantly affects the thermal insulation effect of the system but has little effect on its heating effect.Moreover,when the air outlet angle of the heater is set to 32.5°,the heating efficiency of the system can be effectively improved.According to heat transfer equations and heat balance theory,we determine that the heating power required for the system to reach 5°C is close to numerical simulation.展开更多
Objective:To observe the application effects of anesthesia recovery nursing with heat preservation measures in patients undergoing general anesthesia surgery.Methods:300 cases of general anesthesia surgery patients in...Objective:To observe the application effects of anesthesia recovery nursing with heat preservation measures in patients undergoing general anesthesia surgery.Methods:300 cases of general anesthesia surgery patients in our hospital from March 2023 to February 2024 were selected and divided into the control group and the observation group according to the random number table method,each with 150 cases.The control group adopted conventional care,while the observation group was given anesthesia recovery care and heat preservation measures on the basis of conventional care.The wake-up time,extubation time,hospitalization time,and the incidence of adverse reactions were compared between the two groups and statistically analyzed.Results:The wake-up time of patients in the control group was 9.71±1.20 hours,and that of the observation group was 6.51±1.02 hours,with statistically significant differences(P<0.05);the extubation times of patients in the observation group and the control group after awakening were 8.52±0.41 min and 10.42±1.12 min,respectively,with statistically significant differences(P<0.05)The hospital stay after the operation in the observation group and the control group was 32.91±4.71 days and 37.24±3.34 days respectively,and the difference was statistically significant(P<0.05),and the incidence rate of adverse reactions after extubation in the observation group(3.33%)was significantly lower than that in the control group(10.00%)(P<0.05).Conclusion:In general anesthesia surgery patients,the implementation of anesthesia recovery nursing with heat preservation measures can significantly improve the physical condition of patients,effectively shorten the duration of surgery and patients’wake-up time,and improve their quality of life,which is worthy of clinical promotion and application.展开更多
In this paper,experimental and numerical studies of heat transfer in a test local of side H=0.8 m heated from below are presented and compared.All the walls,the rest of the floor and the ceiling are made from plywood ...In this paper,experimental and numerical studies of heat transfer in a test local of side H=0.8 m heated from below are presented and compared.All the walls,the rest of the floor and the ceiling are made from plywood and polystyrene in sandwich form(3 mmplywood-3 cm polystyrene-3 mmplywood)just on one of the vertical walls contained a glazed door(2 H/3×0.15 m).This local is heated during two heating cycles by a square plate of iron the width L=0.6 H,which represents the heat source,its temperature Th is controlled.The plate is heated for two cycles by an adjustable set-point heat source placed just down the center of it.For each cycle,the heat source is switched“on”for 6 h and switched“off”for 6 h.The outdoor air temperature is kept constant at a low temperature Tc<Th.All measurements are carried out with k-type thermocouples and with flux meters.Results will be qualitatively presented for two cycles of heating in terms of temperatures and heat flux densitiesϕfor various positions of the test local.The temperature evolution of the center and the profile of the temperature along the vertical centerline are compared by two dimensions simulation using the lattice Boltzmann method.The comparison shows a good agreement with a difference that does not exceed±1℃.展开更多
This study numerically involves the performance of thermal insulation of different types of composite walls and roofs to demonstrate the best model that can be used for energy-efficient building construction in Iraq.T...This study numerically involves the performance of thermal insulation of different types of composite walls and roofs to demonstrate the best model that can be used for energy-efficient building construction in Iraq.The mathematical model is solved by building its code using the Transmission Matrix Method in MATLAB software.The weather data of 21st July 2022 in Baghdad City/Iraq is selected as a test day.The wall types are selected:the first type consists of cement mortar,brick,and gypsum,the second type consists of cement mortar,brick,gypsum,and plaster and the third type consists of cement mortar,brick,gypsum,air cavity,and sheathing timber.The roof types are chosen:the first type consists of reinforced concrete,gypsum,and plaster,and the second type consists of the precast concrete flag,river sand,tar,reinforced concrete,gypsum,and plaster.The obtained solutions are compared with previous studies for the same city but with different types of walls and roofs.The findings display that the second and third types of walls reduce the entry heat flux by 4%and 10%as compared to the first type of wall.Also,the results indicate that the second type of roof reduces the entry heat flux by 21%as compared to the first type of roof.The results confirm that the best models of walls and roofs in Iraq are the third and second types,respectively,as compared to other models and hence,the performance of insulation material strongly depends on the materials used while building them.展开更多
This paper discusses the temperature field distribution of piezoelectric stack with heating and thermal insulation device in cryogenic temperature environment. Firstly,the model of the piezoelectric damper is simplifi...This paper discusses the temperature field distribution of piezoelectric stack with heating and thermal insulation device in cryogenic temperature environment. Firstly,the model of the piezoelectric damper is simplified and established by using partial-differential heat conduction equation. Secondly,the two-dimensional Du Fort-Frankel finite difference scheme is used to discretize the thermal conduction equation,and the numerical solution of the transient temperature field of piezoelectric stack driven by heating film at different positions is obtained by programming iteration. Then,the cryogenic temperature cabinet is used to simulate the low temperature environment to verify the numerical analysis results of the temperature field. Finally,the finite difference results are compared with the finite results and the experimental data in steady state and transient state,respectively. Comparison shows that the results of the finite difference method are basically consistent with the finite element and the experimental results,but the calculation time is shorter. The temperature field distribution results obtained by the finite difference method can verify the thermal insulation performance of the heating system and provide data basis for the temperature control of piezoelectric stack.展开更多
The energy equilibrium equation and discrete ordinate methods are combined to establish the one-dimensional steady heat transfer mathematical model of multi-layer thermal insulations (MTIs) in metallic thermal prote...The energy equilibrium equation and discrete ordinate methods are combined to establish the one-dimensional steady heat transfer mathematical model of multi-layer thermal insulations (MTIs) in metallic thermal protection systems. The inverse problem of heat transfer is solved by the genetic algorithm and data from the steady heat transfer experiment of fibrous thermal insulations. The density radiation attenuation coefficient, the albedo of fibrous thermal insulations and the surface emissivity of reflective screens are optimized. Finally, the one-dimensional steady heat transfer model of MTIs with optimized thermal physical parameters is verified by experimental data of the effective MTI conductivity.展开更多
It is proved that the treatment with white mulch and black thin films per- formed the best in terms of heat preservation in cultivation of strawberry with shelves. In winter, drip irrigation performed significantly in...It is proved that the treatment with white mulch and black thin films per- formed the best in terms of heat preservation in cultivation of strawberry with shelves. In winter, drip irrigation performed significantly in transporting hot water through solar energy. The combination of the two methods resolved the issue of heat preservation difficulty and guaranteed growth of strawberry in winter.展开更多
The scenario of geothermal tunnel is commonly observed around the world,and increases with the new constructions in the long and deep tunnels,for example in China.Tunnel insulation is generally divided into active and...The scenario of geothermal tunnel is commonly observed around the world,and increases with the new constructions in the long and deep tunnels,for example in China.Tunnel insulation is generally divided into active and passive insulation.In passive insulation,it is an effective way to set low thermal con-ductivity materials as the thermal insulation layer as the choice of insulation material mainly depends on the thermal conductivity.Polymer is a kind of material with good geothermal performance,but there are relatively few studies.In this context,the transient plane source(TPS)method was used to measure the thermal conductivity of the developed polymer.Then,the temperature field of the high geothermal tunnel insulated by the non-aqueous reactive polymer layer was simulated.With the parametric analysis results,the suggestions for the tunnel layers were proposed accordingly.It revealed that the thermal conductivity of polymer first increases and then decreases with temperature.There are two rising sec-tions(?40e10?C and 20e90?C),one flat section(10e20?C)and one descending section(>90?C).It is observed the thermal conductivity of polymer increases with increase of the density of insulation layer and the density,and the thermal conductivity decreases when exposed to high temperatures.The temperature of the surrounding rocks increases with increase of the thermal conductivity and the thickness of polymer.Finally,a more economical thickness(5 cm)was proposed.Based on the parametric study,a thermal insulation layer with thermal conductivity less than 0.045 W/(m K),thickness of 5 cm and a density less than 0.12 g/cm 3 is suggested for practice.展开更多
<abstract>Aim: To study the protein changes of spermatozoa associated with sperm motility during sperm cryopreservation and its mechanism. Methods: In 18 healthy men, the seminal sperm motility and HSP90 levels ...<abstract>Aim: To study the protein changes of spermatozoa associated with sperm motility during sperm cryopreservation and its mechanism. Methods: In 18 healthy men, the seminal sperm motility and HSP90 levels were studied before and after cryopreservation using SDS-PAGE, Western blotting and computerized image analysis. Results: The sperm motility declined significantly after cryopreservation (P<0.01). The average grey level and the integrated grey level of sperm HSP90 before cooling were 34.1±3.2 and 243.0±21.6, respectively, while those after thawing were 23.2±2.5 and 105.7±28.5, respectively. Both parameters were decreased significantly (P<0.01). No HSP90 was found in the seminal plasma before and after cryopreservation. Conclusion: HSP90 in human spermatozoa was decreased substantially after cryopreservation. This may result from protein degradation, rather than leakage into the seminal plasma.展开更多
Water-based architectural heat insulation coatings were studied to overcome the drawbacks of conventional inorganic silicate heat insulation coatings. The heat insulation coatings were prepared with the method of mech...Water-based architectural heat insulation coatings were studied to overcome the drawbacks of conventional inorganic silicate heat insulation coatings. The heat insulation coatings were prepared with the method of mechanical agitation when the mixed organic polymer emulsions were used as binder of the coatings and the mixed heat insulating aggregates were applied as powder, and some assistants were also added. Water temperature difference in the plastic container, which was coated with heat insulation coatings, represented the heat-insulating property of the coatings. The influences of components of mixed polymer emulsion, mass ratio of polymer emulsion to powder, particle size of heat insulating aggregates, added amount of air entraining admixture and the match of thickeners on the properties of the coatings were studied. The experimental results show that the heat insulation coatings with good finishing, heat-insulation property and artificial weathering can be prepared when the binder is composed of 66.92% styrene-acrylic emulsion, 16.59% elastic emulsion and 16.49% silicone-acrylic emulsion, the mass ratio of polymer emulsion to powder is 0.45, the particle size of heat insulating aggregates is in the rang of 200 and 250 mesh size, the added amount of sericite is 15%, and the added amount of air entraining admixture is in the range of 1.0% and 1.5% and the thickeners are the mixtures of ASE-60 and RM-5000.展开更多
Based on the heat transferring theory in the human-clothing-environment system, the heat insulation property and changing pattern of down jackets in relation to its down content is mainly dealt with. By the heated-man...Based on the heat transferring theory in the human-clothing-environment system, the heat insulation property and changing pattern of down jackets in relation to its down content is mainly dealt with. By the heated-manikin testing and the mathematical analysis to the testing data, the existence of the optimum down content is found. Furthermore the reason and mechanism of the relation between down content and clothing’s heat insulation property are explained.展开更多
With the widespread use of high-power and highly integrated insulated gate bipolar transistor(IGBT),their cooling methods have become challenging.This paper proposes a liquid cooling scheme for heavy-duty automated gu...With the widespread use of high-power and highly integrated insulated gate bipolar transistor(IGBT),their cooling methods have become challenging.This paper proposes a liquid cooling scheme for heavy-duty automated guided vehicle(AGV)motor driver in port environment,and improves heat dissipation by analyzing and optimizing the core component of finned heat sink.Firstly,the temperature distribution of the initial scheme is studied by using Fluent software,and the heat transfer characteristics of the finned heat sink are obtained through numerical analysis.Secondly,an orthogonal test is designed and combined with the response surface methodology to optimize the structural parameters of the finned heat sink,resulting in a 14.57%increase in the heat dissipation effect.Finally,the effectiveness of heat dissipation enhancement is verified.This work provides valuable insights into improving the heat dissipation of IGBT modules and heat sinks,and provides guidance for their future applications.展开更多
Two practical crawlspace heating systems introduced in detached houses have been chosen as a field study. One is the crawlspace warm air heating system and the other is the crawlspace hot water circulation system. Bas...Two practical crawlspace heating systems introduced in detached houses have been chosen as a field study. One is the crawlspace warm air heating system and the other is the crawlspace hot water circulation system. Based on the field study result, by using the simulation sol, ware, THERB, the effectiveness of the crawlspace warm air heating system has been examined. The effect of the factors, such as the wind amount circulating between crawlspace and indoor space, foundation insulation condition, and heat amount into the crawlspace, on the indoor thermal environment has been analyzed. Based on these analyses, the measured crawlspace heating system can make the average temperature of the living room above 20℃. These two houses have excellent thermal environment. According to the simulating result, heat amount input into crawlspace, which can make comfortable indoor thermal environment, for every month in heating period has been roughly concluded, and they are 600 W in December and March and 800 W in February and January, respectively.展开更多
The "soft canning" heat preservation technique is invented by Baoshan Iron & Steel Co., Ltd. (Hereafter referred to Baosteel), using the flexible insulation material which can be stuck on the surface of the heate...The "soft canning" heat preservation technique is invented by Baoshan Iron & Steel Co., Ltd. (Hereafter referred to Baosteel), using the flexible insulation material which can be stuck on the surface of the heated ingot or billet in the superalloy thermal process. This adhesive insulation material can reduce the temperature drop of the ingot or billet during the transferring or hot working process, and can deform with the billet without dropping. The surface temperature drop can be effectively reduced, so the products can be obtained a good surface quality and the structural uniformity can be improved. The technique is applied to hard-wrought superalloy forging of cogging, superalloy rods finished forging fire and superalloy hot die forging processing,and good results have been achieved.展开更多
1 Scope This standard covers the definition, technical requirement, apparatus, specimen, test procedure, calculation and test report on permanent linear change of shaped insulating refractory products.
Computational fluid dynamics( CFD) techniques are used to investigate effects of both wind direction and wind speed on net solar heat gain of south wall with internal insulation in winter.Results show that wind effect...Computational fluid dynamics( CFD) techniques are used to investigate effects of both wind direction and wind speed on net solar heat gain of south wall with internal insulation in winter.Results show that wind effect has a significant influence on the net solar heat gain,where the impact of wind direction is stronger than that of wind speed. For regions in lower reaches of the Yangtze River,difference of their average net solar heat gains( NSHGS) is about 20% due to various wind speeds and wind directions.Buildings in districts with a dominant wind direction of north achieve the highest solar energy utilization.展开更多
Waste shell stacking with odor and toxicity is a serious hazard to our living environment. To make effective use of the natural resources, the shell powder was applied as a filler of outdoor thermal insulation coating...Waste shell stacking with odor and toxicity is a serious hazard to our living environment. To make effective use of the natural resources, the shell powder was applied as a filler of outdoor thermal insulation coatings. Sodium stearate(SS) was used to modify the properties of shell powder to reduce its agglomeration and to increase its compatibility with the emulsion. The oil absorption rate and the spectrum reflectance of the shell powder show that the optimized content of SS as a modifier is 1.5wt%. The total spectrum reflectance of the coating made with the shell powder that is modified at this optimum SS content is 9.33% higher than that without any modification. At the optimum SS content of 1.5wt%, the thermal insulation of the coatings is improved by 1.0℃ for the cement mortar board and 1.6℃ for the steel plate, respectively. The scouring resistance of the coating with the 1.5wt% SS-modified shell powder is three times that of the coating without modification.展开更多
To meet the commercial requirements of inorganic heat insulators,the mixture of diatomite and Ca(OH)2 are evenly dispersed,mold-compacted,and then hydrothermally solidified due to the formation of tobermorite under an...To meet the commercial requirements of inorganic heat insulators,the mixture of diatomite and Ca(OH)2 are evenly dispersed,mold-compacted,and then hydrothermally solidified due to the formation of tobermorite under an autoclaved process.Systematic investigations of the preparation conditions(including mix ratio,autoclaved factors,mold pressure,etc)were carried out to optimize the serving properties of such tobermorite-based products.As a result,a compressive strength of more than 30 MPa was realized for the specimen in high density(about 1.30(g·cm-3)).On the contrary,the specimen in light weight for example 0.63(g·cm-3)typically showed a thermal conductivity of around 0.12(W·m-1·K-1).The present work developed a feasible way to produce and to control the serving properties of diatomite-based heat insulators by a process of hydrothermal solidification,in which the optimized value of Ca/Si ratio was proposed to be 0.6~0.7,while the water content is 25% in weight,and hydrothermal reaction is performed at 180 ℃ for no more than 24 hours.展开更多
This research was conducted to study the performances of the heat and multilayer reflection insulators used for buildings in South Korea to realize eco-friendly, low-energy-consumption, green construction, and to cont...This research was conducted to study the performances of the heat and multilayer reflection insulators used for buildings in South Korea to realize eco-friendly, low-energy-consumption, green construction, and to contribute to energy consumption reduction in buildings and to the nation's greenhouse gas emission reduction policy (targeting 30% reduction compared to BAUCousiness as usual) by 2020). The heat insulation performance test is about the temperatures on surfaces of test piece. The high air temperature and the low air temperature were measured to determine the overall heat transfer coefficient and thermal conductivity. The conclusions are drawn that the heat transmission coefficients for each type of existing reflection insulator are: A-1 (0.045 W/(m-K)), A-2 (0.031 W/(m.K)), A-3 (0.042 W/(m.K)), A-4 (0.078 W/(m.K)), and the average heat conductivity is 0.049 W/(m-K); The heat conductivity for each type of Styrofoam insulator are 0.030 W/(m.K) for B-l, 0.032 W/(m-K) for B-2, 0.037 W/(m'K) for B-3, 0.037 W/(m.K) for B-4, and the average heat conductivity is 0.035 W/(m'K) regardless of the thickness of the insulator; The heat conductivity values of the multilayer reflection insulators are converted based on the thickness and type C-1 (0.020 W/(m.K)), C-2 (0.018 W/(m.K)), C-3 (0.016 W/(m.K)), and C-4 (0.012 W/(m.K)); The multilayer reflection insulator keeps the indoor-side surface temperature high (during winter) or low (in summer), enhances the comfort of the building occupants, and conducts heating and moisture resistance to prevent dew condensation on the glass-outer-wall surface.展开更多
The method for calculating wall surface heat storage coefficient was introduced,and the coefficients of several common walls with light-weight external thermal insulation materials and the traditional solid clay brick...The method for calculating wall surface heat storage coefficient was introduced,and the coefficients of several common walls with light-weight external thermal insulation materials and the traditional solid clay brick wall were calculated.In order to study the impact of light-weight external thermal insulation materials,a contrasting experiment was carried out between an external insulated room and an uninsulated room in August,2010,in Chongqing,China.The result shows that outside surface heat storage coefficient of the insulated wall is much less than that of the traditional wall.However,during sunny time,the surface temperature of external walls of the insulated room is obviously higher than that of the uninsulated room.In different orientations,due to different amounts of solar radiation and being irradiated in different time,the contrasting temperature difference(CTD) appears different regularity.In a word,using light-weight external thermal insulation materials has a negative impact on building surrounding thermal environment and people's health.Finally,some suggestions on how to eliminate the impact,such as improving the surface condition of the building envelop,and plating vertical greening,are put forward.展开更多
基金supported by the Key-Area Research and Development Program of Guangdong Province,Research on the Method of Heat Preservation and Heating for the Drilling System of Polar Offshore Drilling Platform (No.2020B1111010001).
文摘This study investigates the heat dissipation mechanism of the insulation layer and other plane insulation layers in the polar drilling rig system.Combining the basic theory of heat transfer with the environmental requirements of polar drilling operations and the characteristics of polar drilling processes,we analyze the factors that affect the insulation effect of the drilling rig system.These factors include the thermal conductivity of the insulation material,the thickness of the insulation layer,ambient temperature,and wind speed.We optimize the thermal insulation material of the polar drilling rig system using a steady-state method to measure solid thermal conductivity.By analyzing the distribution of temperature in space after heating,we optimize the distribution and air outlet angle of the heater using Fluent hydrodynamics software.The results demonstrate that under polar conditions,polyisocyanurate with stable thermodynamic properties is selected as the thermal insulation material.The selection of thermal insulation material and thickness significantly affects the thermal insulation effect of the system but has little effect on its heating effect.Moreover,when the air outlet angle of the heater is set to 32.5°,the heating efficiency of the system can be effectively improved.According to heat transfer equations and heat balance theory,we determine that the heating power required for the system to reach 5°C is close to numerical simulation.
文摘Objective:To observe the application effects of anesthesia recovery nursing with heat preservation measures in patients undergoing general anesthesia surgery.Methods:300 cases of general anesthesia surgery patients in our hospital from March 2023 to February 2024 were selected and divided into the control group and the observation group according to the random number table method,each with 150 cases.The control group adopted conventional care,while the observation group was given anesthesia recovery care and heat preservation measures on the basis of conventional care.The wake-up time,extubation time,hospitalization time,and the incidence of adverse reactions were compared between the two groups and statistically analyzed.Results:The wake-up time of patients in the control group was 9.71±1.20 hours,and that of the observation group was 6.51±1.02 hours,with statistically significant differences(P<0.05);the extubation times of patients in the observation group and the control group after awakening were 8.52±0.41 min and 10.42±1.12 min,respectively,with statistically significant differences(P<0.05)The hospital stay after the operation in the observation group and the control group was 32.91±4.71 days and 37.24±3.34 days respectively,and the difference was statistically significant(P<0.05),and the incidence rate of adverse reactions after extubation in the observation group(3.33%)was significantly lower than that in the control group(10.00%)(P<0.05).Conclusion:In general anesthesia surgery patients,the implementation of anesthesia recovery nursing with heat preservation measures can significantly improve the physical condition of patients,effectively shorten the duration of surgery and patients’wake-up time,and improve their quality of life,which is worthy of clinical promotion and application.
文摘In this paper,experimental and numerical studies of heat transfer in a test local of side H=0.8 m heated from below are presented and compared.All the walls,the rest of the floor and the ceiling are made from plywood and polystyrene in sandwich form(3 mmplywood-3 cm polystyrene-3 mmplywood)just on one of the vertical walls contained a glazed door(2 H/3×0.15 m).This local is heated during two heating cycles by a square plate of iron the width L=0.6 H,which represents the heat source,its temperature Th is controlled.The plate is heated for two cycles by an adjustable set-point heat source placed just down the center of it.For each cycle,the heat source is switched“on”for 6 h and switched“off”for 6 h.The outdoor air temperature is kept constant at a low temperature Tc<Th.All measurements are carried out with k-type thermocouples and with flux meters.Results will be qualitatively presented for two cycles of heating in terms of temperatures and heat flux densitiesϕfor various positions of the test local.The temperature evolution of the center and the profile of the temperature along the vertical centerline are compared by two dimensions simulation using the lattice Boltzmann method.The comparison shows a good agreement with a difference that does not exceed±1℃.
文摘This study numerically involves the performance of thermal insulation of different types of composite walls and roofs to demonstrate the best model that can be used for energy-efficient building construction in Iraq.The mathematical model is solved by building its code using the Transmission Matrix Method in MATLAB software.The weather data of 21st July 2022 in Baghdad City/Iraq is selected as a test day.The wall types are selected:the first type consists of cement mortar,brick,and gypsum,the second type consists of cement mortar,brick,gypsum,and plaster and the third type consists of cement mortar,brick,gypsum,air cavity,and sheathing timber.The roof types are chosen:the first type consists of reinforced concrete,gypsum,and plaster,and the second type consists of the precast concrete flag,river sand,tar,reinforced concrete,gypsum,and plaster.The obtained solutions are compared with previous studies for the same city but with different types of walls and roofs.The findings display that the second and third types of walls reduce the entry heat flux by 4%and 10%as compared to the first type of wall.Also,the results indicate that the second type of roof reduces the entry heat flux by 21%as compared to the first type of roof.The results confirm that the best models of walls and roofs in Iraq are the third and second types,respectively,as compared to other models and hence,the performance of insulation material strongly depends on the materials used while building them.
文摘This paper discusses the temperature field distribution of piezoelectric stack with heating and thermal insulation device in cryogenic temperature environment. Firstly,the model of the piezoelectric damper is simplified and established by using partial-differential heat conduction equation. Secondly,the two-dimensional Du Fort-Frankel finite difference scheme is used to discretize the thermal conduction equation,and the numerical solution of the transient temperature field of piezoelectric stack driven by heating film at different positions is obtained by programming iteration. Then,the cryogenic temperature cabinet is used to simulate the low temperature environment to verify the numerical analysis results of the temperature field. Finally,the finite difference results are compared with the finite results and the experimental data in steady state and transient state,respectively. Comparison shows that the results of the finite difference method are basically consistent with the finite element and the experimental results,but the calculation time is shorter. The temperature field distribution results obtained by the finite difference method can verify the thermal insulation performance of the heating system and provide data basis for the temperature control of piezoelectric stack.
文摘The energy equilibrium equation and discrete ordinate methods are combined to establish the one-dimensional steady heat transfer mathematical model of multi-layer thermal insulations (MTIs) in metallic thermal protection systems. The inverse problem of heat transfer is solved by the genetic algorithm and data from the steady heat transfer experiment of fibrous thermal insulations. The density radiation attenuation coefficient, the albedo of fibrous thermal insulations and the surface emissivity of reflective screens are optimized. Finally, the one-dimensional steady heat transfer model of MTIs with optimized thermal physical parameters is verified by experimental data of the effective MTI conductivity.
基金Supported by Zhenjiang Science&Technology Pillar Program(NY2013001)~~
文摘It is proved that the treatment with white mulch and black thin films per- formed the best in terms of heat preservation in cultivation of strawberry with shelves. In winter, drip irrigation performed significantly in transporting hot water through solar energy. The combination of the two methods resolved the issue of heat preservation difficulty and guaranteed growth of strawberry in winter.
文摘The scenario of geothermal tunnel is commonly observed around the world,and increases with the new constructions in the long and deep tunnels,for example in China.Tunnel insulation is generally divided into active and passive insulation.In passive insulation,it is an effective way to set low thermal con-ductivity materials as the thermal insulation layer as the choice of insulation material mainly depends on the thermal conductivity.Polymer is a kind of material with good geothermal performance,but there are relatively few studies.In this context,the transient plane source(TPS)method was used to measure the thermal conductivity of the developed polymer.Then,the temperature field of the high geothermal tunnel insulated by the non-aqueous reactive polymer layer was simulated.With the parametric analysis results,the suggestions for the tunnel layers were proposed accordingly.It revealed that the thermal conductivity of polymer first increases and then decreases with temperature.There are two rising sec-tions(?40e10?C and 20e90?C),one flat section(10e20?C)and one descending section(>90?C).It is observed the thermal conductivity of polymer increases with increase of the density of insulation layer and the density,and the thermal conductivity decreases when exposed to high temperatures.The temperature of the surrounding rocks increases with increase of the thermal conductivity and the thickness of polymer.Finally,a more economical thickness(5 cm)was proposed.Based on the parametric study,a thermal insulation layer with thermal conductivity less than 0.045 W/(m K),thickness of 5 cm and a density less than 0.12 g/cm 3 is suggested for practice.
文摘<abstract>Aim: To study the protein changes of spermatozoa associated with sperm motility during sperm cryopreservation and its mechanism. Methods: In 18 healthy men, the seminal sperm motility and HSP90 levels were studied before and after cryopreservation using SDS-PAGE, Western blotting and computerized image analysis. Results: The sperm motility declined significantly after cryopreservation (P<0.01). The average grey level and the integrated grey level of sperm HSP90 before cooling were 34.1±3.2 and 243.0±21.6, respectively, while those after thawing were 23.2±2.5 and 105.7±28.5, respectively. Both parameters were decreased significantly (P<0.01). No HSP90 was found in the seminal plasma before and after cryopreservation. Conclusion: HSP90 in human spermatozoa was decreased substantially after cryopreservation. This may result from protein degradation, rather than leakage into the seminal plasma.
基金Funded by the Scientific Research Foundation for Postdoctor(20061023)
文摘Water-based architectural heat insulation coatings were studied to overcome the drawbacks of conventional inorganic silicate heat insulation coatings. The heat insulation coatings were prepared with the method of mechanical agitation when the mixed organic polymer emulsions were used as binder of the coatings and the mixed heat insulating aggregates were applied as powder, and some assistants were also added. Water temperature difference in the plastic container, which was coated with heat insulation coatings, represented the heat-insulating property of the coatings. The influences of components of mixed polymer emulsion, mass ratio of polymer emulsion to powder, particle size of heat insulating aggregates, added amount of air entraining admixture and the match of thickeners on the properties of the coatings were studied. The experimental results show that the heat insulation coatings with good finishing, heat-insulation property and artificial weathering can be prepared when the binder is composed of 66.92% styrene-acrylic emulsion, 16.59% elastic emulsion and 16.49% silicone-acrylic emulsion, the mass ratio of polymer emulsion to powder is 0.45, the particle size of heat insulating aggregates is in the rang of 200 and 250 mesh size, the added amount of sericite is 15%, and the added amount of air entraining admixture is in the range of 1.0% and 1.5% and the thickeners are the mixtures of ASE-60 and RM-5000.
文摘Based on the heat transferring theory in the human-clothing-environment system, the heat insulation property and changing pattern of down jackets in relation to its down content is mainly dealt with. By the heated-manikin testing and the mathematical analysis to the testing data, the existence of the optimum down content is found. Furthermore the reason and mechanism of the relation between down content and clothing’s heat insulation property are explained.
基金Supported by the National Key Research and Development Plan Program(No.2022YFB4701101)National Natural Science Foundation of Chi-na(No.U1913211)Natural Science Foundation of Hebei Province of China(No.F2021202062)。
文摘With the widespread use of high-power and highly integrated insulated gate bipolar transistor(IGBT),their cooling methods have become challenging.This paper proposes a liquid cooling scheme for heavy-duty automated guided vehicle(AGV)motor driver in port environment,and improves heat dissipation by analyzing and optimizing the core component of finned heat sink.Firstly,the temperature distribution of the initial scheme is studied by using Fluent software,and the heat transfer characteristics of the finned heat sink are obtained through numerical analysis.Secondly,an orthogonal test is designed and combined with the response surface methodology to optimize the structural parameters of the finned heat sink,resulting in a 14.57%increase in the heat dissipation effect.Finally,the effectiveness of heat dissipation enhancement is verified.This work provides valuable insights into improving the heat dissipation of IGBT modules and heat sinks,and provides guidance for their future applications.
基金Project(10YZ156) supported by Innovation Program of Shanghai Municipal Education Commission, China Project(sdl09009) supported by Training Program for Outstanding Youth Teacher of Shanghai Municipal Education Commission, China Project(Z2010-103) supported by Shanghai Education Development Foundation, China
文摘Two practical crawlspace heating systems introduced in detached houses have been chosen as a field study. One is the crawlspace warm air heating system and the other is the crawlspace hot water circulation system. Based on the field study result, by using the simulation sol, ware, THERB, the effectiveness of the crawlspace warm air heating system has been examined. The effect of the factors, such as the wind amount circulating between crawlspace and indoor space, foundation insulation condition, and heat amount into the crawlspace, on the indoor thermal environment has been analyzed. Based on these analyses, the measured crawlspace heating system can make the average temperature of the living room above 20℃. These two houses have excellent thermal environment. According to the simulating result, heat amount input into crawlspace, which can make comfortable indoor thermal environment, for every month in heating period has been roughly concluded, and they are 600 W in December and March and 800 W in February and January, respectively.
文摘The "soft canning" heat preservation technique is invented by Baoshan Iron & Steel Co., Ltd. (Hereafter referred to Baosteel), using the flexible insulation material which can be stuck on the surface of the heated ingot or billet in the superalloy thermal process. This adhesive insulation material can reduce the temperature drop of the ingot or billet during the transferring or hot working process, and can deform with the billet without dropping. The surface temperature drop can be effectively reduced, so the products can be obtained a good surface quality and the structural uniformity can be improved. The technique is applied to hard-wrought superalloy forging of cogging, superalloy rods finished forging fire and superalloy hot die forging processing,and good results have been achieved.
文摘1 Scope This standard covers the definition, technical requirement, apparatus, specimen, test procedure, calculation and test report on permanent linear change of shaped insulating refractory products.
基金National Natural Science Foundation of China(No.51478098)Innovation Foundation of Shanghai Education Commission,China(No.13ZZ054)
文摘Computational fluid dynamics( CFD) techniques are used to investigate effects of both wind direction and wind speed on net solar heat gain of south wall with internal insulation in winter.Results show that wind effect has a significant influence on the net solar heat gain,where the impact of wind direction is stronger than that of wind speed. For regions in lower reaches of the Yangtze River,difference of their average net solar heat gains( NSHGS) is about 20% due to various wind speeds and wind directions.Buildings in districts with a dominant wind direction of north achieve the highest solar energy utilization.
文摘Waste shell stacking with odor and toxicity is a serious hazard to our living environment. To make effective use of the natural resources, the shell powder was applied as a filler of outdoor thermal insulation coatings. Sodium stearate(SS) was used to modify the properties of shell powder to reduce its agglomeration and to increase its compatibility with the emulsion. The oil absorption rate and the spectrum reflectance of the shell powder show that the optimized content of SS as a modifier is 1.5wt%. The total spectrum reflectance of the coating made with the shell powder that is modified at this optimum SS content is 9.33% higher than that without any modification. At the optimum SS content of 1.5wt%, the thermal insulation of the coatings is improved by 1.0℃ for the cement mortar board and 1.6℃ for the steel plate, respectively. The scouring resistance of the coating with the 1.5wt% SS-modified shell powder is three times that of the coating without modification.
文摘To meet the commercial requirements of inorganic heat insulators,the mixture of diatomite and Ca(OH)2 are evenly dispersed,mold-compacted,and then hydrothermally solidified due to the formation of tobermorite under an autoclaved process.Systematic investigations of the preparation conditions(including mix ratio,autoclaved factors,mold pressure,etc)were carried out to optimize the serving properties of such tobermorite-based products.As a result,a compressive strength of more than 30 MPa was realized for the specimen in high density(about 1.30(g·cm-3)).On the contrary,the specimen in light weight for example 0.63(g·cm-3)typically showed a thermal conductivity of around 0.12(W·m-1·K-1).The present work developed a feasible way to produce and to control the serving properties of diatomite-based heat insulators by a process of hydrothermal solidification,in which the optimized value of Ca/Si ratio was proposed to be 0.6~0.7,while the water content is 25% in weight,and hydrothermal reaction is performed at 180 ℃ for no more than 24 hours.
基金Project(NRF-2010-0024155) supported by the National Research Foundation of Korea
文摘This research was conducted to study the performances of the heat and multilayer reflection insulators used for buildings in South Korea to realize eco-friendly, low-energy-consumption, green construction, and to contribute to energy consumption reduction in buildings and to the nation's greenhouse gas emission reduction policy (targeting 30% reduction compared to BAUCousiness as usual) by 2020). The heat insulation performance test is about the temperatures on surfaces of test piece. The high air temperature and the low air temperature were measured to determine the overall heat transfer coefficient and thermal conductivity. The conclusions are drawn that the heat transmission coefficients for each type of existing reflection insulator are: A-1 (0.045 W/(m-K)), A-2 (0.031 W/(m.K)), A-3 (0.042 W/(m.K)), A-4 (0.078 W/(m.K)), and the average heat conductivity is 0.049 W/(m-K); The heat conductivity for each type of Styrofoam insulator are 0.030 W/(m.K) for B-l, 0.032 W/(m-K) for B-2, 0.037 W/(m'K) for B-3, 0.037 W/(m.K) for B-4, and the average heat conductivity is 0.035 W/(m'K) regardless of the thickness of the insulator; The heat conductivity values of the multilayer reflection insulators are converted based on the thickness and type C-1 (0.020 W/(m.K)), C-2 (0.018 W/(m.K)), C-3 (0.016 W/(m.K)), and C-4 (0.012 W/(m.K)); The multilayer reflection insulator keeps the indoor-side surface temperature high (during winter) or low (in summer), enhances the comfort of the building occupants, and conducts heating and moisture resistance to prevent dew condensation on the glass-outer-wall surface.
基金Project(2011BAJ03B13) supported by the National Key Technologies R&D Program of China
文摘The method for calculating wall surface heat storage coefficient was introduced,and the coefficients of several common walls with light-weight external thermal insulation materials and the traditional solid clay brick wall were calculated.In order to study the impact of light-weight external thermal insulation materials,a contrasting experiment was carried out between an external insulated room and an uninsulated room in August,2010,in Chongqing,China.The result shows that outside surface heat storage coefficient of the insulated wall is much less than that of the traditional wall.However,during sunny time,the surface temperature of external walls of the insulated room is obviously higher than that of the uninsulated room.In different orientations,due to different amounts of solar radiation and being irradiated in different time,the contrasting temperature difference(CTD) appears different regularity.In a word,using light-weight external thermal insulation materials has a negative impact on building surrounding thermal environment and people's health.Finally,some suggestions on how to eliminate the impact,such as improving the surface condition of the building envelop,and plating vertical greening,are put forward.