Finned-tube heat exchanger(FTHE)is often used as an evaporator in commercial products of separated heat pipe(SHP).The working conditions of FTHE in gravity-assisted SHP are significantly different from those working i...Finned-tube heat exchanger(FTHE)is often used as an evaporator in commercial products of separated heat pipe(SHP).The working conditions of FTHE in gravity-assisted SHP are significantly different from those working in refrigerators and air conditioners.Although FTHE is widely used in commercial products of SHP,previous research on its characteristics is very limited.In this paper,a mathematical model for a SHP with FTHE as the evaporator and plate heat exchanger as the condenser is established and verified with experiments.Parametric analyses are carried out to investigate the influences of evaporator design parameters:air inlet velocity,number of tube rows,tube diameter,and fin pitch.With the increasing of air velocity,number of tube rows and tube diameter,and the decreasing of fin pitch,the heat transfer rate increases,while the energy efficiency ratio(EER)decreases monotonically.Using the total cost of the ten-year life cycle as the performance index,the structure parameters of the evaporator with a given heat transfer rate are optimized by the method of orthogonal experimental design.It is found that the total cost can differ as large as nearly ten times between groups.Among the three factors investigated,the number of tube rows has a significant impact on the total cost of the evaporator.With more tube rows,the total cost will be less.The impacts of fin pitch and tube diameter are insignificant.These results are of practical importance for the engineering design of FTHE in gravity-assisted SHP.展开更多
Separate type heat pipe heat exchangers are often used for large-scale heat exchanging. The arrangement of such a heat exchanger conveniently allows heat input to and output from the heat exchanger at remote locations...Separate type heat pipe heat exchangers are often used for large-scale heat exchanging. The arrangement of such a heat exchanger conveniently allows heat input to and output from the heat exchanger at remote locations. The traditional method of designing an ordinary HPHE (heat pipe heat exchanger) is commonly applied in the separate type exchanger design, but the calculations have to be carried out separately, which makes it very complicated. In this work, the ε-NTU (effectiveness-Number of Transfer Units) method was applied for optimization analysis of single- or multi-level separate type heat pipe heat exchangers. An optimizing formula for single-level separate type heat pipe heat exchangers was obtained. The optimizing principles of effec- tiveness-NTU and heat transfer rate by the equal distribution method for multi-level separate type heat pipe heat exchanger are presented. The design of separate type heat pipe heat exchangers by the optimizing method is more convenient and faster than by the traditional method.展开更多
An investigation of the decoupled thermal–hydraulic analysis of a separated heat pipe spent fuel pool passive cooling system(SFS)is essential for practical engineering applications.Based on the principles of thermal ...An investigation of the decoupled thermal–hydraulic analysis of a separated heat pipe spent fuel pool passive cooling system(SFS)is essential for practical engineering applications.Based on the principles of thermal and mass balance,this study decoupled the heat transfer processes in the SFS.In accordance with the decoupling conditions,we modeled the spent fuel pool of the CAP1400 pressurized water reactor in Weihai and used computational fluid dynamics to explore the heat dissipation capacity of the SFS under different air temperatures and wind speeds.The results show that the air-cooled separated heat pipe radiator achieved optimal performance at an air temperature of 10℃ or wind speed of 8 m/s.Fitted equations for the equivalent thermal conductivity of the separated heat pipes with the wind speed and air temperature we obtained according to the thermal resistance network model.This study is instructive for the actual operation of an SFS.展开更多
In this paper,using the fractional Fourier law,we obtain the fractional heat conduction equation with a time-fractional derivative in the spherical coordinate system.The method of variable separation is used to solve ...In this paper,using the fractional Fourier law,we obtain the fractional heat conduction equation with a time-fractional derivative in the spherical coordinate system.The method of variable separation is used to solve the timefractional heat conduction equation.The Caputo fractional derivative of the order 0 〈 α≤ 1 is used.The solution is presented in terms of the Mittag-Leffler functions.Numerical results are illustrated graphically for various values of fractional derivative.展开更多
Microwave-induced substitutional combustion reaction was utilized to fabricate porous ceramic composite from Fe_3O_4/Al powder mixtures.The porous composite body was obtained by controlling the combustion reaction pro...Microwave-induced substitutional combustion reaction was utilized to fabricate porous ceramic composite from Fe_3O_4/Al powder mixtures.The porous composite body was obtained by controlling the combustion reaction progress in a 2.45 GHz single mode applicator.Prior to the fabrication of the porous body,heating behavior of the powder mixtures were studied in the separated electric(E)and magnetic(H)fields.In addition,heating ability of the microwave fabricated porous product was also investigated.Fe_3O_4 powder can be heated up easily in both maximum H and E field, but a better heating was observed in the maximum H field.Regardless of the mixtures ratio(mixing compositions), maximum H field shows better heating characteristics.In E-field heating,temperature of the Fe_3O_4 samples decreased sharply when Al powder was added.However,the same phenomenon was not observed in the maximum H field heating. Thus,fabrication of the porous composite body was carrying out in maximum H field.Through an adequate control of the reaction progress,products with a porous structure consisting of well-distributed metal particles in the alumina and/or hercynite matrix were obtained.Consequently,heating of the fabricated porous composite body was also been successfully carried out in the maximum H field.Product phases and microstructure were the main factors influencing the heating ability of the porous composite body.展开更多
Seperated heat pipe systems are widely used in the fields of waste heat recovery and air conditioning due to their high heat transfer capability,and optimization of heat transfer process plays an important role in hig...Seperated heat pipe systems are widely used in the fields of waste heat recovery and air conditioning due to their high heat transfer capability,and optimization of heat transfer process plays an important role in high-efficiency energy utilization and energy conservation.In this paper,the entransy dissipation analysis is conducted for the separated heat pipe system,and the result indicates that minimum thermal resistance principle is applicable to the optimization of the separated heat pipe system.Whether in the applications of waste heat recovery or air conditioning,the smaller the entransy-dissipation-based thermal re-sistance of the separated heat pipe system is,the better the heat transfer performance will be.Based on the minimum thermal resistance principle,the optimal area allocation relationship between evaporator and condenser is deduced,which is numeri-cally verified in the optimation design of separated heat pipe system.展开更多
The structural evolution of Cu_(45)Zr_(45)Ag_(10) metallic glass was investigated by in situ transmission electron microscopy heating experiments. The relationship between phase separation and crystallization wa...The structural evolution of Cu_(45)Zr_(45)Ag_(10) metallic glass was investigated by in situ transmission electron microscopy heating experiments. The relationship between phase separation and crystallization was elucidated. Nucleation and growth-controlled nanoscale phase separation at early stage were seen to impede nanocrystallization, while a coarser phase separation via aggregation of Ag-rich nanospheres was found to promote the precipitation of Cu-rich nanocrystals.Coupling of composition and dynamics heterogeneities was supposed to play a key role during phase separation preceding crystallization.展开更多
基金supported by Archaeological Artifact Protection Technology Project of Zhejiang Province(NO2021013).
文摘Finned-tube heat exchanger(FTHE)is often used as an evaporator in commercial products of separated heat pipe(SHP).The working conditions of FTHE in gravity-assisted SHP are significantly different from those working in refrigerators and air conditioners.Although FTHE is widely used in commercial products of SHP,previous research on its characteristics is very limited.In this paper,a mathematical model for a SHP with FTHE as the evaporator and plate heat exchanger as the condenser is established and verified with experiments.Parametric analyses are carried out to investigate the influences of evaporator design parameters:air inlet velocity,number of tube rows,tube diameter,and fin pitch.With the increasing of air velocity,number of tube rows and tube diameter,and the decreasing of fin pitch,the heat transfer rate increases,while the energy efficiency ratio(EER)decreases monotonically.Using the total cost of the ten-year life cycle as the performance index,the structure parameters of the evaporator with a given heat transfer rate are optimized by the method of orthogonal experimental design.It is found that the total cost can differ as large as nearly ten times between groups.Among the three factors investigated,the number of tube rows has a significant impact on the total cost of the evaporator.With more tube rows,the total cost will be less.The impacts of fin pitch and tube diameter are insignificant.These results are of practical importance for the engineering design of FTHE in gravity-assisted SHP.
文摘Separate type heat pipe heat exchangers are often used for large-scale heat exchanging. The arrangement of such a heat exchanger conveniently allows heat input to and output from the heat exchanger at remote locations. The traditional method of designing an ordinary HPHE (heat pipe heat exchanger) is commonly applied in the separate type exchanger design, but the calculations have to be carried out separately, which makes it very complicated. In this work, the ε-NTU (effectiveness-Number of Transfer Units) method was applied for optimization analysis of single- or multi-level separate type heat pipe heat exchangers. An optimizing formula for single-level separate type heat pipe heat exchangers was obtained. The optimizing principles of effec- tiveness-NTU and heat transfer rate by the equal distribution method for multi-level separate type heat pipe heat exchanger are presented. The design of separate type heat pipe heat exchangers by the optimizing method is more convenient and faster than by the traditional method.
文摘An investigation of the decoupled thermal–hydraulic analysis of a separated heat pipe spent fuel pool passive cooling system(SFS)is essential for practical engineering applications.Based on the principles of thermal and mass balance,this study decoupled the heat transfer processes in the SFS.In accordance with the decoupling conditions,we modeled the spent fuel pool of the CAP1400 pressurized water reactor in Weihai and used computational fluid dynamics to explore the heat dissipation capacity of the SFS under different air temperatures and wind speeds.The results show that the air-cooled separated heat pipe radiator achieved optimal performance at an air temperature of 10℃ or wind speed of 8 m/s.Fitted equations for the equivalent thermal conductivity of the separated heat pipes with the wind speed and air temperature we obtained according to the thermal resistance network model.This study is instructive for the actual operation of an SFS.
基金supported by the National Natural Science Foundation of China(11072134 and 11102102)
文摘In this paper,using the fractional Fourier law,we obtain the fractional heat conduction equation with a time-fractional derivative in the spherical coordinate system.The method of variable separation is used to solve the timefractional heat conduction equation.The Caputo fractional derivative of the order 0 〈 α≤ 1 is used.The solution is presented in terms of the Mittag-Leffler functions.Numerical results are illustrated graphically for various values of fractional derivative.
文摘Microwave-induced substitutional combustion reaction was utilized to fabricate porous ceramic composite from Fe_3O_4/Al powder mixtures.The porous composite body was obtained by controlling the combustion reaction progress in a 2.45 GHz single mode applicator.Prior to the fabrication of the porous body,heating behavior of the powder mixtures were studied in the separated electric(E)and magnetic(H)fields.In addition,heating ability of the microwave fabricated porous product was also investigated.Fe_3O_4 powder can be heated up easily in both maximum H and E field, but a better heating was observed in the maximum H field.Regardless of the mixtures ratio(mixing compositions), maximum H field shows better heating characteristics.In E-field heating,temperature of the Fe_3O_4 samples decreased sharply when Al powder was added.However,the same phenomenon was not observed in the maximum H field heating. Thus,fabrication of the porous composite body was carrying out in maximum H field.Through an adequate control of the reaction progress,products with a porous structure consisting of well-distributed metal particles in the alumina and/or hercynite matrix were obtained.Consequently,heating of the fabricated porous composite body was also been successfully carried out in the maximum H field.Product phases and microstructure were the main factors influencing the heating ability of the porous composite body.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50906042,51036003)
文摘Seperated heat pipe systems are widely used in the fields of waste heat recovery and air conditioning due to their high heat transfer capability,and optimization of heat transfer process plays an important role in high-efficiency energy utilization and energy conservation.In this paper,the entransy dissipation analysis is conducted for the separated heat pipe system,and the result indicates that minimum thermal resistance principle is applicable to the optimization of the separated heat pipe system.Whether in the applications of waste heat recovery or air conditioning,the smaller the entransy-dissipation-based thermal re-sistance of the separated heat pipe system is,the better the heat transfer performance will be.Based on the minimum thermal resistance principle,the optimal area allocation relationship between evaporator and condenser is deduced,which is numeri-cally verified in the optimation design of separated heat pipe system.
基金supported by the National Natural Science Foundation of China (Grant No. 51101004)the financial support of China Scholarship Council. Z.Q. Liu is gratefulsupport by the IMR SYNL-T.S. Kê Research Fellowship
文摘The structural evolution of Cu_(45)Zr_(45)Ag_(10) metallic glass was investigated by in situ transmission electron microscopy heating experiments. The relationship between phase separation and crystallization was elucidated. Nucleation and growth-controlled nanoscale phase separation at early stage were seen to impede nanocrystallization, while a coarser phase separation via aggregation of Ag-rich nanospheres was found to promote the precipitation of Cu-rich nanocrystals.Coupling of composition and dynamics heterogeneities was supposed to play a key role during phase separation preceding crystallization.