期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Comparisons and applications of numerical simulation methods for predicting aerodynamic heating around complex configurations 被引量:1
1
作者 Jin-Ling Luo Hong-Lin Kang +1 位作者 Jian Li Wu-Ye Dai 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第3期339-345,共7页
Numerical simulation methods of aerodynamic heating were compared by considering the inuence of numerical schemes and turbulence models,and attempting to investigate the applicability of numerical simulation methods o... Numerical simulation methods of aerodynamic heating were compared by considering the inuence of numerical schemes and turbulence models,and attempting to investigate the applicability of numerical simulation methods on predicting heat flux in engineering applications. For some typical cases provided with detailed experimental data,four spatial schemes and four turbulence models were adopted to calculate surface heat flux. By analyzing and comparing,some inuencing regularities of numerical schemes and turbulence models on calculating heat flux had been acquired. It is clear that AUSM+-up scheme with rapid compressibilitymodified high Reynolds number k鈥撓?model should be appropriate for calculating heat flux. The numerical methods selected as preference above were applied to calculate the heat flux of a 3-D complex geometry in high speed turbulent flows. The results indicated that numerical simulation can capture the complex flow phenomena and reveal the mechanism of aerodynamic heating. Especially,the numerical result of the heat flux at the stagnation point of the wedge was well in agreement with the prediction of Kemp鈥揜iddel formula,and the surface heat flux distribution was consistent with experiment results,which implied that numerical simulation can be introduced to predict heat flux in engineering applications. 展开更多
关键词 Aerodynamic heating . Complex configurations . Numerical simulation
下载PDF
Paraffin–CaCl_(2)·6H_(2)O dosage effects on the strength and heat transfer characteristics of cemented tailings backfill
2
作者 Hai Li Aibing Jin +2 位作者 Shuaijun Chen Yiqing Zhao You Ju 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期60-70,共11页
The challenge of high temperatures in deep mining remains harmful to the health of workers and their production efficiency The addition of phase change materials (PCMs) to filling slurry and the use of the cold storag... The challenge of high temperatures in deep mining remains harmful to the health of workers and their production efficiency The addition of phase change materials (PCMs) to filling slurry and the use of the cold storage function of these materials to reduce downhole temperatures is an effective approach to alleviate the aforementioned problem.Paraffin–CaCl_(2)·6H_(2)O composite PCM was prepared in the laboratory.The composition,phase change latent heat,thermal conductivity,and cemented tailing backfill (CTB) compressive strength of the new material were studied.The heat transfer characteristics and endothermic effect of the PCM were simulated using Fluent software.The results showed the following:(1) The new paraffin–CaCl_(2)·6H_(2)O composite PCM improved the thermal conductivity of native paraffin while avoiding the water solubility of CaCl_(2)·6H_(2)O.(2) The calculation formula of the thermal conductivity of CaCl_(2)·6H_(2)O combined with paraffin was deduced,and the reasons were explained in principle.(3) The“enthalpy–mass scale model”was applied to calculate the phase change latent heat of nonreactive composite PCMs.(4)The addition of the paraffin–CaCl_(2)·6H_(2)O composite PCM reduced the CTB strength but increased its heat absorption capacity.This research can give a theoretical foundation for the use of heat storage backfill in green mines. 展开更多
关键词 paraffin–CaCl_(2)·6H_(2)O heat transfer simulation heat calculation phase change material-based backfill latent heat of formula
下载PDF
Experimental Study on the Performance of ORC System Based on Ultra-Low Temperature Heat Sources
3
作者 Tianyu Zhou Liang Hao +2 位作者 Xin Xu Meng Si Lian Zhang 《Energy Engineering》 EI 2024年第1期145-168,共24页
This paper discussed the experimental results of the performance of an organic Rankine cycle(ORC)system with an ultra-low temperature heat source.The low boiling point working medium R134a was adopted in the system.Th... This paper discussed the experimental results of the performance of an organic Rankine cycle(ORC)system with an ultra-low temperature heat source.The low boiling point working medium R134a was adopted in the system.The simulated heat source temperature(SHST)in this work was set from 39.51°C to 48.60°C by the simulated heat source module.The influence of load percentage of simulated heat source(LPSHS)between 50%and 70%,the rotary valve opening(RVO)between 20%and 100%,the resistive load between 36Ωand 180Ωor the no-load of the generator,as well as the autumn and winter ambient temperature on the system performance were studied.The results showed that the stability of the system was promoted when the generator had a resistive load.The power generation(PG)and generator speed(GS)of the system in autumn were better than in winter,but the expander pressure ratio(EPR)was lower than in winter.Keep RVO unchanged,the SHST,the mass flow rate(MFR)of the working medium,GS,and the PG of the system increased with the increasing of LPSHS for different generator resistance load values.When the RVO was 60%,LPSHS was 70%,the SHST was 44.15°C and the resistive load was 72Ω,the highest PG reached 15.11 W.Finally,a simulation formula was obtained for LPSHS,resistance load,and PG,and its correlation coefficient was between 0.9818 and 0.9901.The formula can accurately predict the PG.The experimental results showed that the standard deviation between the experimental and simulated values was below 0.0792,and the relative error was within±5%. 展开更多
关键词 ORC load percentage of simulated heat source resistive load rotary valve opening power generation
下载PDF
Study on Numerical Simulation of Mold Filling and Heat Transfer in Die Casting Process 被引量:17
4
作者 Liangrong JIA, Shoumei XIONG and Baicheng LIU (Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第3期269-272,共4页
A 3-D mathematical model considering turbulence phenomena has been established based on a computational fluid dynamics technique, so called 3-D SOLA-VOF (Solution Algorithm-Volume of Fluid), to simulate the fluid flow... A 3-D mathematical model considering turbulence phenomena has been established based on a computational fluid dynamics technique, so called 3-D SOLA-VOF (Solution Algorithm-Volume of Fluid), to simulate the fluid flow of mold filling process of die casting. In addition, the mathematical model for simulating the heat transfer in die casting process has also been established. The computation program has been developed by the authors with the finite difference method (FDM) recently. As verification, the mold filling process of a S-shaped die casting has been simulated and the simulation results coincide with that of the benchmark test. Finally, as a practical application, the gating design of a motorcycle component was modified by the mold filling simulation and the dies design of another motorcycle component was optimized by the heat transfer simulation. All the optimized designs were verified by the production practice. 展开更多
关键词 Study on Numerical simulation of Mold Filling and Heat Transfer in Die Casting Process MOLD simulation
下载PDF
Optimal design of heat exchanger header for coal gasification in supercritical water through CFD simulations 被引量:1
5
作者 Lei Huang Lin Qi +2 位作者 Hongna Wang Jinli Zhang Xiaoqiang Jia 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第8期1101-1108,共8页
Heat exchangers play an important role in supercritical water coal gasification systems for heating feed and cooling products. However, serious deposition and plugging problems always exist in heat exchangers. CFD mod... Heat exchangers play an important role in supercritical water coal gasification systems for heating feed and cooling products. However, serious deposition and plugging problems always exist in heat exchangers. CFD modeling was used to simulate the transport characteristics of solid particles in supercdtical water through the shell and tube of heat exchangers to alleviate the problems. In this paper, we discuss seven types of exchangers CA, B, C D, E, F and G), which vary in inlet nozzle configuration, header height, inlet pipe diameter and tube pass distribution. In the modeling, the possibility of deposition in the header was evaluated by accumulated mass of particles; we used the velocity contour of supercritical water (SCW) to evaluate the uniformity of the velocity dis- tribution among the tube passes. Simulation results indicated that the optimum heat exchanger had structure F, which had a rectangular configuration of tube pass distractions, a bottom inlet, a 200-mm header height and a 10-ram inlet pipe diameter. 展开更多
关键词 Supercritical water Shell and tube heat exchanger Particle conveying Pneumatic transport CFD simulations CFX
下载PDF
The Corrected Simulation Method of Critical Heat Flux Prediction for Water-Cooled Divertor Based on Euler Homogeneous Model
6
作者 张镜洋 韩乐 +2 位作者 常海萍 刘楠 许铁军 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第2期190-196,共7页
An accurate critical heat flux(CHF) prediction method is the key factor for realizing the steady-state operation of a water-cooled divertor that works under one-sided high heating flux conditions.An improved CHF pre... An accurate critical heat flux(CHF) prediction method is the key factor for realizing the steady-state operation of a water-cooled divertor that works under one-sided high heating flux conditions.An improved CHF prediction method based on Euler's homogeneous model for flow boiling combined with realizable k-ε model for single-phase flow is adopted in this paper in which time relaxation coefficients are corrected by the Hertz-Knudsen formula in order to improve the calculation accuracy of vapor-liquid conversion efficiency under high heating flux conditions.Moreover,local large differences of liquid physical properties due to the extreme nonuniform heating flux on cooling wall along the circumference direction are revised by formula IAPWSIF97.Therefore,this method can improve the calculation accuracy of heat and mass transfer between liquid phase and vapor phase in a CHF prediction simulation of water-cooled divertors under the one-sided high heating condition.An experimental example is simulated based on the improved and the uncorrected methods.The simulation results,such as temperature,void fraction and heat transfer coefficient,are analyzed to achieve the CHF prediction.The results show that the maximum error of CHF based on the improved method is 23.7%,while that of CHF based on uncorrected method is up to 188%,as compared with the experiment results of Ref.[12].Finally,this method is verified by comparison with the experimental data obtained by International Thermonuclear Experimental Reactor(ITER),with a maximum error of 6% only.This method provides an efficient tool for the CHF prediction of water-cooled divertors. 展开更多
关键词 water-cooled divertor critical heat flux numerical simulation Euler homogeneous model
下载PDF
Multi-point temperature measurements in packed beds using phosphor thermometry and ray tracing simulations
7
作者 Guangtao Xuan Mirko Ebert +3 位作者 Simson Julian Rodrigues Nicole Vorhauer-Huget Christian Lessig Benoit Fond 《Particuology》 SCIE EI CAS CSCD 2024年第2期77-88,共12页
Packed bed reactors are commonly found in the process industry,for example in flame-assisted calci-nation for cement production.Understanding the heat transfer inside the bed is essential for process control,product q... Packed bed reactors are commonly found in the process industry,for example in flame-assisted calci-nation for cement production.Understanding the heat transfer inside the bed is essential for process control,product quality and energy efficiency.Here we propose a technique to determine the internal temperature distribution of packed beds based on a combination of lifetime-based phosphor ther-mometry,ray tracing simulations,and assimilation of temperature data using finite element heat transfer simulations.To establish and validate the technique,we considered a reproducible regular packing of 6 mm diameter aluminum spheres,with one of the spheres in the top layer being electrically heated.If a sphere inside the packing is coated with thermographic phosphors and excitation light is directed to-wards the packing,luminescence from the coated sphere exits the packed bed after multiple reflection and the sphere's temperature can be determined.Isothermal measurements showed that the temper-ature obtained by phosphor thermometry is independent of the luminescent sphere location.When imaging the luminescence on a camera,the luminescence distribution in recorded image depended,however,on the position of the sphere.Therefore,in setups with multiple phosphor-coated spheres,their signals can be separated using a least squares fit.We demonstrate the approach using a setup with three luminescent spheres and validated the temperature readings against thermocouple measurements.To obtain the spatial signatures for individual sphere positions required for the least squares fit,ray tracing simulations were used.These provide an efficient alternative to single sphere measurements that are only practical for regular spherical packed beds.Multi-point measurements were used as input to a finite element heat transfer simulations to determine parameters such as particle-to-particle air gap distance.With these,the full temperature distribution inside the bed could be assimilated from the measured values. 展开更多
关键词 Packed beds Phosphor thermometry Ray tracing Heat transfer simulation Data assimilation
原文传递
Magnetocaloric and magnetic properties of La_2NiMnO_6 double perovskite 被引量:3
8
作者 Masrour R Jabar A 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第8期373-378,共6页
The magnetic effect and the magnetocaloric effect in La_2NiMnO_6(LNMO) double perovskite are studied using the Monte Carlo simulations.The magnetizations,specific heat values,and magnetic entropies are obtained for ... The magnetic effect and the magnetocaloric effect in La_2NiMnO_6(LNMO) double perovskite are studied using the Monte Carlo simulations.The magnetizations,specific heat values,and magnetic entropies are obtained for different exchange interactions and external magnetic fields.The adiabatic temperature is obtained.The transition temperature is deduced.The relative cooling power is established with a fixed value of exchange interaction.According to the master curve behaviors for the temperature dependence of △S_m^(max) predicted for different maximum fields,in this work it is confirmed that the paramagnetic-ferromagnetic phase transition observed for our sample is of a second order.The near room-temperature interaction and the superexchange interaction between Ni and Mn are shown to be due to the ferromagnetism of LNMO. 展开更多
关键词 oxides magnetocaloric Monte Carlo simulation specific heat magnetic properties
下载PDF
Development of SA-533 Type B CL. 1+SA-240 Type 304L roll-bonded clad steel plate for safety injection tank of CAP1400 nuclear power plant 被引量:2
9
作者 HOU Hong ZHANG Hanqian +1 位作者 YUAN Xiangqian DING Jianhua 《Baosteel Technical Research》 CAS 2017年第1期18-25,共8页
Aiming to meet the demand of the country' s nuclear demonstration project on the CAP1400 nuclear power plant, Baosteel uses the roll-bonding technology and develops the SA-533 Type B CL. 1 + SA-240 Type 304L high-st... Aiming to meet the demand of the country' s nuclear demonstration project on the CAP1400 nuclear power plant, Baosteel uses the roll-bonding technology and develops the SA-533 Type B CL. 1 + SA-240 Type 304L high-strength and high-toughness clad steel plate with a shear strength of over 310 MPa for the nuclear power plant' s safety injection tank. The properties of the quenched and tempered and the simulated post-weld heat treatment states are systematically studied herein through a comprehensive inspection and evaluation of the composition,microstructure,and properties of the clad steel plate. The results show that the bonding interface has high shear strength and that the base metal has high strength and good toughness at low temperatures. Hence, the performance fully meets the technical requirements of the CAP1400 nuclear power plant' s safety injection tank in the country' s nuclear demonstration project. The roll-bonded clad steel plate can be used to manufacture the safety injection tank of the CAP1400 nuclear power plant. 展开更多
关键词 CAP1400 nuclear power plant safety injection tank SA-533 Type B CL. 1 SA-240 Type 304Lrolling clad steel plate quenched and tempered simulated post-weld heat treatment property
下载PDF
Optimization and Control of Extractive Distillation with Heat Integration for Separating Benzene/Cyclohexane Mixtures 被引量:3
10
作者 Li Lumin Tu Yangqin +2 位作者 Guo Lianjie Sun Lanyi Tian Yuanyu 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2016年第4期117-127,共11页
In this work, the extractive distillation with heat integration process is extended to separate the pressure-insensitive benzene-cyclohexane azeotrope by using furfural as the entrainer. The optimal design of extracti... In this work, the extractive distillation with heat integration process is extended to separate the pressure-insensitive benzene-cyclohexane azeotrope by using furfural as the entrainer. The optimal design of extractive distillation process is established to achieve minimum energy requirement using the multi-objective genetic algorithm, and the results show that energy saving for this heat integration process is 15.7%. Finally, the control design is performed to investigate the system's dynamic performance, and three control structures are studied. The pressure-compensated temperature control scheme is proposed based on the first two control structures, and the dynamic responses reveal that the feed disturbances in both flow rate and benzene composition can be mitigated well. 展开更多
关键词 extractive distillation heat integration optimization genetic algorithm dynamic simulation
下载PDF
Radiation heat transfer model for complex superalloy turbine blade in directional solidification process based on finite element method 被引量:4
11
作者 Dun-ming Liao Liu Cao +4 位作者 Tao Chen Fei Sun Yong-zhen Jia Zi-hao Teng Yu-long Tang 《China Foundry》 SCIE 2016年第2期123-132,共10页
For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is develo... For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is developed in this study. Key technologies, such as distinguishing boundaries automatically, local matrix and lumped heat capacity matrix, are also stated. In order to analyze the effect of withdrawing rate on DS process,the solidification processes of a complex superalloy turbine blade in the High Rate Solidification(HRS) process with different withdrawing rates are simulated; and by comparing the simulation results, it is found that the most suitable withdrawing rate is determined to be 5.0 mm·min^(-1). Finally, the accuracy and reliability of the radiation heat transfer model are verified, because of the accordance of simulation results with practical process. 展开更多
关键词 directional solidification radiation heat transfer finite element method numerical simulation local matrix superalloy turbine blade
下载PDF
Heat transfer and friction factor of Therminol liquid phase heat transfer fluid in a ribbed tube 被引量:2
12
作者 Weiguo Xu Guodong Liu +3 位作者 Qinghong Zhang Shuai Wang Huilin Lu Heping Tan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第10期1343-1351,共9页
Experiments and simulations on flow and heat transfer behavior of Therminol-55 liquid phase heat transfer fluid have been conducted in a ribbed tube with the outer diameter and inner diameter 25.0 and 20.0 mm,pitch an... Experiments and simulations on flow and heat transfer behavior of Therminol-55 liquid phase heat transfer fluid have been conducted in a ribbed tube with the outer diameter and inner diameter 25.0 and 20.0 mm,pitch and rib height of 4.5 and 1.0 mm.respectively.Experimental results show that the heat transfer and thermal performance of Therminol-55 liquid phase heat transfer fluid in the ribbed tube are considerably improved compared to those of the smooth tube.The Nusselt number increase with the increase of Reynolds number.The increase in heat transfer rate of the ribbed tube has a mean value of 2.24 times.Also,the pressure drop results reveal that the average friction factor of the ribbed tube is in a range of 2.4 and 2.8 times over the smooth tube.Numerical simulations of three-dimensional flow behavior of Therminol-55 liquid phase heat transfer fluid are carried out using three different turbulence models in the ribbed tube.The numerical results show that the heat transfer of ribbed tube is improved because vortices are generated behind ribs,which produce some disruptions to fluid flow and enhance heat transfer compared with smooth tube.The numerical results prove that the ribbed tube can improve heat transfer and fluid flow performances of Therminol liquid phase heat transfer fluid. 展开更多
关键词 Ribbed tube Heat transfer fluid Friction factor Experiments Numerical simulations
下载PDF
A numerical study on heat transfer enhancement and design of a heat exchanger with porous media in continuous hydrothermal flow synthesis system 被引量:2
13
作者 Pedram Karimi Pour-Fard Ebrahim Afshari +1 位作者 Masoud Ziaei-Rad Shahed Taghian-Dehaghani 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第10期1352-1359,共8页
The aim of this study is to use a new configuration of porous media in a heat exchanger in continuous hydrothermal flow synthesis(CHFS)system to enhance the heat transfer and minimize the required length of the heat e... The aim of this study is to use a new configuration of porous media in a heat exchanger in continuous hydrothermal flow synthesis(CHFS)system to enhance the heat transfer and minimize the required length of the heat exchanger.For this purpose,numerous numerical simulations are performed to investigate performance of the system with porous media.First,the numerical simulation for the heat exchanger in CHFS system is validated by experimental data.Then,porous media is added to the system and six different thicknesses for the porous media are examined to obtain the optimum thickness,based on the minimum required length of the heat exchanger.Finally,by changing the flow rate and inlet temperature of the product as well as the cooling water flow rate,the minimum required length of the heat exchanger with porous media for various inlet conditions is assessed.The investigations indicate that using porous media with the proper thickness in the heat exchanger increases the cooling rate of the product by almost 40% and reduces the required length of the heat exchanger by approximately 35%.The results also illustrate that the most proper thickness of the porous media is approximately equal to 90% of the product tube's thickness.Results of this study lead to design a porous heat exchanger in CHFS system for various inlet conditions. 展开更多
关键词 Continuous hydrothermal flow synthesis Heat exchanger Heat transfer enhancement Porous media Numerical simulation
下载PDF
Molecular dynamics study of thermal stress and heat propagation in tungsten under thermal shock 被引量:1
14
作者 付宝勤 赖文生 +4 位作者 袁悦 徐海燕 李纯 贾玉振 刘伟 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期376-382,共7页
Using molecular dynamics (MD) simulation, we study the thermal shock behavior of tungsten (W), which has been used for the plasma facing material (PFM) of tokamaks. The thermo-elastic stress wave, corresponding ... Using molecular dynamics (MD) simulation, we study the thermal shock behavior of tungsten (W), which has been used for the plasma facing material (PFM) of tokamaks. The thermo-elastic stress wave, corresponding to the collective displacement of atoms, is analyzed with the Lagrangian atomic stress method, of which the reliability is also analyzed. The stress wave velocity corresponds to the speed of sound in the material, which is not dependent on the thermal shock energy. The peak pressure of a normal stress wave increases with the increase of thermal shock energy. We analyze the temperature evolution of the thermal shock region according to the Fourier transformation. It can be seen that the “obvious” velocity of heat propagation is less than the velocity of the stress wave; further, that the thermo-elastic stress wave may contribute little to the transport of kinetic energy. The heat propagation can be described properly by the heat conduction equation. These results may be useful for understanding the process of the thermal shock of tungsten. 展开更多
关键词 molecular dynamics simulation thermal shock thermo-elastic stress heat propagation tungsten
下载PDF
Mathematical model of absorption and hybrid heat pump 被引量:1
15
作者 Grazia Leonzio 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第10期1492-1504,共13页
Recovering waste heat from industrial processes is bene ficial in order to reduce the primary energy demands and heat pumps can be used to this purpose.Absorption heat pumps are energy-saving and environment-friendly ... Recovering waste heat from industrial processes is bene ficial in order to reduce the primary energy demands and heat pumps can be used to this purpose.Absorption heat pumps are energy-saving and environment-friendly because use working fluids that do not cause ozone depletion and can reduce the global warming emissions.The hybrid heat pump processes combine the conventional vapor-compression and the absorption heat pump cycles.Studies about the simulations and modeling of hybrid heat pumps are few in literature.In this research a mathematical model for single effect absorption and hybrid heat pump is carried out with Chem Cad? 6.0.1.LiBr–H_2O is used as working fluid while electrolytic NRTL and electrolytes latent heat are used as thermodynamic model due to the better results.Binary parameters of activity coef ficients are regressed from experimental vapor pressure data while default constants are used for the solubility expressions.A design of heat pumps is developed and a new modeling of generator is analyzed.The coef ficient of performance of absorption heat pump and hybrid heat pump is equal to 0.7 and 0.83 respectively.For absorption heat pump a sensitivity analysis is carried out to evaluate the effect of temperature and pressure generator,the concentration of Li–Br solution on coef ficient of performance,cooling capacity and working fluid temperature.For hybrid heat pump,the different coef ficients of performance,the primary energy ratio,the generator heat,and the compressor power are analyzed for different values of compressor proportion.Results show that comparing the two systems the hybrid pump allows to save more primary energy,costs and carbon dioxide emissions with respect to absorption heat pump with the increasing of compressor proportion parameter.Future researches should focus on the construction of this heat pumps integrated in chemical processes as a biogas plant or trigeneration systems. 展开更多
关键词 Absorption heat pumps Hybrid heat pumps LiBr–H2O modeling Energy efficiency Process simulation Mathematical model
下载PDF
Effects of thermophoresis particle deposition and of the thermal conductivity in a porous plate with dissipative heat and mass transfer
16
作者 Joaquín Zueco O.Anwar Bég L.M.Lpez-Ochoa 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第3期389-398,共10页
Network simulation method(NSM) is used to solve the laminar heat and mass transfer of an electricallyconducting,heat generating/absorbing fluid past a perforated horizontal surface in the presence of viscous and Jou... Network simulation method(NSM) is used to solve the laminar heat and mass transfer of an electricallyconducting,heat generating/absorbing fluid past a perforated horizontal surface in the presence of viscous and Joule heating problem. The governing partial differential equations are non-dimensionalized and transformed into a system of nonlinear ordinary differential similarity equations,in a single independent variable,畏. The resulting coupled,nonlinear equations are solved under appropriate transformed boundary conditions. Computations are performed for a wide range of the governing flow parameters,viz Prandtl number,thermophoretic coeffcient(a function of Knudsen number),thermal conductivity parameter,wall transpiration parameter and Schmidt number. The numerical details are discussed with relevant applications. The present problem finds applications in optical fiber fabrication,aerosol filter precipitators,particle deposition on hydronautical blades,semiconductor wafer design,thermo-electronics and problems including nuclear reactor safety. 展开更多
关键词 Thermophoresis . MHD . Network simulation model . Heat and mass transfer- Hartmann number
下载PDF
A Contrastive Analysis of Laser Heating Between the Human and Guinea Pig Cochlea by Numerical Simulations
17
《Chinese Journal of Biomedical Engineering(English Edition)》 CSCD 2016年第3期133-133,共1页
The photo-thermal effect has been hypothesised to be one of the most possible biophysical mecha-nisms for laser-cochlea stimulation. The majority focus on animals like the guinea pig, from which a num-ber of valuable ... The photo-thermal effect has been hypothesised to be one of the most possible biophysical mecha-nisms for laser-cochlea stimulation. The majority focus on animals like the guinea pig, from which a num-ber of valuable results have been gained. However, in light of the increasing need to improve laser safety, it has became necessary to find out whether studies on animals can shed light on safe laser parameters in the human cochlea. 展开更多
关键词 A Contrastive Analysis of Laser heating Between the Human and Guinea Pig Cochlea by Numerical simulations
原文传递
Influence of heating parameters on properties of the Al-Si coating applied to hot stamping 被引量:8
18
作者 LIANG WeiKang TAO WenJie +1 位作者 ZHU Bin ZHANG YiSheng 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第7期1088-1102,共15页
The Al-Si coating of ultra-high strength steel has been applied to hot stamping more and more widely, owing to solving the problem of oxidation and decarburization. However, the evolution of Al-Si coating during the h... The Al-Si coating of ultra-high strength steel has been applied to hot stamping more and more widely, owing to solving the problem of oxidation and decarburization. However, the evolution of Al-Si coating during the heating process was rarely studied in the previous study. The tests about the influence of heating parameters, such as heating temperature, heating rates and dwell time, on properties of the Al-Si coating were carried out on the Gleeble-3500 thermal simulator. The properties of the Al-Si coating, for instance, volume fraction of FeAl intermetallics, α-Fe layer as well as porosity and 3D surface topography, were explored in the study. Results showed that more and more Kirkendall voids and cracks appeared in the Al-Si coating when the heating temperature exceeded 600°C. The heating rates almost had no influence on properties of the Al-Si coating when the temperature was equal to or lower than 500°C. The volume fraction of FeAl intermetallics in the coating with dwell time from 3 s to 8 min at 930°C was0, 6.19%, 17.03% and 20.65%, separately. The volume fraction of the α-Fe layer in the coating changed from zero to 31.52%with the prolonged dwell time. The porosity of the coating ranged from 0.51% to 4.98% with the extension of dwell time. The unsmooth degree of the surface of the coating rose gradually with the increasing of heating rates and the extension of dwell time.The 3D surface topography of the coating was determined by the comprehensive effect of atoms diffusion, new formed phases,surface tension and the degree of oxidation of the coating surface. Experiments indicated that rapid heating was not suitable for the coating when the temperature exceeded 500°C. Experiments also demonstrated that enough dwell time was essential to obtain the superior properties of the coating. 展开更多
关键词 Al-Si coating heating parameters thermal simulator Kirkendall voids cracks 3D surface topography
原文传递
Numerical simulation of flow and heat transfer in a random packed bed 被引量:13
19
作者 Xueyan Guo Ren Dai 《Particuology》 SCIE EI CAS CSCD 2010年第3期293-299,共7页
Random packed beds have more complex interior structure than structured beds and are widely used in industry and engineering. CFD simulation was carried out to investigate and analyze the local flow and heat transfer ... Random packed beds have more complex interior structure than structured beds and are widely used in industry and engineering. CFD simulation was carried out to investigate and analyze the local flow and heat transfer in a 120-sphere random packed bed. 3D Navier-Stokes equation was solved with a finite volume formulation based on the Chimera meshing technique. Investigation was focused on low Reynolds number flow (Re=4.6-56.2), which typically occurs in packed bed reactors in bio-chemical fields. Detailed temperature field information was obtained. Inhomogeneity of flow and heat transfer due to the non-uniform distribution of void fraction was discussed and analyzed. 展开更多
关键词 Packed bed Heat transfer Chimera grid Numerical simulation Low Reynolds number
原文传递
Numerical simulation of heat transfer process in cement grate cooler based on dynamic mesh technique 被引量:7
20
作者 SHAO Wei CUI Zheng +1 位作者 WANG NaiHua CHENG Lin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第7期1065-1070,共6页
A grate cooler is key equipment in quenching clinker and recovering heat in cement production. A two-dimensional numerical model based on a 5000 t/d cement plant is proposed to for a study on the gas-solid coupled hea... A grate cooler is key equipment in quenching clinker and recovering heat in cement production. A two-dimensional numerical model based on a 5000 t/d cement plant is proposed to for a study on the gas-solid coupled heat transfer process between the cooling air and clinker in a grate cooler. In this study, we use the Fluent dynamic mesh technique and porous media model through which the transient temperature distribution with the clinker motion process and steady temperature and pressure distribution are obtained. We validate the numerical model with the operating data of the cooling air outlet temperature. Then, we discuss the amount of mid-temperature air outlet and average diameter of clinker particles, which affect the heat effective utilization and cooling air pressure drop in clinker layer. We found that after adding one more mid-temperature air outlet, the average temperature of the air flowing into the heat recovery boiler increases by 29.04℃ and the ratio of heat effective utilization increases by 5.3%. This means heat recovery is more effective on adding one more mid-temperature air outlet. Further, the smaller the clinker particles, the more is the pressure drop in clinker layer; thus more power consumption is needed by the cooling fan. 展开更多
关键词 grate cooler gas-solid heat transfer dynamic mesh numerical simulation
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部