An analysis of atmospheric SW-radiative forcing and local heating/cooling rate is made using a one year temporal and vertical profiles of aerosol and cloud over Yaoundé (11.51°E, 3.83°N). It appears tha...An analysis of atmospheric SW-radiative forcing and local heating/cooling rate is made using a one year temporal and vertical profiles of aerosol and cloud over Yaoundé (11.51°E, 3.83°N). It appears that the direct influence of aerosols on the surface compared to the TOA can be 3 times larger. Annual mean value obtained at 559 mb altitude is +27.74 W/m2 with range from 0 to +43 W/m2. At 904 mb, we obtained an annual mean of ﹣46.22 W/m2 with range from ﹣65 to ﹣9 W/m2. Frequency distribution indicates that more than 95% of ARF are between +10 and +70 W/m2 at 559 mb (upper limit of UL), and more than 85% of ARF are between ﹣70 and ﹣10 W/m2 at 904 mb (upper limit of PBL). This sign change is explained by the fact that the backscattering peaks at the upper limit of the aerosol PBL layer. The maximum CRF is noted at TOA where it reaches ﹣600 W/m2 based on the time interval and the structure of clouds. The highest values occur between 11.50 and 13.50 LST. Clouds lead to a general heating of the entire atmospheric column with a much greater effect near the surface. Aerosols effect on the heating rate profile show strong cooling during the day for the lower atmosphere, with slight heating at the upper atmosphere. This cooling contribution generally increases from the surface and peacks at the upper boundary of aerosol layer where reflectivity is the most important. Depending on the moment of the day, average heating effect of clouds peacks at surface or within the middle troposphere due to the absorption by clouds particles. Vertical profiles deeply evolve exhibiting differences that exceed ﹣3 K/day according to altitude from one hour to another during a given mean solar day.展开更多
Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building hea...Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building heating,ventilation,and air-conditioning systems.In recent years,there has been a surge in advancements in personal thermal management(PTM),aiming to regulate heat and moisture transfer within our immediate surroundings,clothing,and skin.The advent of PTM is driven by the rapid development in nano/micro-materials and energy science and engineering.An emerging research area in PTM is personal radiative thermal management(PRTM),which demonstrates immense potential with its high radiative heat transfer efficiency and ease of regulation.However,it is less taken into account in traditional textiles,and there currently lies a gap in our knowledge and understanding of PRTM.In this review,we aim to present a thorough analysis of advanced textile materials and technologies for PRTM.Specifically,we will introduce and discuss the underlying radiation heat transfer mechanisms,fabrication methods of textiles,and various indoor/outdoor applications in light of their different regulation functionalities,including radiative cooling,radiative heating,and dual-mode thermoregulation.Furthermore,we will shine a light on the current hurdles,propose potential strategies,and delve into future technology trends for PRTM with an emphasis on functionalities and applications.展开更多
Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative coo...Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative cooling and solar heating for the uptake of CO_(2) on commercial activated carbons(CACs).During adsorption,the adsorbents are coated with a layer of hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene)[P(VdF-HFP)HP],which cools the adsorbents to a low temperature under sunlight through radiative cooling.For desorption,CACs with broad absorption of the solar spectrum are exposed to light irradiation for heating.The heating and cooling processes are completely driven by solar energy.Adsorption tests under mimicked sunlight using the CACs show that the performance of this system is comparable to that of the traditional ones.Furthermore,under real sunlight irradiation,the adsorption capacity of the CACs can be well maintained after multiple cycles.The present work may inspire the development of new temperature swing procedures with little energy consumption.展开更多
Thermal damage and thermal fracture of rocks are two important indicators in geothermal mining projects.This paper investigates the effects of heating and water-cooling on granite specimens at various temperatures.The...Thermal damage and thermal fracture of rocks are two important indicators in geothermal mining projects.This paper investigates the effects of heating and water-cooling on granite specimens at various temperatures.The laboratory uniaxial compression experiments were also conducted.Then,a coupled thermo-mechanical ordinary state-based peridynamic(OSB-PD)model and corresponding numerical scheme were developed to simulate the damage of rocks after the heating and cooling processes,and the change of crack evolution process was predicted.The results demonstrate that elevated heating temperatures exacerbate the thermal damage to the specimens,resulting in a decrease in peak strength and an increase in ductility of granite.The escalating occurrence of thermal-induced cracks significantly affects the crack evolution process during the loading phase.The numerical results accurately reproduce the damage and fracture characteristics of the granite under different final heating temperatures(FHTs),which are consistent with the test results in terms of strength,crack evolution process,and failure mode.展开更多
The effect of cooling rate of the solidification process on the following solution heat treatment of A356 alloy was investigated,where the cooling rates of 96 K/s and 3 K/s were obtained by the step-like metal mold.Th...The effect of cooling rate of the solidification process on the following solution heat treatment of A356 alloy was investigated,where the cooling rates of 96 K/s and 3 K/s were obtained by the step-like metal mold.Then the eutectic silicon morphology evolution and tensile properties of the alloy samples were observed and analyzed after solution heat treatment at 540 °C for different time.The results show that the high cooling rate of the solidification process can not only reduce the solid solution heat treatment time to rapidly modify the eutectic silicon morphology,but also improve the alloy tensile properties.Specially,it is found that the disintegration,the spheroidization and coarsening of eutectic silicon of A356 alloy are completed during solution heat treatment through two stages,i.e.,at first,the disintegration and spheroidization of the eutectic silicon mainly takes place,then the eutectic silicon will coarsen.展开更多
A new ground source heat pump system combined with radiant heating/cooling is proposed, and the principles and the advantages of the system are analyzed. A demonstration of the system is applied to a rebuilt building...A new ground source heat pump system combined with radiant heating/cooling is proposed, and the principles and the advantages of the system are analyzed. A demonstration of the system is applied to a rebuilt building: Xijindu exhibition hall, which is located in Zhenjiang city in China. Numerical studies on the thermal comfort and energy consumption of the system are carded out by using TRNSYS software. The results indicate that the system with the radiant floor method or the radiant ceiling method shows good thermal comfort without mechanical ventilation in winter. However, the system with either of the methods should add mechanical ventilation to ensure good comfort in summer. At the same level of thermal comfort, it can also be found that the annual energy consumption of the radiant ceiling system is less than that of the radiant floor system.展开更多
The knowledge representation mode and inference control strategy were analyzed according to the specialties of air-conditioning cooling/heating sources selection. The constructing idea and working procedure for knowle...The knowledge representation mode and inference control strategy were analyzed according to the specialties of air-conditioning cooling/heating sources selection. The constructing idea and working procedure for knowledge base and inference engine were proposed while the realization technique of the C language was discussed. An intelligent decision support system (IDSS) model based on such knowledge representation and inference mechanism was developed by domain engineers. The model was verified to have a small kernel and powerful capability in list processing and data driving, which was successfully used in the design of a cooling/heating sources system for a large-sized office building.展开更多
In this study,the cooling rate was manipulated by quenching with water of different temperatures(30,60 and 100℃).Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using ...In this study,the cooling rate was manipulated by quenching with water of different temperatures(30,60 and 100℃).Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using hole-drilling and crack compliance methods,respectively.Then,the processability of the quenched samples was evaluated at cryogenic temperatures.The mechanical properties of the as-aged samples were assessed,and microstructure evolution was analyzed.The surface residual stresses of samples W30℃,W60℃and W100℃is−178.7,−161.7 and−117.2 MPa,respectively along x-direction,respectively;and−191.2,−172.1 and−126.2 MPa,respectively along y-direction.The sample quenched in boiling water displaying the lowest residual stress(~34%and~60%reduction in the surface and core).The generation and distribution of quenching residual stress could be attributed to the lattice distortion gradient.Desirable plasticity was also exhibited in the samples with relatively low quenching cooling rates at cryogenic temperatures.The strengthes of the as-aged samples are 291.2 to 270.1 MPa as the quenching water temperature increase from 30℃to 100℃.Fine and homogeneous β"phases were observed in the as-aged sample quenched with boiling water due to the clusters and Guinier-Preston zones(GP zones)premature precipitated during quenching process.展开更多
The main objective of this work was to modify the microstructure and enhance the tribological properties of a new Zn-4Si al-loy through a high solidification cooling rate(SCR).According to the results,by increasing th...The main objective of this work was to modify the microstructure and enhance the tribological properties of a new Zn-4Si al-loy through a high solidification cooling rate(SCR).According to the results,by increasing the SCR from 2.0 to 59.5℃/s the average size of primary Si particles and that of the grains reduced from 76.1 and 3780μm to less than about 14.6 and 460μm,respectively.Augment-ing the SCR also enhanced the microstructural homogeneity,decreased the porosity content(by 50%),and increased the matrix hardness(by 36%).These microstructural changes enhanced the tribological behavior.For instance,under the applied pressure of 0.5 MPa,an in-crease in the SCR from 2.0 to 59.5℃/s decreased the wear rate and the average friction coefficient of the alloy by 57%and 23%,respect-ively.The wear mechanism was also changed from the severe delamination,adhesion,and abrasion in the slowly-cooled alloy to the mild tribolayer delamination/abrasion in the high-cooling-rate-solidified sample.展开更多
Magnesium alloy is one of the most widely used lightweight structural materials,and the development of high strength-toughness magnesium alloy is an important research field at present and even in the future.The prepa...Magnesium alloy is one of the most widely used lightweight structural materials,and the development of high strength-toughness magnesium alloy is an important research field at present and even in the future.The preparation process parameters of magnesium alloy directly affect the microstructure of the magnesium alloy,and then determine the properties of the magnesium alloy.The cooling rate has important effects on the microstructure and properties of the magnesium alloy,and is an important preparation process parameter that cannot be ignored.Both the cooling rate from liquid phase to solid phase and the cooling rate of the magnesium alloy after heat treatment will change the microstructure of the magnesium alloy.Furthermore,the properties of magnesium alloy will be affected.In this paper,the effects of cooling rate on the solidification behavior,the rheological behavior,the change of microstructure(the solid solution of alloying elements in matrix,the composition,size,distribution and morphology of second phase,the diffusion and segregation of alloying elements,the grain size,the formation and morphology of dendrite,etc.),and the effects of cooling rate of magnesium alloy after heat treatment on the microstructure and stress distribution are reviewed.The reasons for the divergence about the influence of cooling rate on the microstructure of magnesium alloy are analyzed in detail.The effects of cooling rate on the mechanical properties,corrosion resistance and oxidation resistance of magnesium alloy are also analyzed and discussed deeply.Finally,the new methods and approaches to study the effects of cooling rate on the microstructure and properties of magnesium alloy are prospected.展开更多
The impact of cooling rate after solution heat treatment on exfoliation corrosion resistance of a Li-containing 7xxx aluminum alloy was investigated by accelerated immersion and electrochemical impedance spectroscopy ...The impact of cooling rate after solution heat treatment on exfoliation corrosion resistance of a Li-containing 7xxx aluminum alloy was investigated by accelerated immersion and electrochemical impedance spectroscopy test,optical microscope,electron backscatter diffraction and scanning transmission electron microscope.With the decrease of cooling rate from 1700℃/s to 4℃/s,exfoliation corrosion resistance of the aged specimens decreases with rating changing from EA to EC and the maximum corrosion depth increasing from about 169.4μm to 632.1μm.Exfoliation corrosion tends to develop along grain boundaries in the specimens with cooling rates higher than about 31℃/s and along both grain boundaries and sub-grain boundaries in the specimens with lower cooling rates.The reason has been discussed based on the changes of the microstructure and microchemistry at grain boundaries and sub-grain boundaries due to slow cooling.展开更多
Polypropylene is commonly used as a binder for ceramic injection molding,and rapid cooling is often encountered during processing.However,the crystallization behavior of polypropylene shows a strong dependence on cool...Polypropylene is commonly used as a binder for ceramic injection molding,and rapid cooling is often encountered during processing.However,the crystallization behavior of polypropylene shows a strong dependence on cooling rate due to its semi-crystalline characteristics.Therefore,the influence of cooling rate on the quality of final product cannot be ignored.In this study,the fast differential scanning calorimetry(FSC)test was performed to study the influence of cooling rate on the non-isothermal crystallization behavior and non-isothermal crystallization kinetics of a copolymer polypropylene(PP BC03B).The results show that the crystallization temperatures and crystallinity decrease as the cooling rate increases.In addition,two exothermic peaks occur when cooling rate ranges from 30 to 300 K·s^(-1),indicating the formation of another crystal phase.Avrami,Ozawa and Mo equations were used to explore the non-isothermal crystallization kinetics,and it can be concluded that the Mo method is suitable for this study.展开更多
The extruded AZ80+0.4%Ce magnesium alloy was twisted in the temperature range of 300-380℃by using a Gleeble 3500 thermal simulation test machine with a torsion unit.The deformed cylindrical specimens were cooled at a...The extruded AZ80+0.4%Ce magnesium alloy was twisted in the temperature range of 300-380℃by using a Gleeble 3500 thermal simulation test machine with a torsion unit.The deformed cylindrical specimens were cooled at a cooling rate of 10℃/s or 0.1℃/s,respectively,and aged at 170℃.The microstructure analysis results showed that the grain size decreased with increasing specimen radial position from center(SRPC),and that the strong initial basal texture of the extruded magnesium alloy was weakened.Both continuous and discontinuous dynamic recrystallization mechanisms were involved in contributing to the grain refinement for all specimens investigated.And a novel extension twinning induced dynamic recrystallization mechanism was proposed for specimen deformed at 300℃.For the specimens deformed at 300℃and 340℃followed by a slow cooling rate(0.1℃/s),precipitates of various shapes(β-Mg_(17)Al_(12)),with the dominant precipitates being on the grains boundaries,appeared on the surface section.For specimen deformed at 380℃,lamellar precipitates(LPS)in the interiors of the grains were predominant.After aging,the LPS still dominated for specimens twisted at 380℃;however,the LPS gradually decreased with decreasing deformation temperatures from 380℃to 300℃.Dynamically precipitatedβ,especially those decorating the grain boundaries,changed the competition pictures for the LPS and precipitates of other shapes after aging.Interestingly,LPS dominated the areas for the center section of the specimens after aging regardless of deformation temperatures.Low temperature deformation with high SRPC followed by rapid cooling rate increased the micro hardness of the alloy after aging due to refined grain,reduced precipitates size,decreased lamellar spacing as well as strain hardening.展开更多
Data centers(DCs)are highly energy-intensive facilities,where about 30%–50%of the power consumed is attributable to the cooling of information technology equipment.This makes liquid cooling,especially in twophase mod...Data centers(DCs)are highly energy-intensive facilities,where about 30%–50%of the power consumed is attributable to the cooling of information technology equipment.This makes liquid cooling,especially in twophase mode,as an alternative to air cooling for the microprocessors in servers of interest.The need to meet the increased power density of server racks in high-performance DCs,along with the push towards lower global warming potential(GWP)refrigerants due to environmental concerns,has motivated research on the selection of two-phase heat transfer fluids for cooling servers while simultaneously recovering waste heat.With this regard,a heat pump-assisted absorption chiller(HPAAC)system for recovering waste heat in DCs with an on-chip twophase cooling loop driven by the compressor is proposed in the present paper and the low GWP hydrofluoroolefin refrigerants,including R1224yd(Z),R1233zd(E),R1234yf,R1234ze(E),R1234ze(Z),R1243zf and R1336mzz(Z),are evaluated and compared against R245fa as server coolant.For theHPAAC system,beginning with the development of energy and economic models,the performance is analyzed through both a parametric study and optimization using the coefficient of performance(COP),energy saving ratio(ESR),payback period(PBP)and net present value(NPV)as thermo-economic indicators.Using a standard vapor compression cooling system as a benchmark,the results indicate that with the evaporation temperature between 50℃and 70℃and the subcooling degree ranging from5℃to 15°C,R1233zd(E)with moderate compressor suction pressure and pressure ratio is the best refrigerant for the HPAAC systemwhile R1234yf performs the worst.More importantly,R1233zd(E)is also superior to R245fa based on thermo-economic performance,especially under work conditions with relatively lower evaporation temperature as well as subcooling degree.Under the given working conditions,the overall COP,ESR,NPV,and PBP of R1233zd(E)HPAAC with optimum subcooling degree range from4.99 to 11.27,25.53 to 64.59,1.13 to 4.10×10^(7) CNY and 5.77 to 2.22 years,respectively.Besides,the thermo-economic performance of R1233zd(E)HPAAC under optimum working conditions in terms of subcooling degree varying with the evaporation temperature is also investigated.展开更多
Future changes of heating degree days (HDD) and cooling degree days (CDD) in the 21st century with and without considering populationfactor are investigated based on four sets of climate change simulations over Ea...Future changes of heating degree days (HDD) and cooling degree days (CDD) in the 21st century with and without considering populationfactor are investigated based on four sets of climate change simulations over East Asia using the regional climate model version 4.4 (RegCM4.4)driven by the global models of CSIRO-Mk3-6-0, EC-EARTH, HadGEM2-ES, and MPI-ESM-MR. Under global warming of 1.5℃, 2℃, 3℃,and 4℃, significant decrease of HDD can be found over China without considering population factor, with greater decrease over high elevationand high latitude regions, including the Tibetan Plateau, the northern part of Northeast China, and Northwest China; while population-weightedHDD increased in areas where population will increase in the future, such as Beijing, Tianjin, parts of southern Hebei, northern Shandong andHenan provinces. Similarly, the CDD projections with and without considering population factor are largely different. Specifically, withoutconsidering population, increase of CDD were observed over most parts of China except the Tibetan Plateau where the CDD remained zerobecause of the cold climate even under global warming; while considering population factor, the future CDD decreases in South China andincreases in North China, the Sichuan Basin, and the southeastern coastal areas, which is directly related to the population changes. The differentfuture changes of HDD and CDD when considering and disregarding the effects of population show that population distribution plays animportant role in energy consumption, which should be considered in future research.展开更多
An actively water-cooled limiter has been designed for the long pulse operation of an HT-7 device, by adopting an integrated structure-doped graphite and a copper alloy heat sink with a super carbon sheet serving as a...An actively water-cooled limiter has been designed for the long pulse operation of an HT-7 device, by adopting an integrated structure-doped graphite and a copper alloy heat sink with a super carbon sheet serving as a compliant layer between them. The behaviors of the integrated structure were evaluated in an electron beam facility under different heat loads and cooling conditions. The surface temperature and bulk temperature distribution were carefully measured by optical pyrometers and thermocouples under a steady state heat flux of 1 to 5 MW/m^2 and a water flow rate of 3 m^3/h, 4.5 m^3/h and 6 m^3/h, respectively. It was found that the surface temperature increased rapidly with the heat flux rising, but decreased only slightly with the water flow rate rising. The surface temperature reached approximately 1200℃ at 5 MW/m^2 of heat flux and 6 m^3/h of water flow. The primary experimental results indicate that the integrated design meets the requirements for the heat expelling capacity of the HT-7 device. A set of numerical simulations was also completed, whose outcome was in good accord with the experimental results.展开更多
The recrystallization behaviors of a nickel-based single crystal superalloy during heat treatment at 1,200℃ for 4 h with various cooling rates were studied.Results show that the thickness of recrystallization layer d...The recrystallization behaviors of a nickel-based single crystal superalloy during heat treatment at 1,200℃ for 4 h with various cooling rates were studied.Results show that the thickness of recrystallization layer decreases with the increase of cooling rate.In addition,the microstructures ofγ′phase in the recrystallization region are different in various cooling rates.In the high cooling rates(70,100℃·min^(-1)),small size and high volume fraction ofγ′phases are formed in the recrystallization region.It is also found that irregular fine secondaryγ′phases are precipitated between matrix channels with an average size of 150 nm in the original matric(100℃·min^(-1)).The sizes of the secondaryγ′phase decrease with the increase of cooling rate.In contrast,large size and small volume fraction ofγ′phases are formed in the recrystallization region,and a grain boundary layer is formed under a low cooling rate(10℃·min^(-1)).The evolution mechanism of recrystallization at various cooling rates during heat treatment is analyzed.展开更多
The reformation of (Bi,Pb)-2223 from the liquid or melt is very important for a melting process of (Bi,Pb)-2223 tape. By combination of quenching experiment with X-ray diffraction (XRD) analysis, the effect of cooling...The reformation of (Bi,Pb)-2223 from the liquid or melt is very important for a melting process of (Bi,Pb)-2223 tape. By combination of quenching experiment with X-ray diffraction (XRD) analysis, the effect of cooling rate on the evolution of three superconducting phases in the (Bi,Pb)-2223 core of Ag-sheathed tape was investigated. The results show that (Bi,Pb)-2223 reformation from the melt seems to experience different routes during slowly cooling at different rates. One is that (Bi,Pb)-2223 phase reformed directly from the melt, and no Bi-2212 participate in this process. The other is that (Bi,Pb)-2223 is converted from the intermediate product, Bi-2212, which formed from the melt during the first cooling stage. Due to the inherent sluggish formation kinetics of (Bi,Pb)-2223 from Bi-2212, only partial (Bi,Pb)-2223 can finally be reformed with the second route.展开更多
A thermal model has been developed to study the thermal behavior of Thermosyphon integrated Heat Sink during CPU cooling. An Indirect cooling module has been experimentally studied and analyzed under steady state cond...A thermal model has been developed to study the thermal behavior of Thermosyphon integrated Heat Sink during CPU cooling. An Indirect cooling module has been experimentally studied and analyzed under steady state condition for both natural and forced convection. The thermal model is employed to determine the actual heat transfer and the effectiveness of the present model and compared it with the conventional cooling method and found that there is an appreciable improvement in the present model.展开更多
文摘An analysis of atmospheric SW-radiative forcing and local heating/cooling rate is made using a one year temporal and vertical profiles of aerosol and cloud over Yaoundé (11.51°E, 3.83°N). It appears that the direct influence of aerosols on the surface compared to the TOA can be 3 times larger. Annual mean value obtained at 559 mb altitude is +27.74 W/m2 with range from 0 to +43 W/m2. At 904 mb, we obtained an annual mean of ﹣46.22 W/m2 with range from ﹣65 to ﹣9 W/m2. Frequency distribution indicates that more than 95% of ARF are between +10 and +70 W/m2 at 559 mb (upper limit of UL), and more than 85% of ARF are between ﹣70 and ﹣10 W/m2 at 904 mb (upper limit of PBL). This sign change is explained by the fact that the backscattering peaks at the upper limit of the aerosol PBL layer. The maximum CRF is noted at TOA where it reaches ﹣600 W/m2 based on the time interval and the structure of clouds. The highest values occur between 11.50 and 13.50 LST. Clouds lead to a general heating of the entire atmospheric column with a much greater effect near the surface. Aerosols effect on the heating rate profile show strong cooling during the day for the lower atmosphere, with slight heating at the upper atmosphere. This cooling contribution generally increases from the surface and peacks at the upper boundary of aerosol layer where reflectivity is the most important. Depending on the moment of the day, average heating effect of clouds peacks at surface or within the middle troposphere due to the absorption by clouds particles. Vertical profiles deeply evolve exhibiting differences that exceed ﹣3 K/day according to altitude from one hour to another during a given mean solar day.
基金support from the Research Grants Council of the Hong Kong Special Administrative Region,China(PolyU152052/21E)Green Tech Fund of Hong Kong(Project No.:GTF202220106)+1 种基金Innovation and Technology Fund of the Hong Kong Special Administrative Region,China(ITP/018/21TP)PolyU Endowed Young Scholars Scheme(Project No.:84CC).
文摘Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building heating,ventilation,and air-conditioning systems.In recent years,there has been a surge in advancements in personal thermal management(PTM),aiming to regulate heat and moisture transfer within our immediate surroundings,clothing,and skin.The advent of PTM is driven by the rapid development in nano/micro-materials and energy science and engineering.An emerging research area in PTM is personal radiative thermal management(PRTM),which demonstrates immense potential with its high radiative heat transfer efficiency and ease of regulation.However,it is less taken into account in traditional textiles,and there currently lies a gap in our knowledge and understanding of PRTM.In this review,we aim to present a thorough analysis of advanced textile materials and technologies for PRTM.Specifically,we will introduce and discuss the underlying radiation heat transfer mechanisms,fabrication methods of textiles,and various indoor/outdoor applications in light of their different regulation functionalities,including radiative cooling,radiative heating,and dual-mode thermoregulation.Furthermore,we will shine a light on the current hurdles,propose potential strategies,and delve into future technology trends for PRTM with an emphasis on functionalities and applications.
基金supported by the National Science Fund for Distinguished Young Scholars(22125804)the National Natural Science Foundation of China(21808110,22078155,and 21878149).
文摘Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative cooling and solar heating for the uptake of CO_(2) on commercial activated carbons(CACs).During adsorption,the adsorbents are coated with a layer of hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene)[P(VdF-HFP)HP],which cools the adsorbents to a low temperature under sunlight through radiative cooling.For desorption,CACs with broad absorption of the solar spectrum are exposed to light irradiation for heating.The heating and cooling processes are completely driven by solar energy.Adsorption tests under mimicked sunlight using the CACs show that the performance of this system is comparable to that of the traditional ones.Furthermore,under real sunlight irradiation,the adsorption capacity of the CACs can be well maintained after multiple cycles.The present work may inspire the development of new temperature swing procedures with little energy consumption.
基金funded by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX22_0613)the National Natural Science Foundation of China(Grant Nos.41831278 and 51878249).
文摘Thermal damage and thermal fracture of rocks are two important indicators in geothermal mining projects.This paper investigates the effects of heating and water-cooling on granite specimens at various temperatures.The laboratory uniaxial compression experiments were also conducted.Then,a coupled thermo-mechanical ordinary state-based peridynamic(OSB-PD)model and corresponding numerical scheme were developed to simulate the damage of rocks after the heating and cooling processes,and the change of crack evolution process was predicted.The results demonstrate that elevated heating temperatures exacerbate the thermal damage to the specimens,resulting in a decrease in peak strength and an increase in ductility of granite.The escalating occurrence of thermal-induced cracks significantly affects the crack evolution process during the loading phase.The numerical results accurately reproduce the damage and fracture characteristics of the granite under different final heating temperatures(FHTs),which are consistent with the test results in terms of strength,crack evolution process,and failure mode.
基金supported by Major International(Regional)Joint Research Project of the National Natural Science Foundation of China(61320106011)National High Technology Research and Development Program of China(863 Program)(2014AA052802)National Natural Science Foundation of China(61573224)
基金Project(3102014KYJD002)supported by the Fundamental Research Funds for the Central Universities of ChinaProjects(50901059,51431008,51134011)supported by the National Natural Science Foundation of China+2 种基金Project(2011CB610403)supported by the National Basic Research Program of ChinaProject(51125002)supported by the China National Funds for Distinguished Young ScientistsProject(JC20120223)supported by the Fundamental Research Fund of Northwestern Polytechnical University,China
文摘The effect of cooling rate of the solidification process on the following solution heat treatment of A356 alloy was investigated,where the cooling rates of 96 K/s and 3 K/s were obtained by the step-like metal mold.Then the eutectic silicon morphology evolution and tensile properties of the alloy samples were observed and analyzed after solution heat treatment at 540 °C for different time.The results show that the high cooling rate of the solidification process can not only reduce the solid solution heat treatment time to rapidly modify the eutectic silicon morphology,but also improve the alloy tensile properties.Specially,it is found that the disintegration,the spheroidization and coarsening of eutectic silicon of A356 alloy are completed during solution heat treatment through two stages,i.e.,at first,the disintegration and spheroidization of the eutectic silicon mainly takes place,then the eutectic silicon will coarsen.
基金The National Natural Science Foundation of China(No. 51036001 )the Natural Science Foundation of Jiangsu Province(No. BK2010043)
文摘A new ground source heat pump system combined with radiant heating/cooling is proposed, and the principles and the advantages of the system are analyzed. A demonstration of the system is applied to a rebuilt building: Xijindu exhibition hall, which is located in Zhenjiang city in China. Numerical studies on the thermal comfort and energy consumption of the system are carded out by using TRNSYS software. The results indicate that the system with the radiant floor method or the radiant ceiling method shows good thermal comfort without mechanical ventilation in winter. However, the system with either of the methods should add mechanical ventilation to ensure good comfort in summer. At the same level of thermal comfort, it can also be found that the annual energy consumption of the radiant ceiling system is less than that of the radiant floor system.
文摘The knowledge representation mode and inference control strategy were analyzed according to the specialties of air-conditioning cooling/heating sources selection. The constructing idea and working procedure for knowledge base and inference engine were proposed while the realization technique of the C language was discussed. An intelligent decision support system (IDSS) model based on such knowledge representation and inference mechanism was developed by domain engineers. The model was verified to have a small kernel and powerful capability in list processing and data driving, which was successfully used in the design of a cooling/heating sources system for a large-sized office building.
基金Project(2021GK1040)supported by the Major Projects of Scientific and Technology Innovation of Hunan Province,ChinaProject(52375398)supported by the National Natural Science Foundation of China。
文摘In this study,the cooling rate was manipulated by quenching with water of different temperatures(30,60 and 100℃).Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using hole-drilling and crack compliance methods,respectively.Then,the processability of the quenched samples was evaluated at cryogenic temperatures.The mechanical properties of the as-aged samples were assessed,and microstructure evolution was analyzed.The surface residual stresses of samples W30℃,W60℃and W100℃is−178.7,−161.7 and−117.2 MPa,respectively along x-direction,respectively;and−191.2,−172.1 and−126.2 MPa,respectively along y-direction.The sample quenched in boiling water displaying the lowest residual stress(~34%and~60%reduction in the surface and core).The generation and distribution of quenching residual stress could be attributed to the lattice distortion gradient.Desirable plasticity was also exhibited in the samples with relatively low quenching cooling rates at cryogenic temperatures.The strengthes of the as-aged samples are 291.2 to 270.1 MPa as the quenching water temperature increase from 30℃to 100℃.Fine and homogeneous β"phases were observed in the as-aged sample quenched with boiling water due to the clusters and Guinier-Preston zones(GP zones)premature precipitated during quenching process.
文摘The main objective of this work was to modify the microstructure and enhance the tribological properties of a new Zn-4Si al-loy through a high solidification cooling rate(SCR).According to the results,by increasing the SCR from 2.0 to 59.5℃/s the average size of primary Si particles and that of the grains reduced from 76.1 and 3780μm to less than about 14.6 and 460μm,respectively.Augment-ing the SCR also enhanced the microstructural homogeneity,decreased the porosity content(by 50%),and increased the matrix hardness(by 36%).These microstructural changes enhanced the tribological behavior.For instance,under the applied pressure of 0.5 MPa,an in-crease in the SCR from 2.0 to 59.5℃/s decreased the wear rate and the average friction coefficient of the alloy by 57%and 23%,respect-ively.The wear mechanism was also changed from the severe delamination,adhesion,and abrasion in the slowly-cooled alloy to the mild tribolayer delamination/abrasion in the high-cooling-rate-solidified sample.
基金supports from the Natural Science Foundation of Inner Mongolia Autonomous Region of china(2024MS05009)National Natural Science Foundation of China(51661025)+1 种基金Research Program of science and technology at Universities of Inner Mongolia Autonomous Region(NJZY21315)Scientific research project of Inner Mongolia University of Technology(ZY202001 and BS2020003).
文摘Magnesium alloy is one of the most widely used lightweight structural materials,and the development of high strength-toughness magnesium alloy is an important research field at present and even in the future.The preparation process parameters of magnesium alloy directly affect the microstructure of the magnesium alloy,and then determine the properties of the magnesium alloy.The cooling rate has important effects on the microstructure and properties of the magnesium alloy,and is an important preparation process parameter that cannot be ignored.Both the cooling rate from liquid phase to solid phase and the cooling rate of the magnesium alloy after heat treatment will change the microstructure of the magnesium alloy.Furthermore,the properties of magnesium alloy will be affected.In this paper,the effects of cooling rate on the solidification behavior,the rheological behavior,the change of microstructure(the solid solution of alloying elements in matrix,the composition,size,distribution and morphology of second phase,the diffusion and segregation of alloying elements,the grain size,the formation and morphology of dendrite,etc.),and the effects of cooling rate of magnesium alloy after heat treatment on the microstructure and stress distribution are reviewed.The reasons for the divergence about the influence of cooling rate on the microstructure of magnesium alloy are analyzed in detail.The effects of cooling rate on the mechanical properties,corrosion resistance and oxidation resistance of magnesium alloy are also analyzed and discussed deeply.Finally,the new methods and approaches to study the effects of cooling rate on the microstructure and properties of magnesium alloy are prospected.
基金Project(202302AB080024)supported by the Major Science and Technology Projects of the Science and Technology Department of Yunnan Province,ChinaProject(U21A20130)supported by the National Natural Science Foundation of China。
文摘The impact of cooling rate after solution heat treatment on exfoliation corrosion resistance of a Li-containing 7xxx aluminum alloy was investigated by accelerated immersion and electrochemical impedance spectroscopy test,optical microscope,electron backscatter diffraction and scanning transmission electron microscope.With the decrease of cooling rate from 1700℃/s to 4℃/s,exfoliation corrosion resistance of the aged specimens decreases with rating changing from EA to EC and the maximum corrosion depth increasing from about 169.4μm to 632.1μm.Exfoliation corrosion tends to develop along grain boundaries in the specimens with cooling rates higher than about 31℃/s and along both grain boundaries and sub-grain boundaries in the specimens with lower cooling rates.The reason has been discussed based on the changes of the microstructure and microchemistry at grain boundaries and sub-grain boundaries due to slow cooling.
基金financially supported by a grant provided by Mitsubishi Heavy Industries。
文摘Polypropylene is commonly used as a binder for ceramic injection molding,and rapid cooling is often encountered during processing.However,the crystallization behavior of polypropylene shows a strong dependence on cooling rate due to its semi-crystalline characteristics.Therefore,the influence of cooling rate on the quality of final product cannot be ignored.In this study,the fast differential scanning calorimetry(FSC)test was performed to study the influence of cooling rate on the non-isothermal crystallization behavior and non-isothermal crystallization kinetics of a copolymer polypropylene(PP BC03B).The results show that the crystallization temperatures and crystallinity decrease as the cooling rate increases.In addition,two exothermic peaks occur when cooling rate ranges from 30 to 300 K·s^(-1),indicating the formation of another crystal phase.Avrami,Ozawa and Mo equations were used to explore the non-isothermal crystallization kinetics,and it can be concluded that the Mo method is suitable for this study.
基金supported by key technology research and development project of Shan Xi province(20201102019)Natural science foundation of Shanxi Province(201901D111167)+1 种基金Shanxi Scholarship Council of China(2020–117)JCKY2018408B003Magnesium alloy high-performance XXX multi-directional extrusion technology and XX supporting scientific research project(xxxx-2019-021)。
文摘The extruded AZ80+0.4%Ce magnesium alloy was twisted in the temperature range of 300-380℃by using a Gleeble 3500 thermal simulation test machine with a torsion unit.The deformed cylindrical specimens were cooled at a cooling rate of 10℃/s or 0.1℃/s,respectively,and aged at 170℃.The microstructure analysis results showed that the grain size decreased with increasing specimen radial position from center(SRPC),and that the strong initial basal texture of the extruded magnesium alloy was weakened.Both continuous and discontinuous dynamic recrystallization mechanisms were involved in contributing to the grain refinement for all specimens investigated.And a novel extension twinning induced dynamic recrystallization mechanism was proposed for specimen deformed at 300℃.For the specimens deformed at 300℃and 340℃followed by a slow cooling rate(0.1℃/s),precipitates of various shapes(β-Mg_(17)Al_(12)),with the dominant precipitates being on the grains boundaries,appeared on the surface section.For specimen deformed at 380℃,lamellar precipitates(LPS)in the interiors of the grains were predominant.After aging,the LPS still dominated for specimens twisted at 380℃;however,the LPS gradually decreased with decreasing deformation temperatures from 380℃to 300℃.Dynamically precipitatedβ,especially those decorating the grain boundaries,changed the competition pictures for the LPS and precipitates of other shapes after aging.Interestingly,LPS dominated the areas for the center section of the specimens after aging regardless of deformation temperatures.Low temperature deformation with high SRPC followed by rapid cooling rate increased the micro hardness of the alloy after aging due to refined grain,reduced precipitates size,decreased lamellar spacing as well as strain hardening.
基金supported by the Key Science and Technology Project of China Southern Grid Co.,Ltd.(No.090000KK52220020).
文摘Data centers(DCs)are highly energy-intensive facilities,where about 30%–50%of the power consumed is attributable to the cooling of information technology equipment.This makes liquid cooling,especially in twophase mode,as an alternative to air cooling for the microprocessors in servers of interest.The need to meet the increased power density of server racks in high-performance DCs,along with the push towards lower global warming potential(GWP)refrigerants due to environmental concerns,has motivated research on the selection of two-phase heat transfer fluids for cooling servers while simultaneously recovering waste heat.With this regard,a heat pump-assisted absorption chiller(HPAAC)system for recovering waste heat in DCs with an on-chip twophase cooling loop driven by the compressor is proposed in the present paper and the low GWP hydrofluoroolefin refrigerants,including R1224yd(Z),R1233zd(E),R1234yf,R1234ze(E),R1234ze(Z),R1243zf and R1336mzz(Z),are evaluated and compared against R245fa as server coolant.For theHPAAC system,beginning with the development of energy and economic models,the performance is analyzed through both a parametric study and optimization using the coefficient of performance(COP),energy saving ratio(ESR),payback period(PBP)and net present value(NPV)as thermo-economic indicators.Using a standard vapor compression cooling system as a benchmark,the results indicate that with the evaporation temperature between 50℃and 70℃and the subcooling degree ranging from5℃to 15°C,R1233zd(E)with moderate compressor suction pressure and pressure ratio is the best refrigerant for the HPAAC systemwhile R1234yf performs the worst.More importantly,R1233zd(E)is also superior to R245fa based on thermo-economic performance,especially under work conditions with relatively lower evaporation temperature as well as subcooling degree.Under the given working conditions,the overall COP,ESR,NPV,and PBP of R1233zd(E)HPAAC with optimum subcooling degree range from4.99 to 11.27,25.53 to 64.59,1.13 to 4.10×10^(7) CNY and 5.77 to 2.22 years,respectively.Besides,the thermo-economic performance of R1233zd(E)HPAAC under optimum working conditions in terms of subcooling degree varying with the evaporation temperature is also investigated.
文摘Future changes of heating degree days (HDD) and cooling degree days (CDD) in the 21st century with and without considering populationfactor are investigated based on four sets of climate change simulations over East Asia using the regional climate model version 4.4 (RegCM4.4)driven by the global models of CSIRO-Mk3-6-0, EC-EARTH, HadGEM2-ES, and MPI-ESM-MR. Under global warming of 1.5℃, 2℃, 3℃,and 4℃, significant decrease of HDD can be found over China without considering population factor, with greater decrease over high elevationand high latitude regions, including the Tibetan Plateau, the northern part of Northeast China, and Northwest China; while population-weightedHDD increased in areas where population will increase in the future, such as Beijing, Tianjin, parts of southern Hebei, northern Shandong andHenan provinces. Similarly, the CDD projections with and without considering population factor are largely different. Specifically, withoutconsidering population, increase of CDD were observed over most parts of China except the Tibetan Plateau where the CDD remained zerobecause of the cold climate even under global warming; while considering population factor, the future CDD decreases in South China andincreases in North China, the Sichuan Basin, and the southeastern coastal areas, which is directly related to the population changes. The differentfuture changes of HDD and CDD when considering and disregarding the effects of population show that population distribution plays animportant role in energy consumption, which should be considered in future research.
基金The project partially supported by National Natural Science Foundation of China (No. 10275069)
文摘An actively water-cooled limiter has been designed for the long pulse operation of an HT-7 device, by adopting an integrated structure-doped graphite and a copper alloy heat sink with a super carbon sheet serving as a compliant layer between them. The behaviors of the integrated structure were evaluated in an electron beam facility under different heat loads and cooling conditions. The surface temperature and bulk temperature distribution were carefully measured by optical pyrometers and thermocouples under a steady state heat flux of 1 to 5 MW/m^2 and a water flow rate of 3 m^3/h, 4.5 m^3/h and 6 m^3/h, respectively. It was found that the surface temperature increased rapidly with the heat flux rising, but decreased only slightly with the water flow rate rising. The surface temperature reached approximately 1200℃ at 5 MW/m^2 of heat flux and 6 m^3/h of water flow. The primary experimental results indicate that the integrated design meets the requirements for the heat expelling capacity of the HT-7 device. A set of numerical simulations was also completed, whose outcome was in good accord with the experimental results.
基金financially supported by the National Natural Science Foundation of China(No.92060104)the National Science and Technology Major Project(No.2017-VII-00080102)the Shanghai Municipal Science and Technology Committee Grant(No.20511107700)。
文摘The recrystallization behaviors of a nickel-based single crystal superalloy during heat treatment at 1,200℃ for 4 h with various cooling rates were studied.Results show that the thickness of recrystallization layer decreases with the increase of cooling rate.In addition,the microstructures ofγ′phase in the recrystallization region are different in various cooling rates.In the high cooling rates(70,100℃·min^(-1)),small size and high volume fraction ofγ′phases are formed in the recrystallization region.It is also found that irregular fine secondaryγ′phases are precipitated between matrix channels with an average size of 150 nm in the original matric(100℃·min^(-1)).The sizes of the secondaryγ′phase decrease with the increase of cooling rate.In contrast,large size and small volume fraction ofγ′phases are formed in the recrystallization region,and a grain boundary layer is formed under a low cooling rate(10℃·min^(-1)).The evolution mechanism of recrystallization at various cooling rates during heat treatment is analyzed.
文摘The reformation of (Bi,Pb)-2223 from the liquid or melt is very important for a melting process of (Bi,Pb)-2223 tape. By combination of quenching experiment with X-ray diffraction (XRD) analysis, the effect of cooling rate on the evolution of three superconducting phases in the (Bi,Pb)-2223 core of Ag-sheathed tape was investigated. The results show that (Bi,Pb)-2223 reformation from the melt seems to experience different routes during slowly cooling at different rates. One is that (Bi,Pb)-2223 phase reformed directly from the melt, and no Bi-2212 participate in this process. The other is that (Bi,Pb)-2223 is converted from the intermediate product, Bi-2212, which formed from the melt during the first cooling stage. Due to the inherent sluggish formation kinetics of (Bi,Pb)-2223 from Bi-2212, only partial (Bi,Pb)-2223 can finally be reformed with the second route.
文摘A thermal model has been developed to study the thermal behavior of Thermosyphon integrated Heat Sink during CPU cooling. An Indirect cooling module has been experimentally studied and analyzed under steady state condition for both natural and forced convection. The thermal model is employed to determine the actual heat transfer and the effectiveness of the present model and compared it with the conventional cooling method and found that there is an appreciable improvement in the present model.