Metasurfaces in the long wave infrared(LWIR)spectrum hold great potential for applications in ther-mal imaging,atmospheric remote sensing,and target identification,among others.In this study,we designed and experiment...Metasurfaces in the long wave infrared(LWIR)spectrum hold great potential for applications in ther-mal imaging,atmospheric remote sensing,and target identification,among others.In this study,we designed and experimentally demonstrated a 4 mm size,all-silicon metasurface metalens with large depth of focus opera-tional across a broadband range from 9µm to 11.5µm.The experimental results confirm effective focusing and imaging capabilities of the metalens in LWIR region,thus paving the way for practical LWIR applications of met-alens technology.展开更多
Multidimensional-engineering chalcogenide glasses is widely explored to construct various infrared photonic devices,with their surface as a key dimension for wavefront control.Here,we demonstrate direct patterning hig...Multidimensional-engineering chalcogenide glasses is widely explored to construct various infrared photonic devices,with their surface as a key dimension for wavefront control.Here,we demonstrate direct patterning high-aspect-ratio microstructures on the surface of chalcogenide glasses offers an efficient and robust method to manipulate longwave infrared radiations.Despite chalcogenide glass being considered soft in terms of its mechanical properties,we successfully fabricate high-aspect-ratio micropillars with a height of 8μm using optimized deep etching process,and we demonstrate a 2-mm-diameter all-chalcogenide metalens with a numerical aperture of 0.45 on the surface of a 1.5-mm-thick As2Se3 glass.Leveraging the exceptional longwave infrared(LWIR)transparency and moderate refractive index of As2Se3 glass,the all-chalcogenide metalens produces a focal spot size of~1.39λ0 with a focusing efficiency of 47%at the wavelength of 9.78μm,while also exhibiting high-resolution imaging capabilities.Our work provides a promising route to realize easy-to-fabricate,mass-producible planar infrared optics for compact,light-weight LWIR imaging systems.展开更多
Long-wave infrared (IR) generation based on type-Ⅱ (o→e+o) phase matching ZnGeP2 (ZGP) and CdSe optical parametric oscillators (OPOs) pumped by a 2.05μm Tm,Ho:GdVO4 laser is reported. The comparisons of t...Long-wave infrared (IR) generation based on type-Ⅱ (o→e+o) phase matching ZnGeP2 (ZGP) and CdSe optical parametric oscillators (OPOs) pumped by a 2.05μm Tm,Ho:GdVO4 laser is reported. The comparisons of the birefringent walk-off effect and the oscillation threshold between ZGP and CdSe OPOs are performed theoretically and experimentally. For the ZGP OPO, up to 419 mW output at 8.04 μm is obtained at the 8 kHz pump pulse repetition frequency (PRF) with a slope efficiency of 7.6%. This ZGP OPO can be continuously tuned from 7.8 to 8.5 μm. For the CdSe OPO, we demonstrate a 64 mW output at 8.9μm with a single crystal 28 mm in length.展开更多
In view of the difficulties in traditional long-wave infrared imaging spectrometer which is hard to realize a high signal-to-noise ratio and miniaturization as well under the weak remote sensing signal,Offner convex g...In view of the difficulties in traditional long-wave infrared imaging spectrometer which is hard to realize a high signal-to-noise ratio and miniaturization as well under the weak remote sensing signal,Offner convex grating spectrometer and Dyson concave grating spectrometer,both having concentric structure,are designed and analyzed in the band of 8-12 μm. The diffraction angle expressions of the two spectrometers are obtained and the diffraction characteristics are acquired. Both of the spectrometers are designed in Zemax environment under different F-numbers and different grating constants with the same slit,spatial resolution,spectral resolution and detector. The results show that Dyson grating spectrometer possesses the advantages of higher throughput and smaller volume, and Offner grating spectrometer possesses the advantage of more accessible material and the absence of chromatic aberration. The differences between Dyson form and Offner form show that the former is a better choice in the long-wave infrared imaging spectrometer.展开更多
Semiconductor pigment of Cd-Zn-S is synthesized through the solid state reaction method and its structure and surface morphology is characterized by X-ray diffraction (XRD) and scanning electron microscope(SEM). It is...Semiconductor pigment of Cd-Zn-S is synthesized through the solid state reaction method and its structure and surface morphology is characterized by X-ray diffraction (XRD) and scanning electron microscope(SEM). It is demonstrated that the crystal lattice of the product is hexagonal. When the heat treatment temperature increases, the distortion of crystal lattice reduces. The samples annealed at different temperatures agglomerate to different degrees while the one annealed at higher temperature agglomerates clearly. The infrared emissivity of Cd-Zn-S at two window-bands of 3-5 μm and 8-14 μm is researched. The researched result shows that the infrared emissivity of Cd-Zn-S in 8-14 μm wave bands is much higher than that in 3-5 μm wave bands. The infrared emissivity decreases with the increasing of heat treatment temperature, which reason is that with the increasing of temperature, the infrared absorption decreases and the scatter by the particles rises.展开更多
The optoelectronic performance of quantum cascade detectors(QCDs)is highly sensitive to the design of the energy level structure,leading to the inability of a single structure to achieve broad wavelength tuning.To add...The optoelectronic performance of quantum cascade detectors(QCDs)is highly sensitive to the design of the energy level structure,leading to the inability of a single structure to achieve broad wavelength tuning.To address this issue,we propose and demonstrate a modular concept for very long wave infrared(VLWIR)QCDs based on a miniband diagonal transition scheme.The modular design makes the wavelength tuning only need to be adjusted for the absorption quantum well module rather than for the whole active region.Theoretical simulation shows that the wavelength tuning range is 39.6 meV(~14–30μm).To prove the feasibility of the scheme,three samples with different absorption well widths were fabricated and characterized.At 10 K,the response wavelengths of the three QCDs are 14,16,and 18μm,respectively,corresponding to responsivities and detectivities exceeding 2 mA/W and 1×10^(10)Jones.展开更多
A ten-month field research study was meticulously conducted at Robert Moses State Park (RMSP) on the south shore of Long Island, NY. The objective was to determine if aerial phenomena of an unknown nature exist over a...A ten-month field research study was meticulously conducted at Robert Moses State Park (RMSP) on the south shore of Long Island, NY. The objective was to determine if aerial phenomena of an unknown nature exist over a coastal location and to characterize their properties and behaviors. Primary and secondary field observation methods were utilized in this data-centric study. Forensic engineering principles and methodologies guided the study. The challenges set forward were object detection, observation, and characterization, where multispectral electro-optical devices and radar were employed due to limited visual acuity and intermittent presentation of the phenomena. The primary means of detection utilized a 3 cm X-band radar operating in two scan geometries, the X- and Y-axis. Multispectral electro-optical devices were utilized as a secondary means of detection and identification. Data was emphasized using HF and LF detectors and spectrum analyzers incorporating EM, ultrasonic, magnetic, and RF field transducers to record spectral data in these domains. Data collection concentrated on characterizing VIS, NIR, SWIR, LWIR, UVA, UVB, UVC, and the higher energy spectral range of ionizing radiation (alpha, beta, gamma, and X-ray) recorded by Geiger-Müller counters as well as special purpose semiconductor diode sensors.展开更多
Multi-sensor and multi-resolution source images consisting of optical and long-wave infrared (LWlR) images are analyzed separately and then combined for urban mapping in this study.The framework of its methodology is ...Multi-sensor and multi-resolution source images consisting of optical and long-wave infrared (LWlR) images are analyzed separately and then combined for urban mapping in this study.The framework of its methodology is based on a two-level classification approach.In the first level,contributions of these two data sources in urban mapping are examined extensively by four types of classifications,i.e.spectral-based,spectral-spatial-based,joint classification,and multiple feature classification.In the second level,an objected-based approach is applied to decline the boundaries.The specificity of our proposed framework not only lies in the combination of two different images,but also the exploration of the LWlR image as one complementary spectral information for urban mapping.To verify the effectiveness of the presented classification framework and to confirm the LWlR's complementary role in the urban mapping task,experiment results are evaluated by the grss_dfc_2014 data-set.展开更多
为了提升导弹在复杂环境下的寻的制导能力,设计了一种红外与可见光双模式导引头光学系统。该方案中采用分光镜透射红外光反射可见光,使结构布局更加紧凑,实现红外与可见光共口径,同时配合红外材料选取,实现光学被动消热差设计。中红外...为了提升导弹在复杂环境下的寻的制导能力,设计了一种红外与可见光双模式导引头光学系统。该方案中采用分光镜透射红外光反射可见光,使结构布局更加紧凑,实现红外与可见光共口径,同时配合红外材料选取,实现光学被动消热差设计。中红外模式视场角3°×2.3°,可见光模式视场角5°×4°,工作温度20℃条件下,双模式在截止频率处,MTF(Modulation Transfer Function)值均大于0.4。红外与可见光双模式光学系统适合应用于复杂环境的导弹制导,对温度有良好的适应性,具有较好的成像质量,满足系统的性能要求。展开更多
We introduce a novel method to create mid-infrared(MIR)thermal emitters using fully epitaxial,metal-free structures.Through the strategic use of epsilon-near-zero(ENZ)thin films in InAs layers,we achieve a narrow-band...We introduce a novel method to create mid-infrared(MIR)thermal emitters using fully epitaxial,metal-free structures.Through the strategic use of epsilon-near-zero(ENZ)thin films in InAs layers,we achieve a narrow-band,wide-angle,and p-polarized thermal emission spectra.This approach,employing molecular beam epitaxy,circumvents the complexities associated with current layered structures and yields temperature-resistant emission wavelengths.Our findings contribute a promising route towards simpler,more efficient MIR optoelectronic devices.展开更多
Since its invention,holography has been mostly applied at visible wavelengths in a variety of applications.Specifically,non-destructive testing of manufactured objects was a driver for developing holographic methods a...Since its invention,holography has been mostly applied at visible wavelengths in a variety of applications.Specifically,non-destructive testing of manufactured objects was a driver for developing holographic methods and all related ones based on the speckle pattern recording.One substantial limitation of holographic non-destructive testing is the setup stability requirements directly related to the laser wavelength.This observation has driven some works for 15 years:developing holography at wavelengths much longer than visible ones.In this paper,we will first review researches carried out in the infrared,mostly digital holography at thermal infrared wavelengths around 10 micrometers.We will discuss the advantages of using such wavelengths and show different examples of applications.In nondestructive testing,large wavelengths allow using digital holography in perturbed environments on large objects and measure large deformations,typical of the aerospace domain.Other astonishing applications such as reconstructing scenes through smoke and flames were proposed.When moving further in the spectrum,digital holography with so-called Terahertz waves(up to 3 millimeters wavelength)has also been studied.The main advantage here is that these waves easily penetrate some materials.Therefore,one can envisage Terahertz digital holography to reconstruct the amplitude and phase of visually opaque objects.We review some cases in which Terahertz digital holography has shown potential in biomedical and industrial applications.We will also address some fundamental bottlenecks that prevent fully benefiting from the advantages of digital holography when increasing the wavelength.展开更多
基金Supported by National Key R&D Program of China(2021YFA0715500)National Natural Science Foundation of China(NSFC)(12227901)+1 种基金Strategic Priority Research Program(B)of the Chinese Academy of Sciences(XDB0580000)Chinese Academy of Sciences President's In-ternational Fellowship Initiative(2021PT0007).
文摘Metasurfaces in the long wave infrared(LWIR)spectrum hold great potential for applications in ther-mal imaging,atmospheric remote sensing,and target identification,among others.In this study,we designed and experimentally demonstrated a 4 mm size,all-silicon metasurface metalens with large depth of focus opera-tional across a broadband range from 9µm to 11.5µm.The experimental results confirm effective focusing and imaging capabilities of the metalens in LWIR region,thus paving the way for practical LWIR applications of met-alens technology.
基金supported by National Natural Science Foundation of China(Grant No.62105172)Natural Science Foundation of Zhejiang Province(Grant No.LDT23F05015F05,LDT23F05011F05).
文摘Multidimensional-engineering chalcogenide glasses is widely explored to construct various infrared photonic devices,with their surface as a key dimension for wavefront control.Here,we demonstrate direct patterning high-aspect-ratio microstructures on the surface of chalcogenide glasses offers an efficient and robust method to manipulate longwave infrared radiations.Despite chalcogenide glass being considered soft in terms of its mechanical properties,we successfully fabricate high-aspect-ratio micropillars with a height of 8μm using optimized deep etching process,and we demonstrate a 2-mm-diameter all-chalcogenide metalens with a numerical aperture of 0.45 on the surface of a 1.5-mm-thick As2Se3 glass.Leveraging the exceptional longwave infrared(LWIR)transparency and moderate refractive index of As2Se3 glass,the all-chalcogenide metalens produces a focal spot size of~1.39λ0 with a focusing efficiency of 47%at the wavelength of 9.78μm,while also exhibiting high-resolution imaging capabilities.Our work provides a promising route to realize easy-to-fabricate,mass-producible planar infrared optics for compact,light-weight LWIR imaging systems.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60878011 and 61078008)the Program for New Century Excellent Talents in University,China (Grant No. NCET-10-0067)
文摘Long-wave infrared (IR) generation based on type-Ⅱ (o→e+o) phase matching ZnGeP2 (ZGP) and CdSe optical parametric oscillators (OPOs) pumped by a 2.05μm Tm,Ho:GdVO4 laser is reported. The comparisons of the birefringent walk-off effect and the oscillation threshold between ZGP and CdSe OPOs are performed theoretically and experimentally. For the ZGP OPO, up to 419 mW output at 8.04 μm is obtained at the 8 kHz pump pulse repetition frequency (PRF) with a slope efficiency of 7.6%. This ZGP OPO can be continuously tuned from 7.8 to 8.5 μm. For the CdSe OPO, we demonstrate a 64 mW output at 8.9μm with a single crystal 28 mm in length.
基金Sponsored by the National High Technology Research and Development Program of China(863 Program)(Grant No.2013AA03A116)
文摘In view of the difficulties in traditional long-wave infrared imaging spectrometer which is hard to realize a high signal-to-noise ratio and miniaturization as well under the weak remote sensing signal,Offner convex grating spectrometer and Dyson concave grating spectrometer,both having concentric structure,are designed and analyzed in the band of 8-12 μm. The diffraction angle expressions of the two spectrometers are obtained and the diffraction characteristics are acquired. Both of the spectrometers are designed in Zemax environment under different F-numbers and different grating constants with the same slit,spatial resolution,spectral resolution and detector. The results show that Dyson grating spectrometer possesses the advantages of higher throughput and smaller volume, and Offner grating spectrometer possesses the advantage of more accessible material and the absence of chromatic aberration. The differences between Dyson form and Offner form show that the former is a better choice in the long-wave infrared imaging spectrometer.
基金Chinese Postdoctoral Fund (2006040931)National Natural Science Foundation of China (90505008)
文摘Semiconductor pigment of Cd-Zn-S is synthesized through the solid state reaction method and its structure and surface morphology is characterized by X-ray diffraction (XRD) and scanning electron microscope(SEM). It is demonstrated that the crystal lattice of the product is hexagonal. When the heat treatment temperature increases, the distortion of crystal lattice reduces. The samples annealed at different temperatures agglomerate to different degrees while the one annealed at higher temperature agglomerates clearly. The infrared emissivity of Cd-Zn-S at two window-bands of 3-5 μm and 8-14 μm is researched. The researched result shows that the infrared emissivity of Cd-Zn-S in 8-14 μm wave bands is much higher than that in 3-5 μm wave bands. The infrared emissivity decreases with the increasing of heat treatment temperature, which reason is that with the increasing of temperature, the infrared absorption decreases and the scatter by the particles rises.
基金supported by the National Natural Science Foundation of China(Nos.61835011,62335015,12393830,62222408,and 12274404)the Key Program of the Chinese Academy of Sciences(No.XDB43000000)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2022112)。
文摘The optoelectronic performance of quantum cascade detectors(QCDs)is highly sensitive to the design of the energy level structure,leading to the inability of a single structure to achieve broad wavelength tuning.To address this issue,we propose and demonstrate a modular concept for very long wave infrared(VLWIR)QCDs based on a miniband diagonal transition scheme.The modular design makes the wavelength tuning only need to be adjusted for the absorption quantum well module rather than for the whole active region.Theoretical simulation shows that the wavelength tuning range is 39.6 meV(~14–30μm).To prove the feasibility of the scheme,three samples with different absorption well widths were fabricated and characterized.At 10 K,the response wavelengths of the three QCDs are 14,16,and 18μm,respectively,corresponding to responsivities and detectivities exceeding 2 mA/W and 1×10^(10)Jones.
文摘A ten-month field research study was meticulously conducted at Robert Moses State Park (RMSP) on the south shore of Long Island, NY. The objective was to determine if aerial phenomena of an unknown nature exist over a coastal location and to characterize their properties and behaviors. Primary and secondary field observation methods were utilized in this data-centric study. Forensic engineering principles and methodologies guided the study. The challenges set forward were object detection, observation, and characterization, where multispectral electro-optical devices and radar were employed due to limited visual acuity and intermittent presentation of the phenomena. The primary means of detection utilized a 3 cm X-band radar operating in two scan geometries, the X- and Y-axis. Multispectral electro-optical devices were utilized as a secondary means of detection and identification. Data was emphasized using HF and LF detectors and spectrum analyzers incorporating EM, ultrasonic, magnetic, and RF field transducers to record spectral data in these domains. Data collection concentrated on characterizing VIS, NIR, SWIR, LWIR, UVA, UVB, UVC, and the higher energy spectral range of ionizing radiation (alpha, beta, gamma, and X-ray) recorded by Geiger-Müller counters as well as special purpose semiconductor diode sensors.
文摘Multi-sensor and multi-resolution source images consisting of optical and long-wave infrared (LWlR) images are analyzed separately and then combined for urban mapping in this study.The framework of its methodology is based on a two-level classification approach.In the first level,contributions of these two data sources in urban mapping are examined extensively by four types of classifications,i.e.spectral-based,spectral-spatial-based,joint classification,and multiple feature classification.In the second level,an objected-based approach is applied to decline the boundaries.The specificity of our proposed framework not only lies in the combination of two different images,but also the exploration of the LWlR image as one complementary spectral information for urban mapping.To verify the effectiveness of the presented classification framework and to confirm the LWlR's complementary role in the urban mapping task,experiment results are evaluated by the grss_dfc_2014 data-set.
文摘为了提升导弹在复杂环境下的寻的制导能力,设计了一种红外与可见光双模式导引头光学系统。该方案中采用分光镜透射红外光反射可见光,使结构布局更加紧凑,实现红外与可见光共口径,同时配合红外材料选取,实现光学被动消热差设计。中红外模式视场角3°×2.3°,可见光模式视场角5°×4°,工作温度20℃条件下,双模式在截止频率处,MTF(Modulation Transfer Function)值均大于0.4。红外与可见光双模式光学系统适合应用于复杂环境的导弹制导,对温度有良好的适应性,具有较好的成像质量,满足系统的性能要求。
文摘We introduce a novel method to create mid-infrared(MIR)thermal emitters using fully epitaxial,metal-free structures.Through the strategic use of epsilon-near-zero(ENZ)thin films in InAs layers,we achieve a narrow-band,wide-angle,and p-polarized thermal emission spectra.This approach,employing molecular beam epitaxy,circumvents the complexities associated with current layered structures and yields temperature-resistant emission wavelengths.Our findings contribute a promising route towards simpler,more efficient MIR optoelectronic devices.
基金M.G.and Y.Z.acknowledge European Regional Development Fund/Wallonia region project(TERA4ALL)MG.and JF.V.acknowledge the support of ESA(GSTP project Contract No.22540/09/NL/SFe)EU(FP7 European project FANTOM ACP7-GA-2008-213457).
文摘Since its invention,holography has been mostly applied at visible wavelengths in a variety of applications.Specifically,non-destructive testing of manufactured objects was a driver for developing holographic methods and all related ones based on the speckle pattern recording.One substantial limitation of holographic non-destructive testing is the setup stability requirements directly related to the laser wavelength.This observation has driven some works for 15 years:developing holography at wavelengths much longer than visible ones.In this paper,we will first review researches carried out in the infrared,mostly digital holography at thermal infrared wavelengths around 10 micrometers.We will discuss the advantages of using such wavelengths and show different examples of applications.In nondestructive testing,large wavelengths allow using digital holography in perturbed environments on large objects and measure large deformations,typical of the aerospace domain.Other astonishing applications such as reconstructing scenes through smoke and flames were proposed.When moving further in the spectrum,digital holography with so-called Terahertz waves(up to 3 millimeters wavelength)has also been studied.The main advantage here is that these waves easily penetrate some materials.Therefore,one can envisage Terahertz digital holography to reconstruct the amplitude and phase of visually opaque objects.We review some cases in which Terahertz digital holography has shown potential in biomedical and industrial applications.We will also address some fundamental bottlenecks that prevent fully benefiting from the advantages of digital holography when increasing the wavelength.