To investigate the distributing disciplinarian of ground motion parameters on the earth fissure site during strong earthquakes,a series of shaking table tests were designed and conducted based on 1:15 scaled models.Te...To investigate the distributing disciplinarian of ground motion parameters on the earth fissure site during strong earthquakes,a series of shaking table tests were designed and conducted based on 1:15 scaled models.Test results showed significant differences in the ground motion parameters(including ground motion intensity indices,spectrum characteristics and strong motion duration)between the hanging-wall and footwall caused by the earth fissure.Acceleration response,displacement response and Arias Intensity response on both sides of earth fissure indicated that the earth fissure site on the hanging-wall was destroyed more seriously.The distributing disciplinarian of amplification factors showed clear"hangingwall and footwall effects",which were more remarkable nearby the fissure zones.The low-frequency component of the seismic wave was richer after selectively filtering in the soil medium.By comparing the predominant period and mean period of the hanging-wall and footwall,it was found that vibration frequency on the hanging-wall was greater than that on the footwall.Minimum values of strong motion duration were recorded on the hanging-wall close to the fissure and increased from the fissure to both sides.展开更多
In this study, the results of 1-g shaking table tests performed on small-scale flexible cantilever wallmodels retaining composite backfill made of a deformable geofoam inclusion and granular cohesionlessmaterial were ...In this study, the results of 1-g shaking table tests performed on small-scale flexible cantilever wallmodels retaining composite backfill made of a deformable geofoam inclusion and granular cohesionlessmaterial were presented. Two different polystyrene materials were utilized as deformable inclusions.Lateral dynamic earth pressures and wall displacements at different elevations of the retaining wallmodel were monitored during the tests. The earth pressures and displacements of the retaining wallswith deformable inclusions were compared with those of the models without geofoam inclusions.Comparisons indicated that geofoam panels of low stiffness installed against the retaining wall modelaffect displacement and dynamic lateral pressure profile along the wall height. Depending on the inclusioncharacteristics and the wall flexibility, up to 50% reduction in dynamic earth pressures wasobserved. The efficiency of load and displacement reduction decreased as the flexibility ratio of the wallmodel increased. On the other hand, dynamic load reduction efficiency of the deformable inclusionincreased as the amplitude and frequency ratio of the seismic excitation increased. Relative flexibility ofthe deformable layer (the thickness and the elastic stiffness of the polystyrene material) played animportant role in the amount of load reduction. Dynamic earth pressure coefficients were compared withthose calculated with an analytical approach. Pressure coefficients calculated with this method werefound to be in good agreement with the results of the tests performed on the wall model having lowflexibility ratio. It was observed that deformable inclusions reduce residual wall stresses observed at theend of seismic excitation thus contributing to the post-earthquake stability of the retaining wall. Thegraphs presented within this paper regarding the dynamic earth pressure coefficients versus the wallflexibility and inclusion characteristics may serve for the seismic design of full-scale retaining walls withdeformable polystyrene inclusions. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
The seismic design of gravity retaining walls is based mostly on the pseudo static method.The seismic earth pressure is assumed to be a constant without considering the wave traveling effect when the seismic wave prop...The seismic design of gravity retaining walls is based mostly on the pseudo static method.The seismic earth pressure is assumed to be a constant without considering the wave traveling effect when the seismic wave propagates through the slope.However,under continuous ground motion,the actual earth pressure on the retaining wall varies with time.The present seismic earth pressure calculation method yields results that differ significantly from the actual scenario.Considering this,a slip surface curve was assumed in this study.It is more suitable for engineering practice.In addition,a theoretical calculation model based on energy dissipation was established.The time history of seismic earth pressure response under continuous ground motion was calculated using the equilibrium equation between the external power and the internal energy dissipation power of the sliding soil wedge.It can more effectively reflect the stress scenario of a retaining wall under seismic conditions.To verify the applicability of the proposed approach,a large-scale shaking table test was conducted,and the time history of the seismic earth pressure response obtained from the experiment was compared with the calculation results.The results show that the proposed approach is applicable to the calculation of the time history of seismic earth pressure response of gravity retaining walls.This lays the foundation for the seismic design of retaining structures by using dynamic time history.展开更多
基金Supported by National Natural Science Foundation of China under Grant No.51278395the Science and Technology Project of Ministry of Housing and Urban-Rural Development of China under Grant No.2016-k5-044Key Project of Natural Science Foundation of Shaanxi Province under Grant No.2018JZ5008。
文摘To investigate the distributing disciplinarian of ground motion parameters on the earth fissure site during strong earthquakes,a series of shaking table tests were designed and conducted based on 1:15 scaled models.Test results showed significant differences in the ground motion parameters(including ground motion intensity indices,spectrum characteristics and strong motion duration)between the hanging-wall and footwall caused by the earth fissure.Acceleration response,displacement response and Arias Intensity response on both sides of earth fissure indicated that the earth fissure site on the hanging-wall was destroyed more seriously.The distributing disciplinarian of amplification factors showed clear"hangingwall and footwall effects",which were more remarkable nearby the fissure zones.The low-frequency component of the seismic wave was richer after selectively filtering in the soil medium.By comparing the predominant period and mean period of the hanging-wall and footwall,it was found that vibration frequency on the hanging-wall was greater than that on the footwall.Minimum values of strong motion duration were recorded on the hanging-wall close to the fissure and increased from the fissure to both sides.
文摘In this study, the results of 1-g shaking table tests performed on small-scale flexible cantilever wallmodels retaining composite backfill made of a deformable geofoam inclusion and granular cohesionlessmaterial were presented. Two different polystyrene materials were utilized as deformable inclusions.Lateral dynamic earth pressures and wall displacements at different elevations of the retaining wallmodel were monitored during the tests. The earth pressures and displacements of the retaining wallswith deformable inclusions were compared with those of the models without geofoam inclusions.Comparisons indicated that geofoam panels of low stiffness installed against the retaining wall modelaffect displacement and dynamic lateral pressure profile along the wall height. Depending on the inclusioncharacteristics and the wall flexibility, up to 50% reduction in dynamic earth pressures wasobserved. The efficiency of load and displacement reduction decreased as the flexibility ratio of the wallmodel increased. On the other hand, dynamic load reduction efficiency of the deformable inclusionincreased as the amplitude and frequency ratio of the seismic excitation increased. Relative flexibility ofthe deformable layer (the thickness and the elastic stiffness of the polystyrene material) played animportant role in the amount of load reduction. Dynamic earth pressure coefficients were compared withthose calculated with an analytical approach. Pressure coefficients calculated with this method werefound to be in good agreement with the results of the tests performed on the wall model having lowflexibility ratio. It was observed that deformable inclusions reduce residual wall stresses observed at theend of seismic excitation thus contributing to the post-earthquake stability of the retaining wall. Thegraphs presented within this paper regarding the dynamic earth pressure coefficients versus the wallflexibility and inclusion characteristics may serve for the seismic design of full-scale retaining walls withdeformable polystyrene inclusions. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
基金supported by the Strategic International Science and Technology Innovation Cooperation Project‘Research on On-line Monitoring and Evaluation Technology of Safety Status of Highspeed Railway Track-subgrade System’from the National Key R&D Program of China(Grant No.2018YFE0207100)the State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining&Technology/China University of Mining&Technology,Beijing(Grant No.SKLGDUEK1910)+1 种基金the Foundation of Engineering Research Center of Eco-environment in the Three Gorges Reservoir Region of China(Grant No.KF2018-01)the Youth Scientific and Technological Innovation Team of Southwest Petroleum University(Grant No.2018CXTD02)。
文摘The seismic design of gravity retaining walls is based mostly on the pseudo static method.The seismic earth pressure is assumed to be a constant without considering the wave traveling effect when the seismic wave propagates through the slope.However,under continuous ground motion,the actual earth pressure on the retaining wall varies with time.The present seismic earth pressure calculation method yields results that differ significantly from the actual scenario.Considering this,a slip surface curve was assumed in this study.It is more suitable for engineering practice.In addition,a theoretical calculation model based on energy dissipation was established.The time history of seismic earth pressure response under continuous ground motion was calculated using the equilibrium equation between the external power and the internal energy dissipation power of the sliding soil wedge.It can more effectively reflect the stress scenario of a retaining wall under seismic conditions.To verify the applicability of the proposed approach,a large-scale shaking table test was conducted,and the time history of the seismic earth pressure response obtained from the experiment was compared with the calculation results.The results show that the proposed approach is applicable to the calculation of the time history of seismic earth pressure response of gravity retaining walls.This lays the foundation for the seismic design of retaining structures by using dynamic time history.