The main objective of the present paper is to review the specific characteristics and performance obtaining conditions of heavy ductile iron(DI) castings,typically applied in windmills industry,such as hubs and rotor ...The main objective of the present paper is to review the specific characteristics and performance obtaining conditions of heavy ductile iron(DI) castings,typically applied in windmills industry,such as hubs and rotor housings.The requirements for high impact properties in DI at low temperatures are part of the ENGJS-400-18U-LT(SRN 1563) commonly referred to as GGG 40.3(DIN 1693).Pearlitic in-uence factor(Px) and antinodularising action factor(K1) were found to have an important in-uence on the structure and mechanical properties,as did Mn and P content,rare earth(RE) addition and inoculation power.The presence of high purity pig iron in the charge is extremely beneficial,not only to control the complex factors Px and K1,but also to improve the 'metallurgical quality' of the iron melt.A correlation of C and Si limits with section modulus is very important to limit graphite nodule flotation.Chunky and surface-degenerated graphite are the most controlled graphite morphologies in windmills castings.The paper concluded on the optimum iron chemistry and melting procedure,Mg-alloys and inoculants peculiar systems,as well as on the practical solutions to limit graphite degeneration and to ensure castings of the highest integrity,typically for this field.展开更多
This paper expatiates on domestic status of heavy steel casting production, with a special focus on hydraulicturbine castings for Three Gorges Project. In China, there is magnificent demand for heavy castings with the...This paper expatiates on domestic status of heavy steel casting production, with a special focus on hydraulicturbine castings for Three Gorges Project. In China, there is magnificent demand for heavy castings with the rapidgrowth of the national economy in recent years and the expected high growth in the coming 10 to 20 years. Someheavy and large castings such as mill housing and hydraulic turbine runner crown, blade and band for Three GorgesProject have been successfully made. However, the domestic production capability is still far from meeting the giganticrequirements. The domestic capability still lags behind the world class level, and a lot of heavy castings still dependon import. The paper also gives a particular introduction of the key technologies in the manufacturing of heavy steelcastings like metal melting, foundry technology, heat treatment technology and numerical simulation technique, etc.In addition, several case studies on the application of numerical simulation in the production of heavy steel castingsare presented.展开更多
A foundry research project has been recently initiated at RTIT in order to better understand the fabrication of as-cast heavy section DI parts meeting high impact energy requirements at low temperatures.The experiment...A foundry research project has been recently initiated at RTIT in order to better understand the fabrication of as-cast heavy section DI parts meeting high impact energy requirements at low temperatures.The experimental castings have the following dimensions 180 mm x 180 mm x 190 mm.The achieved as-cast Charpy impact strengths were as follows:17 J (RT),16 J (-20℃) and 11 J (-40℃).The foundry process,the chemical composition and the microstructure of this experimental casting are compared to the ones of various examples in order to show the detrimental effects of residual elements,microshrinkage and microcarbide on the impact properties.Finally,quality index empirical models (based on casting chemical compositions) are used to analyse the impact tests results.This paper illustrates that an adequate nodule count can contribute to reducing the detrimental effects of the residual elements and microsegregation.展开更多
The effects of alloying elements on the as-cast microstructures and mechanical properties of heavy section ductile cast iron were investigated to develop press die material having high strength and high ductility. Mea...The effects of alloying elements on the as-cast microstructures and mechanical properties of heavy section ductile cast iron were investigated to develop press die material having high strength and high ductility. Measurements of ultimate tensile strength, 0.2% proof strength, elongation and unnotched Charpy impact energy are presented as a function of alloy amounts within 0.25 to 0.75 wt pct range. Hardness is measured on the broken tensile specimens. The small additions of Mo, Cu, Ni and Cr changed the as-cast mechanical properties owing to the different as-cast matrix microstructures. The ferrite matrix of Mo and Ni alloyed cast iron exhibits low strength and hardness as well as high elongation and impact energy. The increase in Mo and Ni contents developed some fractions of pearlite structures near the austenite eutectic cell boundaries, which caused the elongation and impact energy to drop in a small range. Adding Cu and Cr elements rapidly changed the ferrite matrix into pearlite matrix, so strength and hardness were significantly increased. As more Mo and Cr were added, the size and fraction of primary carbides in the eutectic cell boundaries increased through the segregation of these elements into the intercellular boundaries.展开更多
To improve the mechanical properties of heavy section ductile cast iron, bismuth(Bi) was introduced into the iron. Five castings with different Bi content from 0 to 0.014 wt.% were prepared; and four positions in the ...To improve the mechanical properties of heavy section ductile cast iron, bismuth(Bi) was introduced into the iron. Five castings with different Bi content from 0 to 0.014 wt.% were prepared; and four positions in the casting from the edge to the center, with different solidifi cation cooling rates, were chosen for microstructure observation and mechanical properties test. The effect of the Bi content on the graphite morphology and mechanical properties of heavy section ductile cast iron were investigated. Results show that the tensile strength, elongation and impact toughness at different positions in the fi ve castings decrease with a decrease in cooling rate. With an increase in Bi content, the graphite morphology and the mechanical properties at the same position are improved, and the improvement of mechanical properties is obvious when the Bi content is no higher than 0.011wt.%. But when the Bi content is further increased to 0.014wt.%, the improvement of mechanical properties is not obvious due to the increase of chunky graphite number and the aggregation of chunky graphite. With an increase in Bi content, the tensile fracture mechanism is changed from brittle to mixture ductile-brittle fracture.展开更多
In order to solve the problem of the high surface longitudinal crack ratio of heavy peritectic steel slabs produced by the No. 3 continuous caster at Baosteel,the physical properties of the original mold flux and the ...In order to solve the problem of the high surface longitudinal crack ratio of heavy peritectic steel slabs produced by the No. 3 continuous caster at Baosteel,the physical properties of the original mold flux and the optimized mold flux were compared in a comprehensive way by using analytical measures, such as a slag film heat-flow simulator, a thermowire molten flux crystallization tester and an X-ray diffractometer in the laboratory. The results reveal that one of the major reasons for the cracks is the poor heat transfer ability of the original mold flux. However, the optimized mold flux with a high basicity features a high crystallizing rate,low crystallization temperature and low heat-flow density. Therefore, the optimized mold flux is more suitable for casting peritectic steel by the heavy slab continuous caster. The test results show that the slabs produced by using the optimized mold flux had no surface longitudinal crack in four test casts, while the surface longitudinal crack ratio of the slabs produced by using the original mold flux was 5%. The optimized mold flux can effectively prevent slab surface longitudinal cracks from occurring.展开更多
To replace metal padding by insulation padding for castings can save the melt and reduce cleaning work of castings. The design of insulation padding was investigated. The equation of the modulus extension factor for i...To replace metal padding by insulation padding for castings can save the melt and reduce cleaning work of castings. The design of insulation padding was investigated. The equation of the modulus extension factor for insulation padding and the ratio of its thickness over the modulus of a casting were improved to deter- mine the thickness of insulation padding. The insulation padding was designed for a turbine guide vane casting weighing 3.5 t. A sound casting was obtained with 750 kg steel saved. On the other side, the cast- ing obviously expanded at the interface with the insulation padding, which is perhaps the reason that the use of insulation padding has been suspended for many years. To avoid the expansion of insulation pad- ding, a shielding layer made of a kind of material of good fire resistance was adopted to prevent the insula- tion layer from touching the melt. The shielding layer serves as a cushion of heat and expansion during so- lidification process so as to resist the expansion of castings and guarantee the feeding effect at the same time. Furthermore, insulation padding can be placed by a certain offset into the mold cavity so as to coun- teract the expansion of castings.展开更多
文摘The main objective of the present paper is to review the specific characteristics and performance obtaining conditions of heavy ductile iron(DI) castings,typically applied in windmills industry,such as hubs and rotor housings.The requirements for high impact properties in DI at low temperatures are part of the ENGJS-400-18U-LT(SRN 1563) commonly referred to as GGG 40.3(DIN 1693).Pearlitic in-uence factor(Px) and antinodularising action factor(K1) were found to have an important in-uence on the structure and mechanical properties,as did Mn and P content,rare earth(RE) addition and inoculation power.The presence of high purity pig iron in the charge is extremely beneficial,not only to control the complex factors Px and K1,but also to improve the 'metallurgical quality' of the iron melt.A correlation of C and Si limits with section modulus is very important to limit graphite nodule flotation.Chunky and surface-degenerated graphite are the most controlled graphite morphologies in windmills castings.The paper concluded on the optimum iron chemistry and melting procedure,Mg-alloys and inoculants peculiar systems,as well as on the practical solutions to limit graphite degeneration and to ensure castings of the highest integrity,typically for this field.
文摘This paper expatiates on domestic status of heavy steel casting production, with a special focus on hydraulicturbine castings for Three Gorges Project. In China, there is magnificent demand for heavy castings with the rapidgrowth of the national economy in recent years and the expected high growth in the coming 10 to 20 years. Someheavy and large castings such as mill housing and hydraulic turbine runner crown, blade and band for Three GorgesProject have been successfully made. However, the domestic production capability is still far from meeting the giganticrequirements. The domestic capability still lags behind the world class level, and a lot of heavy castings still dependon import. The paper also gives a particular introduction of the key technologies in the manufacturing of heavy steelcastings like metal melting, foundry technology, heat treatment technology and numerical simulation technique, etc.In addition, several case studies on the application of numerical simulation in the production of heavy steel castingsare presented.
文摘A foundry research project has been recently initiated at RTIT in order to better understand the fabrication of as-cast heavy section DI parts meeting high impact energy requirements at low temperatures.The experimental castings have the following dimensions 180 mm x 180 mm x 190 mm.The achieved as-cast Charpy impact strengths were as follows:17 J (RT),16 J (-20℃) and 11 J (-40℃).The foundry process,the chemical composition and the microstructure of this experimental casting are compared to the ones of various examples in order to show the detrimental effects of residual elements,microshrinkage and microcarbide on the impact properties.Finally,quality index empirical models (based on casting chemical compositions) are used to analyse the impact tests results.This paper illustrates that an adequate nodule count can contribute to reducing the detrimental effects of the residual elements and microsegregation.
文摘The effects of alloying elements on the as-cast microstructures and mechanical properties of heavy section ductile cast iron were investigated to develop press die material having high strength and high ductility. Measurements of ultimate tensile strength, 0.2% proof strength, elongation and unnotched Charpy impact energy are presented as a function of alloy amounts within 0.25 to 0.75 wt pct range. Hardness is measured on the broken tensile specimens. The small additions of Mo, Cu, Ni and Cr changed the as-cast mechanical properties owing to the different as-cast matrix microstructures. The ferrite matrix of Mo and Ni alloyed cast iron exhibits low strength and hardness as well as high elongation and impact energy. The increase in Mo and Ni contents developed some fractions of pearlite structures near the austenite eutectic cell boundaries, which caused the elongation and impact energy to drop in a small range. Adding Cu and Cr elements rapidly changed the ferrite matrix into pearlite matrix, so strength and hardness were significantly increased. As more Mo and Cr were added, the size and fraction of primary carbides in the eutectic cell boundaries increased through the segregation of these elements into the intercellular boundaries.
基金supported by the National Natural Science Foundation of China(Nos.51174068 and 51374086)
文摘To improve the mechanical properties of heavy section ductile cast iron, bismuth(Bi) was introduced into the iron. Five castings with different Bi content from 0 to 0.014 wt.% were prepared; and four positions in the casting from the edge to the center, with different solidifi cation cooling rates, were chosen for microstructure observation and mechanical properties test. The effect of the Bi content on the graphite morphology and mechanical properties of heavy section ductile cast iron were investigated. Results show that the tensile strength, elongation and impact toughness at different positions in the fi ve castings decrease with a decrease in cooling rate. With an increase in Bi content, the graphite morphology and the mechanical properties at the same position are improved, and the improvement of mechanical properties is obvious when the Bi content is no higher than 0.011wt.%. But when the Bi content is further increased to 0.014wt.%, the improvement of mechanical properties is not obvious due to the increase of chunky graphite number and the aggregation of chunky graphite. With an increase in Bi content, the tensile fracture mechanism is changed from brittle to mixture ductile-brittle fracture.
文摘In order to solve the problem of the high surface longitudinal crack ratio of heavy peritectic steel slabs produced by the No. 3 continuous caster at Baosteel,the physical properties of the original mold flux and the optimized mold flux were compared in a comprehensive way by using analytical measures, such as a slag film heat-flow simulator, a thermowire molten flux crystallization tester and an X-ray diffractometer in the laboratory. The results reveal that one of the major reasons for the cracks is the poor heat transfer ability of the original mold flux. However, the optimized mold flux with a high basicity features a high crystallizing rate,low crystallization temperature and low heat-flow density. Therefore, the optimized mold flux is more suitable for casting peritectic steel by the heavy slab continuous caster. The test results show that the slabs produced by using the optimized mold flux had no surface longitudinal crack in four test casts, while the surface longitudinal crack ratio of the slabs produced by using the original mold flux was 5%. The optimized mold flux can effectively prevent slab surface longitudinal cracks from occurring.
基金funded by National Basic Research Program of China(No.2011CB012900)
文摘To replace metal padding by insulation padding for castings can save the melt and reduce cleaning work of castings. The design of insulation padding was investigated. The equation of the modulus extension factor for insulation padding and the ratio of its thickness over the modulus of a casting were improved to deter- mine the thickness of insulation padding. The insulation padding was designed for a turbine guide vane casting weighing 3.5 t. A sound casting was obtained with 750 kg steel saved. On the other side, the cast- ing obviously expanded at the interface with the insulation padding, which is perhaps the reason that the use of insulation padding has been suspended for many years. To avoid the expansion of insulation pad- ding, a shielding layer made of a kind of material of good fire resistance was adopted to prevent the insula- tion layer from touching the melt. The shielding layer serves as a cushion of heat and expansion during so- lidification process so as to resist the expansion of castings and guarantee the feeding effect at the same time. Furthermore, insulation padding can be placed by a certain offset into the mold cavity so as to coun- teract the expansion of castings.