Industries such as non-ferrous metal smelting discharge billions of gallons of highly toxic heavy metal wastewater(HMW)worldwide annually,posing a severe challenge to conventional wastewater treatment plants and harmi...Industries such as non-ferrous metal smelting discharge billions of gallons of highly toxic heavy metal wastewater(HMW)worldwide annually,posing a severe challenge to conventional wastewater treatment plants and harming the environment.HMW is traditionally treated via chemical precipitation using lime,caustic,or sulfide,but the effluents do not meet the increasingly stringent discharge standards.This issue has spurred an increase in research and the development of innovative treatment technologies,among which those using nanoparticles receive particular interest.Among such initiatives,treatment using nanoscale zero-valent iron(nZVI)is one of the best developed.While nZVI is already well known for its site-remediation use,this perspective highlights its application in HMW treatment with metal recovery.We demonstrate several advantages of nZVI in this wastewater application,including its multifunctionality in sequestrating a wide array of metal(loid)s(>30 species);its capability to capture and enrich metal(loid)s at low concentrations(with a removal capacity reaching 500 mg·g^(-1)nZVI);and its operational convenience due to its unique hydrodynamics.All these advantages are attributable to nZVI’s diminutive nanoparticle size and/or its unique iron chemistry.We also present the first engineering practice of this application,which has treated millions of cubic meters of HMW and recovered tons of valuable metals(e.g.,Cu and Au).It is concluded that nZVI is a potent reagent for treating HMW and that nZVI technology provides an eco-solution to this toxic waste.展开更多
Sodium hypochlorite and synthesized sodium trititanate nanorods(Na_(2)Ti_(3)O_(7),186 nm×1270 nm)were used as the oxidant and adsorbents for in situ oxidative adsorption treatment of actual electroplating wastewa...Sodium hypochlorite and synthesized sodium trititanate nanorods(Na_(2)Ti_(3)O_(7),186 nm×1270 nm)were used as the oxidant and adsorbents for in situ oxidative adsorption treatment of actual electroplating wastewater containing Cr(Ⅵ)(2.6-5.2 mg·L^(-1)),Cu^(2+)(2.7-5.4 mg·L^(-1)),and Ni^(2+)(0.2705-0.541 mg·L^(-1))ions at pH of 8.8-9.1 and 20-60℃.The as-synthesized sodium trititanate nanorods were characterized by XRD,HRTEM,N2 adsorption/desorption,SEM,EDX,and zeta potential techniques.The concentrations of heavy metal ions in wastewater were analyzed by ICP technique.After in situ oxidative adsorption treatment under the concentrations of 25 g·L^(-1) for sodium hypochlorite and 125 mg·L^(-1) for sodium trititanate nanorods at 60℃ for 5 h,the heavy metal ion concentrations could be reduced from initial value of 2.6 to final value of 1.92 mg·L^(-1) for Cr(Ⅵ),3.6 to 0.17 mg·L^(-1) for Cu^(2+),and from 0.2705 to 0.097 mg·L^(-1) for Ni^(2+),respectively.Cr(Ⅵ),Cu^(2+) and Ni^(2+) ions could be effectively removed by the in situ oxidative adsorption method.The in situ oxidative adsorption processes of Cr(Ⅵ),Cu^(2+) and Ni^(2+) ions are satisfactorily simulated by the pseudo-second order adsorption kinetics and Langmuir adsorption isotherm,respectively.Adsorption thermodynamics analyses reveal that the oxidative adsorption processes of Cr(Ⅵ),Cu^(2+) and Ni^(2+) ions are spontaneous and endothermic.The oxidation degree of metalcontained complexes influences the values of thermodynamics functions.展开更多
The research is to test the damage to DNA of effective microorganisms(EMs)by heavy metal ions As3+,Cd2+,Cr3+,Cu2+,Hg2+, Pb2+,and Zn2+,as well as the effects of EM bacteria on wastewater treatment capability when their...The research is to test the damage to DNA of effective microorganisms(EMs)by heavy metal ions As3+,Cd2+,Cr3+,Cu2+,Hg2+, Pb2+,and Zn2+,as well as the effects of EM bacteria on wastewater treatment capability when their DNA is damaged.The approach applied in this study is to test with COMET assay the damage of EM DNA in wastewater with different concentrations of heavy metal ions As3+,Cd2+,Cr3+,Cu2+,Hg2+,Pb2+,Zn2+,as well as the effects of EM treated with As3+,Cd2+,Cr3+,Cu2+,Hg2+,Pb2+,and Zn2+ on COD degradin...展开更多
Water pollution caused by highly toxic Cd(II), Pb(II), and Cr(VI) is a serious problem. In the present work,a green and low-cost adsorbent of g-C_3N_4 nanosheets was developed with superior capacity for both cationic ...Water pollution caused by highly toxic Cd(II), Pb(II), and Cr(VI) is a serious problem. In the present work,a green and low-cost adsorbent of g-C_3N_4 nanosheets was developed with superior capacity for both cationic and anionic heavy metals. The adsorbent was easily fabricated through one-step calcination of guanidine hydrochloride with thickness less than 1.6 nm and specific surface area of 111.2 m^2·g^(-1). Kinetic and isotherm studies suggest that the adsorption is an endothermic chemisorption process, occurring on the energetically heterogeneous surface based on a hybrid mechanism of multilayer and monolayer adsorption. The tri-s-triazine units and surface N-containing groups of g-C_3N_4 nanosheets are proposed to be responsible for the adsorption process.Further study on pH demonstrates that electrostatic interaction plays an important role. The maximum adsorption capacity of Cd(II), Pb(II), and Cr(VI) on g-C_3N_4 nanosheets is 123.205 mg·g^(-1), 136.571 mg·g^(-1),and 684.451 mg·g^(-1), respectively. The better adsorption performance of the adsorbent than that of the recently reported nanomaterials and low-cost adsorbents proves its great application potential in the removal of heavy metal contaminants from wastewater. The present paper developed a promising adsorbent which will certainly find applications in wastewater treatment and also provides guiding significance in designing adsorption processes.展开更多
Soil samples were collected from Zhangshi Wastewater Irrigation Area in the suburb of Shenyang City,China,an area with a 30-year irrigation history with heavy metal-containing wastewater.The chemical properties and mi...Soil samples were collected from Zhangshi Wastewater Irrigation Area in the suburb of Shenyang City,China,an area with a 30-year irrigation history with heavy metal-containing wastewater.The chemical properties and microbial characteristics of the soils were examined to evaluate the present situation of heavy metal pollution and to assess the soil microbial characteristics under long-term heavy metal stress.In light of the National Environmental Quality Standards of China,the soil in the test area was heavily polluted by Cd and to a lesser degree by Zn and Cu,even though wastewater irrigation ceased in 1993.Soil metabolic quotient (qCO_2) had a significant positive correlation,while soil microbial quotient (qM) had a negative correlation with content of soil heavy metals.Soil microbial biomass carbon (MBC) had significantly negative correlation with Cd,but soil substrate-induced respiration (SIR),dehydrogenase activity (DHA),cellulase activity, and culturable microbial populations had no persistent correlations with soil heavy metal content.Soil nutrients,except for phosphorous,showed positive effects on soil microbial characteristics,which to a certain degree obscured the adverse effects of soil heavy metals.Soil Cd contributed more to the soil microbial characteristics,but qM and qCO_2 were more sensitive and showed persistent responses to heavy metals stress.It could be concluded that qM and qCO_2 can be used as bioindicators of heavy metal pollution in soils.展开更多
Objective To present the results of a research project on 6 heavy metals (Cd, Cu, Zn, Pb, Hg, and Cr) at 30 Fadama fields scattered around Kano. Methods Following a reconnaissance conducted, 30 representative Fadama...Objective To present the results of a research project on 6 heavy metals (Cd, Cu, Zn, Pb, Hg, and Cr) at 30 Fadama fields scattered around Kano. Methods Following a reconnaissance conducted, 30 representative Fadama lands being irrigated with wastewater were selected from zones of the city under residential, industrial, commercial, and mixed but largely residential landuses. Five additional Fadama lands not being irrigated with wastewater were selected to serve as control. Using grid sampling procedure, soil samples were selected from 0-15 cm and 20-30 cm depths and analyzed for the above listed heavy metals using atomic absorption spectrophotometry. T-test was used to compare the mean values of the metals for the Fadama lands under different landuse zones with those of the control. Results Analyses of the soil data collected showed that the metals were concentrated in higher amounts in the lower (20-30 cm) than the upper (0-15 cm) depths, which was an indication of downward movement of the metals in profile of the soils. In the two soil depths, Zn was generally the most abundant, followed by Cr, then Pb, Cu, and Cd while Hg was the least. The Fadama soils in areas of mixed landuses with industrial as the dominant ones maintained the highest concentrations of the various metals. Conclusions These results indicate clearly that the Fadama soils are significantly polluted by industrial and household wastewater and that there is a particular threat from Cr and Pb pollution. There is also evidence that the metals are accumulating at lower layers of the soil profile, suggesting that not only plants and soil, but even water bodies could be under the threat of heavy metal pollution in the area.展开更多
This study investigated selected properties of soils affected by wastewater and its relationship with some heavy metals. A free survey technique involving target sampling was used in siting soil profile pits. Soil sam...This study investigated selected properties of soils affected by wastewater and its relationship with some heavy metals. A free survey technique involving target sampling was used in siting soil profile pits. Soil samples were collected based on horizon differentiation and analyzed using routine and special analytical techniques. Soil data were subjected to correlation analysis using SAS program. Results show that all heavy metals studied had values above critical limits in the polluted soils using known standards and that these biotoxic metals decreased with soil depths. Highly significant (P=0.01 and 0.05) relationships were established between investigated heavy metals and some soil properties, especially soil pH and organic matter. Further studies involving more edaphic properties, biotoxic metals and their bioaccessibility in crops growing on wastewater soils will surely enhance knowledge and management of these highly anthropogenically influenced soils of the study site.展开更多
The removal efficiency of Cu and Zn from swine wastewater was evaluated as effected by three variables: the hydraulic retention time (HRT) (24, 48, 72 and 96 hours), two different plant species (Typha domingensis Pers...The removal efficiency of Cu and Zn from swine wastewater was evaluated as effected by three variables: the hydraulic retention time (HRT) (24, 48, 72 and 96 hours), two different plant species (Typha domingensis Pers. and Eleocharis cellulosa) and two different sizes of filter media (5 and 15 mm) using a horizontal sub-surface flow constructed wetland. From the results, a significant difference was observed in the removal efficiency of Cu and Zn with respect to different hydraulic retention times. The best results were obtained in the HRT of 96 hours for Zn where 96% removal of Zn with Typha domingensis Pers. specie with gravel of 15 mm (experimental unit 6) was achieved. For Cu, at 72 hours of HRT, the efficiency was nearly 100% in five of the six study units (1, 2, 3, 5 and 6). In contrast, in experimental unit 4 with gravel of 15 mm and without plants, only 86% Cu removal was achieved.展开更多
Studies on peri urban farming in Zambia have not adequately tackled the issues pertaining to heavy metal contaminated wastewater irrigation farming. The study investigated heavy metal contamination of water, soils and...Studies on peri urban farming in Zambia have not adequately tackled the issues pertaining to heavy metal contaminated wastewater irrigation farming. The study investigated heavy metal contamination of water, soils and crops at two peri urban areas in Zambia. Two study sites were New Farm Extension in Mufulira Town in the Copperbelt Province and Chilumba Gardens in Kafue Town in Lusaka Province. The heavy metals investigated were lead, copper, cobalt, nickel and chromium. These heavy metals were found to be higher than acceptable limits in wastewater used to irrigate crops and there are potential human health risks associated with consumption of heavy metal contaminated food crops which have implications on the livelihoods of people. Samples of water, soil and crops were collected and analysed for lead (Pb), copper (Cu), chromium (Cr), cobalt (Co) and nickel (Ni) using the Atomic Absorption Spectrometer (AAS). The data on heavy metals was analysed using mean, standard error and T-test. The results indicated that the levels of heavy metals in wastewater, soil and food crops were above acceptable limits at two study sites. It can be concluded that there was heavy metal contamination of wastewater, soil and food crops at the two peri-urban areas in Zambia. The study highlighted the actual levels of heavy metal contaminant uptake in food crops consumed by the peri urban population. The information from this study can be used by the relevant authorities to develop appropriate measures for monitoring and control of heavy metal contamination in wastewater irrigation farming systems in peri urban areas inZambia.展开更多
Constructed wetlands are man-made complex of substrates, emergent/submergent vegetation, and water. Constructed wetlands have been known as an efficient and low-cost treatment process. Constructed wetland is a natural...Constructed wetlands are man-made complex of substrates, emergent/submergent vegetation, and water. Constructed wetlands have been known as an efficient and low-cost treatment process. Constructed wetland is a natural treatment system that physical, chemical, and biological processes occur when water, soil, plants, and microorganisms interact. They are considered as natural treatment ecosystems that are designed to take advantages of the natural processes to provide wastewater treatment. Constructed wetlands treat different types of wastewaters such as municipal, industrial, agricultural, and storm water. The removal of heavy metals within wetlands is performed generally by plant uptake and by adsorption onto sediments. Heavy metal treatment examples and some specifications and regulations are finally discussed.展开更多
Heavy metal pollution from industrial wastewater is a worldwide environmental issue. Biosorption of heavy metals by using biosorbents derived from various types of biomass has been shown to be effective for the uptake...Heavy metal pollution from industrial wastewater is a worldwide environmental issue. Biosorption of heavy metals by using biosorbents derived from various types of biomass has been shown to be effective for the uptake of heavy metal ions. In this study, biosorbents derived from the biomass of a group of marine macroalgae were used for the removal and recovery of heavy metal ions from aqueous solutions. Results indicated that the biosorbents have high uptake capacities and affinities for a number of heavy metal ions. The uptake capacities of the biosorbents were in the range of 1.0 to 1.5mmol·g-1 for divalent heavy metal ions. The kinetics of the uptake process was fast and the process can be used in both batch and fixed-bed operations. It appears that the biosorption process by using biosorbents from marine macroalgae can be an efficient and cost effective technology for the treatment of heavy metal containing wastewater.展开更多
To maximize the potential of monolayer molybdenum disulfide(MoS2)sheet in the disposal of heavy metal ions in wastewater,we compared the adsorption of several common heavy metal ions(including Cr^(3+),Ni^(2+),Cu^(2+),...To maximize the potential of monolayer molybdenum disulfide(MoS2)sheet in the disposal of heavy metal ions in wastewater,we compared the adsorption of several common heavy metal ions(including Cr^(3+),Ni^(2+),Cu^(2+),Zn^(2+),Cd^(2+),Hg^(2+),and Pb^(2+))in wastewater on the monolayer MoS2 sheet through first-principles calculation.Our simulation results show that the monolayer MoS2 sheet is a potential heavy metal adsorption material because of the attractive interaction between them.The most negative adsorption energy determines that the TMo site is the most stable adsorption site for the heavy metal ions.The attractive interaction is considered as chemical adsorption,and it is closely related to charge transfer.The orbital hybridization between S p and heavy metal ions p and d states electrons contributes to the adsorption,except the orbital hybridization between S p and Pb p states electrons contributes to the Pb^(2+) adsorption.All the results show that the monolayer MoS2 sheet is most suitable for removing Ni^(2+) and Cr^(3+) ions from wastewater,followed by Cu^(2+) and Pb^(2+).For the ions Cd^(2+),Zn^(2+),and Hg^(2+),its adsorption strength remains to be improved.展开更多
The Fava Beans were used in this work as low cost adsorbent material for removal of Pb(II), Cd(II) and Zn(II) ions from aqueous solutions. The samples were prepared without farther treatment and sorted according to th...The Fava Beans were used in this work as low cost adsorbent material for removal of Pb(II), Cd(II) and Zn(II) ions from aqueous solutions. The samples were prepared without farther treatment and sorted according to the particles diameter by standard sieves 250 - 500 μm. Batch adsorption experiments were carried out to study the adsorption process, several parameters such as Initial pH of adsorbent, effect of contact time, effect of adsorbent amount and effect of metal concentration were conducted in these experiments. The effects of any one of those previously mentioned parameters on the adsorption capacity were studied while the other parameters were kept constant. It was found that the obtained maximum adsorption capacities of Fave beans for the removal of selected heavy metals were very high. This provide us to use Fava beans as a low coast adsorbent material to clean up the water in the environment from toxic heavy metals such as Pb(II), Cd(II) and Zn(II) ions.展开更多
In the 21st century the fresh water scarcity increased very rapidly due to the urbanization and industrialization process. In these conditions the urban wastewater plays an important role in the water usage criteria. ...In the 21st century the fresh water scarcity increased very rapidly due to the urbanization and industrialization process. In these conditions the urban wastewater plays an important role in the water usage criteria. In this aspect, in all the major cities, wastewater treatment plants have been constructed to treat the urban wastewater in view of decreasing the water scarcity. The presence of nutrients in the wastewater is considered as beneficial to agricultural practices. The contaminants present in the wastewater pose health risks directly to agricultural workers and indirectly to the consumers as the long term application of the wastewater may result in the accumulation of toxic elements in soil and in plants. In this way the heavy metals will circulate among the food chain and food web to cause adverse effects on human health as well as on soil health. In the present study an attempt has been made to study the characteristics of urban wastewater at wastewater treatment plant of Mysore city. And also heavy metal behavior was studied with the analysis of heavy metals in wastewater, Biosolid and receiving soil along with the plants which indicates the uptake of heavy metals.展开更多
The surface of a biowaste was modified by introduction of amino group for the purification of wastewater contaminated with heavy metals. In this study waste tea leaf was used as a biowaste which was an economic and ef...The surface of a biowaste was modified by introduction of amino group for the purification of wastewater contaminated with heavy metals. In this study waste tea leaf was used as a biowaste which was an economic and efficient bioadsorbent. The aminated tea leaves were characterized by spectral and elemental analysis. The adsorption capacity of the surface modified biosorbent was studied as the function of solution pH, concentration of metal ions and contact time of adsorption. The applicability of Langmuir isotherm was tested. The adsorption capacities were found to be 83.04 mg/g and 57 mg/g for Pb (II) and Cd (II), respectively. The biosorbent was regenerated by desorption of the metal loaded adsorbent with 0.1 M HNO3. These results showed that the aminated tea leaves may be an attractive alternative for treatment of wastewater contaminated with heavy metals.展开更多
A new type of dissolved air released flotation column is developed to treat wastewater containing Cr(Ⅵ) based on advantages of both dissolved air floatation and column floatation. By using a column with a diameter ...A new type of dissolved air released flotation column is developed to treat wastewater containing Cr(Ⅵ) based on advantages of both dissolved air floatation and column floatation. By using a column with a diameter of 50 mm and a specially made dissolved air releaser, micro-bubbles inside the column can be formed. N2H4H2O was used as reductant, AlCl3 as flocculant, C12H25SO3Na(SDS) as surfactant in the experiment. The effects of pH of wastewater, pressure of dissolved air, ratio of return water, and concentration of flocculant and surfactant on the removal efficiency are studied. The results show that the efficiency of dissolved air released flotation column is much higher than that of other approaches after the operation parameters are optimized, with the reduction ratio of Cr(Ⅵ ) in wastewater reaching 98%. So this technique can be widely used in wastewater treatment展开更多
One of the main environmental pollutants is heavy metals. Due to extensive usage in industry, these metals enter biological cycle rapidly and contaminated water and soil resources rapidly. In this work, lead, copper, ...One of the main environmental pollutants is heavy metals. Due to extensive usage in industry, these metals enter biological cycle rapidly and contaminated water and soil resources rapidly. In this work, lead, copper, zinc and chromium of Bandar Abbas wastewater are examined. For this research, nine stations were set for measurement in urban level in Bandar Abbas and sampling of aforesaid metals was performed in fall and winter 2006 in these stations. After extraction and preparation operations using APDC-MIBK, samples were measured using flame atomic absorption system. According to results, concentrate of studied metals was lower than allowable standard value set by Iran environmental protection organization for agricultural purposes and sewage to ground level waters. In addition, efficiency of Bandar Abbas wastewater treatment plant to remove these metals is 40% - 70% from which highest removal is for zinc as much as 71.1% and lowest level is for copper as much as 40.5%. However, copper level was higher than allowable level for agricultural purposes in spring and summer (0.21 mg/L and 0.23 mg/L, respectively) and lower in fall and winter (0.103 mg/L and 0.098 mg/L, respectively). Furthermore, changes in concentration of metals in these stations in various seasons were measured and analyzed using one-way variance analysis and simultaneous effects of time and place on measured variables were analyzed using two-way variance analysis.展开更多
The aim of the present work is to remove heavy metals (copper, manganese, and zinc) from industrial wastewater of Baiji refinery using GAC (granular activated carbon). The most important factors affecting adsorpti...The aim of the present work is to remove heavy metals (copper, manganese, and zinc) from industrial wastewater of Baiji refinery using GAC (granular activated carbon). The most important factors affecting adsorption process have been studied, which are granular activated carbon thickness, H, inlet pollutant concentration, Cv, and liquid hourly space velocity, LHSV. All experiments were performed under constant temperature at 25℃ and pH = 7. The experimental apparatus was designed and constructed to enable controlling of the operating conditions. Employing five levels for each of H and LHSV and three levels for Co required 75 runs for each metal. Box-Wilson method was used to reduce the number of experiments to 15 for each metal. The results indicated that copper, manganese, and zinc can be completely removed from wastewater using activated carbon. However, breakthrough time for zinc is low. It is also shown that breakthrough time (TB) and exhaustion time (TE) are inversely proportional with pollutant concentration and LHSV (liquid hour space velocity) while it is directly proportional with the thickness of activated carbon column.展开更多
The conventional wet FGD process has been applied in more than 85% units for SO2 removal in China. There are a great number of pollution components in the wastewater from wet FGD process,and the removal process of the...The conventional wet FGD process has been applied in more than 85% units for SO2 removal in China. There are a great number of pollution components in the wastewater from wet FGD process,and the removal process of these components is very complicated and difficult,especially the removal of heavy metals in the wastewater. Even if a foreign advanced technology was applied,it is still difficult to meet the discharge requirements of heavy metals in spite of its much higher investment,operation and maintenance cost than that from the domestic widely-used and simple wastewater treatment process. Under the background of increasingly stringent environmental requirements,to improve the existing wastewater treatment process or to change the existing wet FGD process has become extremely urgent.展开更多
Constructed wetlands(CwW)are well known nature-based systems for water treatment.This study evaluated the efficiency and effectiveness of seven domestic wastewater treatment systems based on horizontal flow CWs in Jar...Constructed wetlands(CwW)are well known nature-based systems for water treatment.This study evaluated the efficiency and effectiveness of seven domestic wastewater treatment systems based on horizontal flow CWs in Jarabacoa,the Dominican Republic.The results showed that the CWs were efficient in reducing the degree of contamination of wastewater to levels below the Dominican wastewater discharge standards for parameters such as the 5-day biochemical oxygen demand(BOD5)and chemical oxygen demand,but not for the removal of phosphorus and fecal coliforms.In addition,a horizontal flow subsurface wetland in the peri-urban area El Dorado was evaluated in terms of the performance of wastewater treatment in tropical climatic conditions.The concentrations of heavy metals,such as zinc,copper,chromium,and iron,were found to decrease in the effluent of the wetland,and the concentrations for nickel and manganese tended to increase.The levels of heavy metals in the effluent were lower than the limit values of the Dominican wastewater discharge standards.The construction cost of these facilities was around 200 USD per population equivalent,similar to the cost in other countries in the same region.This study suggested some solutions to the improved performance of CWs:selection of a microbial flora that guarantees the reduction of nitrates and nitrites to molecular nitrogen,use of endemic plants that bioaccumulate heavy metals,combination of constructed wetlands with filtration on activated carbon,and inclusion of water purification processes that allow to evaluate the reuse of treated water.展开更多
基金supported by the National Natural Science Foundation of China(21876131)the National Key Research and Development Program of China(2022YFC3702101)the Foundation of State Key Laboratory of Pollution Control and Resource Reuse of China(PCRRY).
文摘Industries such as non-ferrous metal smelting discharge billions of gallons of highly toxic heavy metal wastewater(HMW)worldwide annually,posing a severe challenge to conventional wastewater treatment plants and harming the environment.HMW is traditionally treated via chemical precipitation using lime,caustic,or sulfide,but the effluents do not meet the increasingly stringent discharge standards.This issue has spurred an increase in research and the development of innovative treatment technologies,among which those using nanoparticles receive particular interest.Among such initiatives,treatment using nanoscale zero-valent iron(nZVI)is one of the best developed.While nZVI is already well known for its site-remediation use,this perspective highlights its application in HMW treatment with metal recovery.We demonstrate several advantages of nZVI in this wastewater application,including its multifunctionality in sequestrating a wide array of metal(loid)s(>30 species);its capability to capture and enrich metal(loid)s at low concentrations(with a removal capacity reaching 500 mg·g^(-1)nZVI);and its operational convenience due to its unique hydrodynamics.All these advantages are attributable to nZVI’s diminutive nanoparticle size and/or its unique iron chemistry.We also present the first engineering practice of this application,which has treated millions of cubic meters of HMW and recovered tons of valuable metals(e.g.,Cu and Au).It is concluded that nZVI is a potent reagent for treating HMW and that nZVI technology provides an eco-solution to this toxic waste.
基金supported by the research funds from the Bureau of Danyang Science and Technology,China(SF201803)the Department of Liaoning Science and Technology,China(2021JH1/10400063).
文摘Sodium hypochlorite and synthesized sodium trititanate nanorods(Na_(2)Ti_(3)O_(7),186 nm×1270 nm)were used as the oxidant and adsorbents for in situ oxidative adsorption treatment of actual electroplating wastewater containing Cr(Ⅵ)(2.6-5.2 mg·L^(-1)),Cu^(2+)(2.7-5.4 mg·L^(-1)),and Ni^(2+)(0.2705-0.541 mg·L^(-1))ions at pH of 8.8-9.1 and 20-60℃.The as-synthesized sodium trititanate nanorods were characterized by XRD,HRTEM,N2 adsorption/desorption,SEM,EDX,and zeta potential techniques.The concentrations of heavy metal ions in wastewater were analyzed by ICP technique.After in situ oxidative adsorption treatment under the concentrations of 25 g·L^(-1) for sodium hypochlorite and 125 mg·L^(-1) for sodium trititanate nanorods at 60℃ for 5 h,the heavy metal ion concentrations could be reduced from initial value of 2.6 to final value of 1.92 mg·L^(-1) for Cr(Ⅵ),3.6 to 0.17 mg·L^(-1) for Cu^(2+),and from 0.2705 to 0.097 mg·L^(-1) for Ni^(2+),respectively.Cr(Ⅵ),Cu^(2+) and Ni^(2+) ions could be effectively removed by the in situ oxidative adsorption method.The in situ oxidative adsorption processes of Cr(Ⅵ),Cu^(2+) and Ni^(2+) ions are satisfactorily simulated by the pseudo-second order adsorption kinetics and Langmuir adsorption isotherm,respectively.Adsorption thermodynamics analyses reveal that the oxidative adsorption processes of Cr(Ⅵ),Cu^(2+) and Ni^(2+) ions are spontaneous and endothermic.The oxidation degree of metalcontained complexes influences the values of thermodynamics functions.
基金supported by the Hi-Tech Re-search and Development Program(863)of China(No.2006AA06Z378)the National Natural Science Founda-tion of China(No.20777018)the Scientific ResearchItem of Guangxi Province Department of Education of China(No.200608LX109)
文摘The research is to test the damage to DNA of effective microorganisms(EMs)by heavy metal ions As3+,Cd2+,Cr3+,Cu2+,Hg2+, Pb2+,and Zn2+,as well as the effects of EM bacteria on wastewater treatment capability when their DNA is damaged.The approach applied in this study is to test with COMET assay the damage of EM DNA in wastewater with different concentrations of heavy metal ions As3+,Cd2+,Cr3+,Cu2+,Hg2+,Pb2+,Zn2+,as well as the effects of EM treated with As3+,Cd2+,Cr3+,Cu2+,Hg2+,Pb2+,and Zn2+ on COD degradin...
基金Supported by the National Natural Science Foundation of China(21525625)the National Basic Research Program(973 Program) of China(2014CB745100)+3 种基金the(863) High Technology Project of China(2013AA020302)the Chinese Universities Scientific Fund(JD1417)China Postdoctoral Science Foundation funded project(2017M610038)the Fundamental Research Funds for the Central Universities(ZY1712,XK1701)
文摘Water pollution caused by highly toxic Cd(II), Pb(II), and Cr(VI) is a serious problem. In the present work,a green and low-cost adsorbent of g-C_3N_4 nanosheets was developed with superior capacity for both cationic and anionic heavy metals. The adsorbent was easily fabricated through one-step calcination of guanidine hydrochloride with thickness less than 1.6 nm and specific surface area of 111.2 m^2·g^(-1). Kinetic and isotherm studies suggest that the adsorption is an endothermic chemisorption process, occurring on the energetically heterogeneous surface based on a hybrid mechanism of multilayer and monolayer adsorption. The tri-s-triazine units and surface N-containing groups of g-C_3N_4 nanosheets are proposed to be responsible for the adsorption process.Further study on pH demonstrates that electrostatic interaction plays an important role. The maximum adsorption capacity of Cd(II), Pb(II), and Cr(VI) on g-C_3N_4 nanosheets is 123.205 mg·g^(-1), 136.571 mg·g^(-1),and 684.451 mg·g^(-1), respectively. The better adsorption performance of the adsorbent than that of the recently reported nanomaterials and low-cost adsorbents proves its great application potential in the removal of heavy metal contaminants from wastewater. The present paper developed a promising adsorbent which will certainly find applications in wastewater treatment and also provides guiding significance in designing adsorption processes.
基金Project supported by the National Key Basic Research Support Foundation of China (No.2004CB418503).
文摘Soil samples were collected from Zhangshi Wastewater Irrigation Area in the suburb of Shenyang City,China,an area with a 30-year irrigation history with heavy metal-containing wastewater.The chemical properties and microbial characteristics of the soils were examined to evaluate the present situation of heavy metal pollution and to assess the soil microbial characteristics under long-term heavy metal stress.In light of the National Environmental Quality Standards of China,the soil in the test area was heavily polluted by Cd and to a lesser degree by Zn and Cu,even though wastewater irrigation ceased in 1993.Soil metabolic quotient (qCO_2) had a significant positive correlation,while soil microbial quotient (qM) had a negative correlation with content of soil heavy metals.Soil microbial biomass carbon (MBC) had significantly negative correlation with Cd,but soil substrate-induced respiration (SIR),dehydrogenase activity (DHA),cellulase activity, and culturable microbial populations had no persistent correlations with soil heavy metal content.Soil nutrients,except for phosphorous,showed positive effects on soil microbial characteristics,which to a certain degree obscured the adverse effects of soil heavy metals.Soil Cd contributed more to the soil microbial characteristics,but qM and qCO_2 were more sensitive and showed persistent responses to heavy metals stress.It could be concluded that qM and qCO_2 can be used as bioindicators of heavy metal pollution in soils.
文摘Objective To present the results of a research project on 6 heavy metals (Cd, Cu, Zn, Pb, Hg, and Cr) at 30 Fadama fields scattered around Kano. Methods Following a reconnaissance conducted, 30 representative Fadama lands being irrigated with wastewater were selected from zones of the city under residential, industrial, commercial, and mixed but largely residential landuses. Five additional Fadama lands not being irrigated with wastewater were selected to serve as control. Using grid sampling procedure, soil samples were selected from 0-15 cm and 20-30 cm depths and analyzed for the above listed heavy metals using atomic absorption spectrophotometry. T-test was used to compare the mean values of the metals for the Fadama lands under different landuse zones with those of the control. Results Analyses of the soil data collected showed that the metals were concentrated in higher amounts in the lower (20-30 cm) than the upper (0-15 cm) depths, which was an indication of downward movement of the metals in profile of the soils. In the two soil depths, Zn was generally the most abundant, followed by Cr, then Pb, Cu, and Cd while Hg was the least. The Fadama soils in areas of mixed landuses with industrial as the dominant ones maintained the highest concentrations of the various metals. Conclusions These results indicate clearly that the Fadama soils are significantly polluted by industrial and household wastewater and that there is a particular threat from Cr and Pb pollution. There is also evidence that the metals are accumulating at lower layers of the soil profile, suggesting that not only plants and soil, but even water bodies could be under the threat of heavy metal pollution in the area.
文摘This study investigated selected properties of soils affected by wastewater and its relationship with some heavy metals. A free survey technique involving target sampling was used in siting soil profile pits. Soil samples were collected based on horizon differentiation and analyzed using routine and special analytical techniques. Soil data were subjected to correlation analysis using SAS program. Results show that all heavy metals studied had values above critical limits in the polluted soils using known standards and that these biotoxic metals decreased with soil depths. Highly significant (P=0.01 and 0.05) relationships were established between investigated heavy metals and some soil properties, especially soil pH and organic matter. Further studies involving more edaphic properties, biotoxic metals and their bioaccessibility in crops growing on wastewater soils will surely enhance knowledge and management of these highly anthropogenically influenced soils of the study site.
文摘The removal efficiency of Cu and Zn from swine wastewater was evaluated as effected by three variables: the hydraulic retention time (HRT) (24, 48, 72 and 96 hours), two different plant species (Typha domingensis Pers. and Eleocharis cellulosa) and two different sizes of filter media (5 and 15 mm) using a horizontal sub-surface flow constructed wetland. From the results, a significant difference was observed in the removal efficiency of Cu and Zn with respect to different hydraulic retention times. The best results were obtained in the HRT of 96 hours for Zn where 96% removal of Zn with Typha domingensis Pers. specie with gravel of 15 mm (experimental unit 6) was achieved. For Cu, at 72 hours of HRT, the efficiency was nearly 100% in five of the six study units (1, 2, 3, 5 and 6). In contrast, in experimental unit 4 with gravel of 15 mm and without plants, only 86% Cu removal was achieved.
文摘Studies on peri urban farming in Zambia have not adequately tackled the issues pertaining to heavy metal contaminated wastewater irrigation farming. The study investigated heavy metal contamination of water, soils and crops at two peri urban areas in Zambia. Two study sites were New Farm Extension in Mufulira Town in the Copperbelt Province and Chilumba Gardens in Kafue Town in Lusaka Province. The heavy metals investigated were lead, copper, cobalt, nickel and chromium. These heavy metals were found to be higher than acceptable limits in wastewater used to irrigate crops and there are potential human health risks associated with consumption of heavy metal contaminated food crops which have implications on the livelihoods of people. Samples of water, soil and crops were collected and analysed for lead (Pb), copper (Cu), chromium (Cr), cobalt (Co) and nickel (Ni) using the Atomic Absorption Spectrometer (AAS). The data on heavy metals was analysed using mean, standard error and T-test. The results indicated that the levels of heavy metals in wastewater, soil and food crops were above acceptable limits at two study sites. It can be concluded that there was heavy metal contamination of wastewater, soil and food crops at the two peri-urban areas in Zambia. The study highlighted the actual levels of heavy metal contaminant uptake in food crops consumed by the peri urban population. The information from this study can be used by the relevant authorities to develop appropriate measures for monitoring and control of heavy metal contamination in wastewater irrigation farming systems in peri urban areas inZambia.
文摘Constructed wetlands are man-made complex of substrates, emergent/submergent vegetation, and water. Constructed wetlands have been known as an efficient and low-cost treatment process. Constructed wetland is a natural treatment system that physical, chemical, and biological processes occur when water, soil, plants, and microorganisms interact. They are considered as natural treatment ecosystems that are designed to take advantages of the natural processes to provide wastewater treatment. Constructed wetlands treat different types of wastewaters such as municipal, industrial, agricultural, and storm water. The removal of heavy metals within wetlands is performed generally by plant uptake and by adsorption onto sediments. Heavy metal treatment examples and some specifications and regulations are finally discussed.
基金Supported in part by the Australian Research Council (Small Grant Scheme) and a Royal Thai Government Scholarship.
文摘Heavy metal pollution from industrial wastewater is a worldwide environmental issue. Biosorption of heavy metals by using biosorbents derived from various types of biomass has been shown to be effective for the uptake of heavy metal ions. In this study, biosorbents derived from the biomass of a group of marine macroalgae were used for the removal and recovery of heavy metal ions from aqueous solutions. Results indicated that the biosorbents have high uptake capacities and affinities for a number of heavy metal ions. The uptake capacities of the biosorbents were in the range of 1.0 to 1.5mmol·g-1 for divalent heavy metal ions. The kinetics of the uptake process was fast and the process can be used in both batch and fixed-bed operations. It appears that the biosorption process by using biosorbents from marine macroalgae can be an efficient and cost effective technology for the treatment of heavy metal containing wastewater.
基金This work was supported by the Joint Funds of the National Natural Science Foundation of China(Grant No.U1967212)the National Science and Technology Major Project of China(Grant No.2019XS06004009)the Fundamental Research Funds for the Central Universities(Grant No.2018ZD10).
文摘To maximize the potential of monolayer molybdenum disulfide(MoS2)sheet in the disposal of heavy metal ions in wastewater,we compared the adsorption of several common heavy metal ions(including Cr^(3+),Ni^(2+),Cu^(2+),Zn^(2+),Cd^(2+),Hg^(2+),and Pb^(2+))in wastewater on the monolayer MoS2 sheet through first-principles calculation.Our simulation results show that the monolayer MoS2 sheet is a potential heavy metal adsorption material because of the attractive interaction between them.The most negative adsorption energy determines that the TMo site is the most stable adsorption site for the heavy metal ions.The attractive interaction is considered as chemical adsorption,and it is closely related to charge transfer.The orbital hybridization between S p and heavy metal ions p and d states electrons contributes to the adsorption,except the orbital hybridization between S p and Pb p states electrons contributes to the Pb^(2+) adsorption.All the results show that the monolayer MoS2 sheet is most suitable for removing Ni^(2+) and Cr^(3+) ions from wastewater,followed by Cu^(2+) and Pb^(2+).For the ions Cd^(2+),Zn^(2+),and Hg^(2+),its adsorption strength remains to be improved.
文摘The Fava Beans were used in this work as low cost adsorbent material for removal of Pb(II), Cd(II) and Zn(II) ions from aqueous solutions. The samples were prepared without farther treatment and sorted according to the particles diameter by standard sieves 250 - 500 μm. Batch adsorption experiments were carried out to study the adsorption process, several parameters such as Initial pH of adsorbent, effect of contact time, effect of adsorbent amount and effect of metal concentration were conducted in these experiments. The effects of any one of those previously mentioned parameters on the adsorption capacity were studied while the other parameters were kept constant. It was found that the obtained maximum adsorption capacities of Fave beans for the removal of selected heavy metals were very high. This provide us to use Fava beans as a low coast adsorbent material to clean up the water in the environment from toxic heavy metals such as Pb(II), Cd(II) and Zn(II) ions.
文摘In the 21st century the fresh water scarcity increased very rapidly due to the urbanization and industrialization process. In these conditions the urban wastewater plays an important role in the water usage criteria. In this aspect, in all the major cities, wastewater treatment plants have been constructed to treat the urban wastewater in view of decreasing the water scarcity. The presence of nutrients in the wastewater is considered as beneficial to agricultural practices. The contaminants present in the wastewater pose health risks directly to agricultural workers and indirectly to the consumers as the long term application of the wastewater may result in the accumulation of toxic elements in soil and in plants. In this way the heavy metals will circulate among the food chain and food web to cause adverse effects on human health as well as on soil health. In the present study an attempt has been made to study the characteristics of urban wastewater at wastewater treatment plant of Mysore city. And also heavy metal behavior was studied with the analysis of heavy metals in wastewater, Biosolid and receiving soil along with the plants which indicates the uptake of heavy metals.
文摘The surface of a biowaste was modified by introduction of amino group for the purification of wastewater contaminated with heavy metals. In this study waste tea leaf was used as a biowaste which was an economic and efficient bioadsorbent. The aminated tea leaves were characterized by spectral and elemental analysis. The adsorption capacity of the surface modified biosorbent was studied as the function of solution pH, concentration of metal ions and contact time of adsorption. The applicability of Langmuir isotherm was tested. The adsorption capacities were found to be 83.04 mg/g and 57 mg/g for Pb (II) and Cd (II), respectively. The biosorbent was regenerated by desorption of the metal loaded adsorbent with 0.1 M HNO3. These results showed that the aminated tea leaves may be an attractive alternative for treatment of wastewater contaminated with heavy metals.
基金Projects 50425414 supported by National Fund for Distinguished Young Scholars and B200403 by Science and Technology Fund of China University ofMining &Technology
文摘A new type of dissolved air released flotation column is developed to treat wastewater containing Cr(Ⅵ) based on advantages of both dissolved air floatation and column floatation. By using a column with a diameter of 50 mm and a specially made dissolved air releaser, micro-bubbles inside the column can be formed. N2H4H2O was used as reductant, AlCl3 as flocculant, C12H25SO3Na(SDS) as surfactant in the experiment. The effects of pH of wastewater, pressure of dissolved air, ratio of return water, and concentration of flocculant and surfactant on the removal efficiency are studied. The results show that the efficiency of dissolved air released flotation column is much higher than that of other approaches after the operation parameters are optimized, with the reduction ratio of Cr(Ⅵ ) in wastewater reaching 98%. So this technique can be widely used in wastewater treatment
文摘One of the main environmental pollutants is heavy metals. Due to extensive usage in industry, these metals enter biological cycle rapidly and contaminated water and soil resources rapidly. In this work, lead, copper, zinc and chromium of Bandar Abbas wastewater are examined. For this research, nine stations were set for measurement in urban level in Bandar Abbas and sampling of aforesaid metals was performed in fall and winter 2006 in these stations. After extraction and preparation operations using APDC-MIBK, samples were measured using flame atomic absorption system. According to results, concentrate of studied metals was lower than allowable standard value set by Iran environmental protection organization for agricultural purposes and sewage to ground level waters. In addition, efficiency of Bandar Abbas wastewater treatment plant to remove these metals is 40% - 70% from which highest removal is for zinc as much as 71.1% and lowest level is for copper as much as 40.5%. However, copper level was higher than allowable level for agricultural purposes in spring and summer (0.21 mg/L and 0.23 mg/L, respectively) and lower in fall and winter (0.103 mg/L and 0.098 mg/L, respectively). Furthermore, changes in concentration of metals in these stations in various seasons were measured and analyzed using one-way variance analysis and simultaneous effects of time and place on measured variables were analyzed using two-way variance analysis.
文摘The aim of the present work is to remove heavy metals (copper, manganese, and zinc) from industrial wastewater of Baiji refinery using GAC (granular activated carbon). The most important factors affecting adsorption process have been studied, which are granular activated carbon thickness, H, inlet pollutant concentration, Cv, and liquid hourly space velocity, LHSV. All experiments were performed under constant temperature at 25℃ and pH = 7. The experimental apparatus was designed and constructed to enable controlling of the operating conditions. Employing five levels for each of H and LHSV and three levels for Co required 75 runs for each metal. Box-Wilson method was used to reduce the number of experiments to 15 for each metal. The results indicated that copper, manganese, and zinc can be completely removed from wastewater using activated carbon. However, breakthrough time for zinc is low. It is also shown that breakthrough time (TB) and exhaustion time (TE) are inversely proportional with pollutant concentration and LHSV (liquid hour space velocity) while it is directly proportional with the thickness of activated carbon column.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(2013AA065403)Major Science and Technology Project of Fujian Province,China(2011HZ0005-1)+1 种基金International Science and Technology Cooperation Program(2010DFB93990)Natural Science Foundation of Fujian Province,China(2014J06020)
文摘The conventional wet FGD process has been applied in more than 85% units for SO2 removal in China. There are a great number of pollution components in the wastewater from wet FGD process,and the removal process of these components is very complicated and difficult,especially the removal of heavy metals in the wastewater. Even if a foreign advanced technology was applied,it is still difficult to meet the discharge requirements of heavy metals in spite of its much higher investment,operation and maintenance cost than that from the domestic widely-used and simple wastewater treatment process. Under the background of increasingly stringent environmental requirements,to improve the existing wastewater treatment process or to change the existing wet FGD process has become extremely urgent.
基金support of the Yaque del Norte Water Fund(FAYN),INTEC(Grant No.CBA-330810-2020-P-1)Fondo Dominicano de Ciencia y Tecnologia(FONDOCYT)(Grant No.2022-2B2-161)。
文摘Constructed wetlands(CwW)are well known nature-based systems for water treatment.This study evaluated the efficiency and effectiveness of seven domestic wastewater treatment systems based on horizontal flow CWs in Jarabacoa,the Dominican Republic.The results showed that the CWs were efficient in reducing the degree of contamination of wastewater to levels below the Dominican wastewater discharge standards for parameters such as the 5-day biochemical oxygen demand(BOD5)and chemical oxygen demand,but not for the removal of phosphorus and fecal coliforms.In addition,a horizontal flow subsurface wetland in the peri-urban area El Dorado was evaluated in terms of the performance of wastewater treatment in tropical climatic conditions.The concentrations of heavy metals,such as zinc,copper,chromium,and iron,were found to decrease in the effluent of the wetland,and the concentrations for nickel and manganese tended to increase.The levels of heavy metals in the effluent were lower than the limit values of the Dominican wastewater discharge standards.The construction cost of these facilities was around 200 USD per population equivalent,similar to the cost in other countries in the same region.This study suggested some solutions to the improved performance of CWs:selection of a microbial flora that guarantees the reduction of nitrates and nitrites to molecular nitrogen,use of endemic plants that bioaccumulate heavy metals,combination of constructed wetlands with filtration on activated carbon,and inclusion of water purification processes that allow to evaluate the reuse of treated water.