期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes
1
作者 Shili Wang Mamitiana Roger Razanajatovo +4 位作者 Xuedong Du Shunli Wan Xin He Qiuming Peng Qingrui Zhang 《Chinese Chemical Letters》 SCIE CAS 2024年第6期146-154,共9页
In some industrial wastewater,heavy metals combine with organic complexing agents to form heavy metal complexes(HMCs).These HMCs can be difficult to decompose and remove through conventional techniques due to their hi... In some industrial wastewater,heavy metals combine with organic complexing agents to form heavy metal complexes(HMCs).These HMCs can be difficult to decompose and remove through conventional techniques due to their higher stability than free heavy metal ions.In recent years,persulfate based advanced oxidation processes(PS-based AOPs)have been recognized as a viable technique for HMCs degradation.Nevertheless,a comprehensive and in-depth understanding of the relevant HMCs decomplexation mechanisms in PS-based AOPs is still lacking.This review delineates the current progress of HMCs decomplexation in PS-based AOPs.We discuss the distinctions between the two widely used oxidant types in PS-based AOPs techniques.Moreover,we summarize and highlight the decomplexation mechanisms based on electron and energy transfer,and degradation pathways of HMCs.We also emphasize the effects of environmental water constituents,namely p H,inorganic ions,and natural organic matter(NOM),on HMCs decomplexation.Ultimately,we identify the existing challenges and perspectives that will steer the direction of advancing PS-based AOPs to remove HMCs. 展开更多
关键词 heavy metal complexes Persulfate Advanced oxidation processes Decomplexation mechanisms Electron and energy transfer
原文传递
Decontamination of heavy metal complexes by advanced oxidation processes:A review 被引量:12
2
作者 Junqun Du Baogang Zhang +1 位作者 Jiaxin Li Bo Lai 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第10期2575-2582,共8页
Heavy metal complexes with high mobility are widely distributed in wastewater from modern industries,which are mo re stable and refracto ry than free heavy metal ions.Their re movals from wastewater draw increasing at... Heavy metal complexes with high mobility are widely distributed in wastewater from modern industries,which are mo re stable and refracto ry than free heavy metal ions.Their re movals from wastewater draw increasing attentions and various technologies have been developed,among which advanced oxidation processes(AOPs)are more effectively and promising.Progresses on five representative types of AOPs,including Fenton(like)oxidation,electrochemical oxidation,photocatalytic oxidation,ozonation and discharge plasma oxidation for heavy metal complexe s degradation are summarized in this review.Their rationales,advantages,applications,challenges and prospects are introduced independently.Combinations among these AOPs,such as electrochemical Fenton oxidation and photoelectrocatalytic oxidation,are also comprehensively highlighted.Future efforts should be made to reduce acid requirement and scale up for practical applications of AOPs for heavy metal complex degradation efficiently and cost-effectively. 展开更多
关键词 Advanced oxidation processes heavy metal complexes MECHANISM WASTEWATER
原文传递
Efficient removal of Cr(Ⅲ)-carboxyl complex from neutral and high-salinity wastewater by nitrogen doped biomass-based composites 被引量:1
3
作者 Li Song Shichao Jing +2 位作者 Yixing Qiu Fuqiang Liu Aimin Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第1期397-402,共6页
Heavy metals usually exist stably as the species of organic complexes in high-salinity wastewater.Therefore,their effective removal is challenging,especially when the initial p H is neutral.Herein,a novel nitrogen dop... Heavy metals usually exist stably as the species of organic complexes in high-salinity wastewater.Therefore,their effective removal is challenging,especially when the initial p H is neutral.Herein,a novel nitrogen doped biomass-based composite(N-CMCS)was synthesized to remove the complexed heavy metal of Cr(Ⅲ)-carboxyl.The maximum adsorption capacity of Cr(Ⅲ)-Citrate(Cr-Cit)by N-CMCS under neutral p H(7.0)and high-salinity(200 mmol/L NaCl)condition was up to 2.50 mmol/g.And the removal performance remained stable after 6 times of regeneration.Combined with species and characterizations analysis,electrostatic attraction and hydrogen bonding were the main mechanisms for N-CMCS to remove Cr(Ⅲ)-carboxyl complexes.Dynamic adsorption indicated N-CMCS column could treat about 1300BV simulated wastewater and 350 BV actual wastewater with the concentration of effluent lower than1.0 mg/L.Furthermore,N-CMCS could remove a variety of complexed heavy metal ions under neutral p H,indicating the great potential in practical application. 展开更多
关键词 Biomass-based Nitrogen doping Adsorption Complexed heavy metals High-salinity wastewater
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部