期刊文献+
共找到1,660篇文章
< 1 2 83 >
每页显示 20 50 100
Effects of Using Softwood Pellet Biochar Prepared at Different Temperatures with Grass Chippings on Retention of Heavy Metals in Contaminated Soils
1
作者 Kyari Umar Dunoma Limin Ma +14 位作者 Xingquan Shu Haiyan Yu Weiwei Zhang Chengcheng Bu Yong-Sik Wang Jiahong Luo Guangyao Chen Jinpeng Yu Ru Zhang Yuchen Han Haoyu Zeng Matthew S. Wisseh Amina Grema Mustafa Mohammad Auwal Saidu Mufidat Mamman Khan 《Open Journal of Polymer Chemistry》 2024年第3期146-166,共21页
Heavy metals have been viewed as hazardous environmental pollutants, and anthropogenic activities due to their high toxicity and persistent nature in the environment. Anthropogenic activities such as artisanal mining,... Heavy metals have been viewed as hazardous environmental pollutants, and anthropogenic activities due to their high toxicity and persistent nature in the environment. Anthropogenic activities such as artisanal mining, industrial activities, improper usage of fertilizers and pesticides, and indiscriminate open waste disposal bring about an increase in the presence of heavy metals in the environment. In the Keffi Metropolis, different elements lead to land contamination which debilitates soil quality, plant survival, human well-being, and the environment as a result of extensive dispersion or quantity of heavy metals in the soil and water. In recent years, biochar has emerged as a promising soil amendment for mitigating heavy metal pollution due to its unique physicochemical properties. This paper provides the effects of softwood pellet biochar on the retention of heavy metals in contaminated soils. A microcosm experiment was carried out to investigate the effects of biochar on the retention of heavy metals in contaminated soils. This research aimed to give an overview of the effects of softwood biochar at different temperatures (550˚C and 700˚C) on the retention of heavy metals and metalloids released from the soil during water inundation. The results show that the addition of organic matter (grass chippings) minimizes heavy metal mobilization. Also, biochar at high temperatures is more effective than those at low temperatures. The expected outcome of the research analysis includes providing insights into the role of biochar in retaining heavy metal contamination and further understanding the use of biochar as a sorbent for the management of contaminated soil. 展开更多
关键词 Softwood Biochar heavy metal contaminated soil Grass Chips Keffi Metropolis MICROCOSM
下载PDF
Comparison of Heavy Metal Accumulation in Four Vegetables Grown in the Soils Contaminated with Multiple Heavy Metals
2
作者 XIONG Wen-ming LI Yong-jun +2 位作者 MO Gui-ming ZHOU Jia-cheng XIE Cai-ling 《Agricultural Science & Technology》 CAS 2022年第4期25-32,共8页
In order to compare the differences in the accumulation of plumbum(Pb),cadmium(Cd),chromium(Cr),cuprum(Cu),nickel(Ni)and zinc(Zn)from the multi-contaminated,alkalescent soil in the plants of four-season big-leaf coria... In order to compare the differences in the accumulation of plumbum(Pb),cadmium(Cd),chromium(Cr),cuprum(Cu),nickel(Ni)and zinc(Zn)from the multi-contaminated,alkalescent soil in the plants of four-season big-leaf coriander,butter lettuce,four-season fast-growing pakchoi and four-season parsley to choose low accumulation vegetables,a pot experiment was conducted by using heavy metal salts to simulate high-,moderate-and low-level heavy metals multi-contaminated soils.The results showed that the multi-contaminated soil by high levels of Pb,Cd,Cr,Cu and Zn produced inhibition on biomass of four-season fast-growing pakchoi,failing to collect samples,but had no obvious inhibition on the growth of the three other vegetables.Among the four kinds of vegetables examined,the accumulation ability of four-season parsley to the five heavy metals of Pb,Cd,Cr,Cu and Zn was the strongest,while the accumulation ability of four-season fast-growing pakchoi to Ni was the strongest.In the high-level contaminated soil,the underground part of these four vegetables grown was more likely to accumulate heavy metals than their aboveground part.Both of vegetable varieties and heavy metal types can affect the accumulation of heavy metals in vegetables.Our research also found that four-season big-leaf coriander was high yielding and low accumulation of heavy metals. 展开更多
关键词 VEGETABLES Combined contamination soil Pot experiments heavy metals accumulation
下载PDF
An Assessment of Heavy-Metal Contamination in Soils within Auto-Mechanic Workshops Using Enrichment and Contamination Factors with Geoaccumulation Indexes 被引量:4
3
作者 Isaac A. Ololade 《Journal of Environmental Protection》 2014年第11期970-982,共13页
Soil characterization and heavy metals in different layers (0 - 15 cm;15 - 30 cm and 30 - 45 cm depth) of automobile mechanic waste dumps were studied. The soils showed remarkably high levels of all the metals above b... Soil characterization and heavy metals in different layers (0 - 15 cm;15 - 30 cm and 30 - 45 cm depth) of automobile mechanic waste dumps were studied. The soils showed remarkably high levels of all the metals above background concentrations with most (Ni, Cu, Fe, Cr and Cd) decreasing with soil depth. The distribution pattern were in the following order Fe > Cu > Zn > Pb > Cr > Ni > Cd. Across all the sampling locations and profiles, Fe and Cd showed the highest (476.4 μg·g-1) and least (37.5 μg·g-1) mean concentrations respectively. Pollution load index (PLI) and index of geoaccumulation (Igeo) revealed overall high and moderate contamination respectively but the enrichment factors (EFs) for Pb Ni and Cd are severe. The inter-element relationship revealed the identical source of elements in the soils of the studied area. The accuracy of the results has been cheeked using the standard reference material;SRM (PACS-2). The mechanic waste dumps represent potential sources of heavy metal pollution to environment. The elevated levels of heavy metals in these soil profiles constitute a serious threat to both surface and groundwater. 展开更多
关键词 heavy metals soil contaminATION soil Profiles Automobile MECHANIC ENRICHMENT Factor Geoaccumulation Index
下载PDF
In-situ Elimination Effect on Heavy Metals in Contaminated Soil from the Mining Area by Ramie 被引量:4
4
作者 王冶 张兴 +3 位作者 揭雨成 佘玮 刑虎成 朱守晶 《Agricultural Science & Technology》 CAS 2012年第2期375-379,共5页
[Objective] The aim was to study on in-situ elimination effect on heavy metals in soil of the mining area by ramie (Boehmeria nivea (L.) Gaud.). [Methods] Based on Xiangzhu No.3 and Zhongzhu No.1, we conducted res... [Objective] The aim was to study on in-situ elimination effect on heavy metals in soil of the mining area by ramie (Boehmeria nivea (L.) Gaud.). [Methods] Based on Xiangzhu No.3 and Zhongzhu No.1, we conducted research on heavy metals contents of plants growing in soil of Qibao Mountain orefield in Liuyang, Hunan Province, and on characteristics of enrichment and transfer of heavy metals (Cu, Pb, Cd, Zn) under influence of the two ramie species. [Result] It was concluded that trend of Cu content in different parts of ramie was as follows: rootskinleafbone; trend of Pb was rootleafskinbone; trend of Cd was rootskinboneleaf; the trend of Zn was rootskinboneleaf. In farmland A (with low content of heavy metal), for per square meter of plough horizon, effect of Zhong 1 on heavy metals transferring volume and the period for restoration of the soil into national standard one (Category Ⅲ of Environmental Quality Standard for Soil) have been concluded. Specifically, for Cu, the corresponding values were 3 404.44 mg and 8.59 y, respectively; for Pb, the values were 3 638.5 mg and 13.52 y; for Cd, the values were 720.48 mg and 1.49 y; for Zn, the values were 37 324.8 mg and 0.67 y. [Conclusion] Soil contaminated by Cu, Pb, Cd, and Zn in orefield can be rapidly restored by growing ramie. 展开更多
关键词 RAMIE Mining area contaminated soil heavy metal In-situ elimination
下载PDF
Investigation on the Accumulation of Heavy Metals from Organic Fertilizer in Soil and Plant 被引量:6
5
作者 杨晓磊 王寓群 +3 位作者 严瑾 王华 林天杰 朱恩 《Agricultural Science & Technology》 CAS 2013年第7期1021-1025,共5页
ObjectiveThis study aimed to investigate the accumulation of heavy metals from organic fertilizer in soil and plant. MethodThree plots were chosen in Shanghai suburb to measure the heavy metal accumulation by monitori... ObjectiveThis study aimed to investigate the accumulation of heavy metals from organic fertilizer in soil and plant. MethodThree plots were chosen in Shanghai suburb to measure the heavy metal accumulation by monitoring their concentrations in soil and plant after organic fertilizer was applied. We also analyzed the correlations of the heavy metals in soil and plants. Single-factor pollution index and Nemerow’s synthetical pollution index were adopted to evaluate the heavy metal contamination in soils. Moreover, how many years before the heavy metal accumulation will exceed the environmental capability if 45 t/hm 2 organic fertilizer is applied every year was also estimated in the present study. ResultThe rules of heavy metals’ accumulation in soil changed with the various soil characters and pH. The average concentrations of Pb, Cd and As in the tested plants exceeded the limits. The average concentration of Cu in the tested soil shared positive correlation with that in the tested plants. The average concentration of Pb in the tested soil was negatively correlated with that in the tested plant while the other heavy metals didn’t show the rule like that. Organic fertilizer application caused no obvious pollution to the soils. Cu would exceed the standard environmental capacity within 15 years if 45 t/hm 2 organic fertilizer is applied every year, while for Hg, it will be 2 000 years. ConclusionWhen the excessive organic fertilizer is put into the land, the heavy metals from organic fertilizer would accumulate in soil and plant. With continued excessive fertilization, the heavy metals especially Cu would exceed the stan- dard environmental capacity. More attention should be paid to the inputting amount of the organic fertilizer. 展开更多
关键词 Organic fertilizer heavy metal soil CROP accumulation
下载PDF
Effects of Red Mud on the Remediation of Pb, Zn and Cd in Heavy Metal Contaminated Paddy Soil 被引量:3
6
作者 范美蓉 罗琳 +3 位作者 廖育林 汤海涛 魏建宏 吴家梅 《Agricultural Science & Technology》 CAS 2012年第2期388-392,共5页
[Objective] To study the remediation efficiency of red mud on Pb, Zn and Cd in the heavy metal contaminated paddy soil of mine area, to clarify its remediation mechanism and fertilizer efficiency on heavy metal contam... [Objective] To study the remediation efficiency of red mud on Pb, Zn and Cd in the heavy metal contaminated paddy soil of mine area, to clarify its remediation mechanism and fertilizer efficiency on heavy metal contaminated soil. [Method] The soil incubation experiment was conducted to study the effect of red mud on the pH values and electrical conductivity (EC), and the remediation efficiency of red mud on lead (Pb), zinc (Zn) and cadmium (Cd) in heavy metal contaminated soil. [Result] Red mud addition reduced the content of exchangeable Pb, Zn and Cd in the soil significantly. Compared with the control, when incubated for 30, 60 and 90 d with the red mud dosage of 4% (W/W), the exchangeable Pb content was decreased by 39.25%, 41.38% and 50.19%; exchangeable Zn content was decreased by 49.26%, 57.32% and 47.16%; and exchangeable Cd content was decreased by 19.53%, 24.06% and 25.70%, respectively. The application of red mud had significant impact on the share of Pb, Zn and Cd contents in five forms, and different amounts of red mud application all reduced the proportion of exchangeable Pb, Zn and Cd to the total Pb, Zn and Cd. In addition, the proportion of exchangeable Pb, Zn and Cd to total Pb, Zn and Cd decreased with the increasing amount of red mud addition. [Conclusion] The study provided references for reasonable application of red mud and reduction of heavy metal pollution in paddy soil. 展开更多
关键词 Red mud LEAD zinc and cadmium heavy metal contaminated soil Remediation efficiency
下载PDF
Study Progress in Remediation of Soil Contaminated by Heavy Metals and Its Application Prospect 被引量:2
7
作者 王玉富 郭媛 +4 位作者 汤清明 邱财生 龙松华 邓欣 郝冬梅 《Agricultural Science & Technology》 CAS 2016年第2期428-432,442,共6页
Flax is an ideal crop for remedying soil contaminated by heavy metals. It has high tolerance to heavy metals and strong adsorption to heavy metals. Through properly using or adjusting external conditions such as regul... Flax is an ideal crop for remedying soil contaminated by heavy metals. It has high tolerance to heavy metals and strong adsorption to heavy metals. Through properly using or adjusting external conditions such as regulator, moisture, fertilizer, microorganisms, and pH value, it is able to improve ability of flax to absorb, trans- fer, and accumulate heavy metals. To improve the ability of flax in remediating heavy metal contaminated soil, it is recommended to strengthen cultivation of flax varieties and screening of germplasm resources, actively carry out studies on tech- nologies of fax remedying heavy metal contaminated soil, implement large-scale and mechanized planting of flax, and promote control of heavy metal contaminated soil. 展开更多
关键词 FLAX heavy metal contamination soil remediation
下载PDF
Mechanical properties of anti-seepage grouting materials for heavy metal contaminated soil 被引量:3
8
作者 杨宇友 王建强 豆海军 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3316-3323,共8页
Cement-based composite grouting materials were used to construct grouting cutoff wall for heavy metal contaminated soil in non-ferrous metal mining areas. Cement, fly ash, and slag as principal ingredients were mixed ... Cement-based composite grouting materials were used to construct grouting cutoff wall for heavy metal contaminated soil in non-ferrous metal mining areas. Cement, fly ash, and slag as principal ingredients were mixed with water glass in different ways to produce three composite grouting materials. In order to investigate the effect of water glass mixing ratio, Baume degree, fly ash and slag contents on the mechanical properties of the composite grouting materials, particularly their gel time and compressive strength, the beaker-to-beaker method of gel time test and unconfined compressive strength test were conducted. In addition, the phase composition and microstructure of the composite grouting materials were analyzed by the X-ray diffraction(XRD) and scanning electron microscope(SEM) techniques. The test results show that their gel time increases when water glass mixing ratio and Baume degree increase. The gel time increases dramatically when fly ash is added, but decreases slightly if fly ash is partly replaced by slag. When the mixing ratio of water glass is below 20%, their compressive strength increases with the increases of the ratio; when the ratio is above 20%, it significantly decreases. The compressive strength also tends to increase as Baume degree increases, and improves if fly ash and slag are added. 展开更多
关键词 heavy metal contaminated soil composite grouting material gel time compressive strength MICROSTRUCTURE
下载PDF
Potential of weed species applied to remediation of soils contaminated with heavy metals 被引量:19
9
作者 WEIShu-he ZHOUQi-xing WANGXin CAOWei RENLi-ping SONGYu-fang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第5期868-873,共6页
To screen out a series of ideal plants that can effectively remedy contaminated soils by heavy metals is the main groundwork of phytoremediation engineering and the first step of its commercial application on a large ... To screen out a series of ideal plants that can effectively remedy contaminated soils by heavy metals is the main groundwork of phytoremediation engineering and the first step of its commercial application on a large scale. In this study, accumulation and endurance of 45 weed species in 16 families from an agricultural site were in situ examined by using the pot-culture field experiment, and the remediation potential of some weed species with high accumulation of heavy metals was assayed. The results showed that Solanum nigrum and Conyza canadensis can not only accumulate high concentration of Cd, but also strongly endure to single Cd and Cd-Pb-Cu-Zn combined pollution. Thus 2 weed species can be regarded as good hyperaccumulators for the remediation of Cd-contaminated soils. Although there were high Cd-accumulation in Artemigia selengensis, Znula britannica and Cephalanoplos setosum, their biomass was adversely affected due to action of heavy metals in the soils. If the problem of low endurance to heavy metals can be solved by a reinforcer, 3 weed species can be perhaps applied commercially. 展开更多
关键词 weed species heavy metal contaminated soil PHYTOREMEDIATION HYPERaccumulation ENDURANCE
下载PDF
Removal of heavy metals from a contaminated soilusing tartaric acid 被引量:13
10
作者 KE Xin LI Pei-jun +2 位作者 ZHOU Qi-xing ZHANG Yun SUN Tie-heng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第4期727-733,共7页
This study reports the feasibility of remediation of a heavy metal (HM) contaminated soil using tartaric acid, an environmentally-friendly extractant. Batch experiments were performed to test the factors influencing... This study reports the feasibility of remediation of a heavy metal (HM) contaminated soil using tartaric acid, an environmentally-friendly extractant. Batch experiments were performed to test the factors influencing remediation of the HM contaminated soil. An empirical model was employed to describe the kinetics of riM dissolution/desorption and to predict equilibrium concentrations of HMs in soil leachate. The changes of HMs in different fractions before and after tartaric acid treatment were also investigated. Tartaric acid solution containing HMs was regenerated by chestnut shells. Results show that utilization of tartaric acid was effective for removal of riMs from the contaminated soil, attaining 50%-60% of Cd, 40%-50% of Pb, 40%-50% of Cu and 20%-30% of Zn in the pH range of 3.5-4.0 within 24 h. Mass transfer coefficients for cadmium (Cd) and lead (Pb) were much higher than those for copper (Cu) and zinc (Zn). Sequential fractionations of treated and untreated soil samples showed that tartaric acid was effective in removing the exchangeable, carbonate fractions of Cd, Zn and Cu from the contaminated soil. The contents of Pb and Cu in Fe-Mn oxide fraciton were also significantly decreased by tartaric acid treatment. One hundred milliliters of tartaric acid solution containing HMs could be regenerated by 10 g chestnut shells in a batch reactor. Such a remediation procedure indicated that tartaric acid is a promising agent for remediation of HM contaminated soils. However, further research is needed before the method can be practically used for in situ remediation of contaminated sites. 展开更多
关键词 tartaric acid soil remediation heavy metals soil contamination
下载PDF
Effects of Land Use on Heavy Metal Accumulation in Soils and Sources Analysis 被引量:13
11
作者 BAI Ling-yu ZENG Xi-bai +2 位作者 LI Lian-fang PEN Chang LI Shu-hui 《Agricultural Sciences in China》 CAS CSCD 2010年第11期1650-1658,共9页
Heavy metal accumulation and its influential factors were studied in the different land use soils, which would provide a theoretical basis for controlling the content of heavy metals in soils. To identify the effects ... Heavy metal accumulation and its influential factors were studied in the different land use soils, which would provide a theoretical basis for controlling the content of heavy metals in soils. To identify the effects of land use on the accumulation of heavy metals in soils, 148 soil samples were collected from four land use patterns including greenhouse field, uncovered vegetable field, maize field, and forest field in Siping area of Jilin Province, China, and Cr, Ni, Cu, As, Cd, Pb, and Zn contents of those samples were determined with ICP and ICP-Mass. The result showed that there was a rather large difference in effects of the accumulation of Cr, Ni, Cu, As, Cd, and Zn in soils under different land use patterns, except Pb. Based on the assessment which compared with background concentrations in soil, the higher accumulation of heavy metals was found in greenhouse and uncovered vegetable field, much less in maize field and forest field. The mean contents of heavy metals in soils from high to low were arranged in order of greenhouse field, uncovered vegetable field, maize field, and forest field. Cd and Cu had relatively serious accumulation in soils compared to Cr, Ni, As, and Zn. The mean content of Cd in greenhouse field was 0.467 mg kg-x,which exceeded the grade II of the Chinese Soil Quality Criterion GB15618-1995 (6.5 〈pH〈7.5) for Cd standard of 0.3 mg kg^-1, while it was 5.2 times of Cd standard in the forest fields. The mean contents ofCr, Ni, Cu, As, Pb, and Zn in soils under four land use patterns were lower than the grade II of the Chinese Soil Quality Criterion. Compared with the soil cultivated years, the agricultural chemical compounds and manures application, especially the quality and quantity of applied fertilizer was one of the main reasons for leading to different accumulation of heavy metals in soils under the studied land use patterns. The accumulation of heavy metals, such as Cr, Ni, Cu, As, Cd, and Zn in soils was significantly affected by land use patterns, among them the accumulation of heavy metals in greenhouse soils was higher than others. It is suggested that the application of chemical fertilizer, organic fertilizer, and pesticides with high contents of heavy metals should be avoided to prevent the accumulation of heavy metal and keep high quality soils for sustainable use. 展开更多
关键词 soil land use pattern heavy metal accumulation
下载PDF
Mechanical properties of fiber and cement reinforced heavy metal-contaminated soils as roadbed filling 被引量:11
12
作者 HUANG Yu-cheng CHEN Ji +3 位作者 TIAN Ang-ran WU Hui-long ZHANG Yu-qing TANG Qiang 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第7期2003-2016,共14页
The treatment of contaminated soil is a crucial issue in geotechnical and environmental engineering.This study proposes to incorporate appropriate polypropylene fibers and cements as an effective method to treat heavy... The treatment of contaminated soil is a crucial issue in geotechnical and environmental engineering.This study proposes to incorporate appropriate polypropylene fibers and cements as an effective method to treat heavy metal contaminated soil(HMCS).The objective of this paper is to investigate the effects of fiber content,fiber length,cement content,curing time,heavy metal types and concentration on the mechanical properties of soils.To this end,a series of direct shear test,unconfined compression strength(UCS)test,dry-wet cycle and freeze-thaw cycle test are performed.The results confirm that the appropriate reinforcement of polypropylene fibers and cement is an effective way to recycle HMCS as substitutable fillers in roadbed,which exhibits benefits in environment and economy development. 展开更多
关键词 roadbed filling unconfined compression strength shear strength cement and fiber reinforcement heavy metal contaminated soil
下载PDF
Phytoremediation Mechanisms of Heavy Metal Contaminated Soils: A Review 被引量:6
13
作者 Meriem Laghlimi Bouamar Baghdad +1 位作者 Hassan El Hadi Abdelhak Bouabdli 《Open Journal of Ecology》 2015年第8期375-388,共14页
Phytoremediation is a green emerging technology used to remove pollutants from environment components. Mechanisms used to remediate soils contaminated by heavy metal are: phytoextraction, phytostabilisation, phytovola... Phytoremediation is a green emerging technology used to remove pollutants from environment components. Mechanisms used to remediate soils contaminated by heavy metal are: phytoextraction, phytostabilisation, phytovolatilization and rhizofiltration. The two first mechanisms are the most reliable. Many factors influence the choice of the suitable phytoremediation strategy for soil decontamination. It depends on soil properties, heavy metal levels and characteristics, plant species and climatic conditions. The present review discusses factors affecting heavy metals uptake by plant species, the different phytoremediation strategies of heavy metal contaminated soils and the advantages and disadvantages of phytoremediation and each of its mechanisms. 展开更多
关键词 heavy metal soilS contaminATION PHYTOREMEDIATION
下载PDF
Phytoremediation Potential of Sorghum as a Biofuel Crop and the Enhancement Effects with Microbe Inoculation in Heavy Metal Contaminated Soil 被引量:2
14
作者 Kokyo Oh Tiehua Cao +5 位作者 Hongyan Cheng Xuanhe Liang Xuefeng Hu Lijun Yan Shinichi Yonemochi Sachiko Takahi 《Journal of Biosciences and Medicines》 2015年第6期9-14,共6页
Phytoremediation is an eco-friendly and low-cost biotechnology using plants to extract, contain, degrade, or immobilize pollutants from the contaminated environment. Selection of the ideal plant species and suitable e... Phytoremediation is an eco-friendly and low-cost biotechnology using plants to extract, contain, degrade, or immobilize pollutants from the contaminated environment. Selection of the ideal plant species and suitable enhancing measures to obtain high remediation efficiency and large valuable biomass are essential requirement for a successful phytoremdaition. Sorghum (Sorghum bicolor L.) is one of the most attractive bioenergy crops for producing biofuels with high biomass production. In this study, the phytoremediation potential of sorghum to heavy metals and the promotion effects by a lead-tolerant fungus (LTF) were investigated using a multiple heavy metal contaminated soil with Pb, Ni, and Cu. The results showed that the sorghum survived the heavy contamination, and LTF inoculation promoted the plant growth and increased the phytoextraction yields of Pb, Ni, and Cu. The phytoextraction potential (μg/plant) of the whole sorghum for Sorghum were 410 (Pb), 74 (Ni), and 73 (Cu), and for Sorghum with LTF inoculation were 590 (Pb), 120 (Ni), and 93 (Cu), respectively. The results suggested that sorghum would be one of the ideal candidates for phytoremediation of contaminated soil because of its high phytoremediation potential, large biomass production, and utilization in biofuel production. 展开更多
关键词 SORGHUM PHYTOREMEDIATION contaminated soil heavy metalS BIOFUEL Plants
下载PDF
Effect of cyclic drying and wetting on engineering properties of heavy metal contaminated soils solidified/stabilized with fly ash 被引量:3
15
作者 ZHA Fu-sheng LIU Jing-jing +1 位作者 XU Long CUI Ke-rui 《Journal of Central South University》 SCIE EI CAS 2013年第7期1947-1952,共6页
Solidification/stabilization (S/S) is one of the most effective methods of dealing with heavy metal contaminated soils. The effects of cyclic wetting and drying on solidified/stabilized contaminated soils were inves... Solidification/stabilization (S/S) is one of the most effective methods of dealing with heavy metal contaminated soils. The effects of cyclic wetting and drying on solidified/stabilized contaminated soils were investigated. A series of test program, unconfined compressive strength (UCS) test, TCLP leaching test and scanning electron microscopy (SEM) test, were performed on lead and zinc contaminated soils solidified/stabilized by fly ash. Test results show that UCS and the leaching characteristics of heavy metal ions of S/S contaminated soils are significantly improved with the increase of fly ash content. UCS of S/S soils firstly increases with the increase of the times of drying and wetting cycles, after reaching the peak, it decreases with it. When the pollutant content is lower (1 000 mg/kg), the TCLP concentration first slightly decreases under cyclic drying and wetting, then increases, but the change is minor. The TCLP concentration is higher under a high pollutant content of 5 000 mg/kg, and increases with the increase of the times of drying and wetting cycles. The results of scanning electron microscopy (SEM) test are consistent with UCS tests and TCLP leaching tests, which reveals the micro-mechanism of the variations of engineering properties of stabilized contaminated soils after drying and wetting cycles. 展开更多
关键词 solidification/stabilization (S/S) heavy metal contaminated soil drying and wetting cycles long-term stability
下载PDF
Effect of amendments on growth and metal uptake of giant reed(Arundo donax L.) grown on soil contaminated by arsenic,cadmium and lead 被引量:6
16
作者 杨淼 肖细元 +2 位作者 苗旭峰 郭朝晖 王凤永 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第6期1462-1469,共8页
The effects of five amendments such as acetic acid(AA), citric acid (CA), ethylenediamine tetraacetic acid (EDTA), sepiolite and phosphogypsum on growth and metal uptake of giant reed (Arundo donax L.) grown o... The effects of five amendments such as acetic acid(AA), citric acid (CA), ethylenediamine tetraacetic acid (EDTA), sepiolite and phosphogypsum on growth and metal uptake of giant reed (Arundo donax L.) grown on soil contaminated by arsenic (As), cadmium (Cd) and lead (Pb) were studied. The results showed that the shoot biomass of giant reed was enhanced by 24.8% and 15.0%, while superoxide mutase and catalase activities slightly varied when adding 5.0 mmol/kg CA and 2.5 mol/kg EDTA to soil as compared to the control, respectively. The concentrations of As, Cd and Pb in shoots were remarkably increased by the addition of 2.5 mmol/kg AA and CA, 5.0 mmol/kg EDTA, and 4.0 g/kg sepiolite as compared to the control. The accumulations of As and Cd were also significantly enhanced in the above condition, while the shoot Pb accumulation was noticeably enhanced by amending with 4.0 g/kg sepiolite and 8.0 g/kg phosphogysum, respectively. The results suggested that AA, CA and sepiolite could be used as optimum soil amendments for giant reed remediation system. 展开更多
关键词 PHYTOREMEDIATION giant reed soil amendments heavy metal contaminated soil metal uptake
下载PDF
Soil Heavy Metal Absorption Performance of the New Sorghum Combination Dunuo 201
17
作者 YIN Wen-ya PENG Xuan-ming +7 位作者 ZOU Zhao-hui DENG Kai DENG Gang-qiao XIE Hong-ke WANG Qian WU Li-jun ZHANG Yue-long LI Wen-ge 《Agricultural Science & Technology》 CAS 2020年第1期15-19,47,共6页
Dunuo 201, a new sorghum combination, was planted in heavy metal contaminated areas to explore the feasibility of sorghum for soil heavy metals remediation in southern China. Its yield and heavy metal contents in stem... Dunuo 201, a new sorghum combination, was planted in heavy metal contaminated areas to explore the feasibility of sorghum for soil heavy metals remediation in southern China. Its yield and heavy metal contents in stems, leaves and grains were analyzed. The results showed that Dunuo 201 could accumulate heavy metals especially in stems and leaves without significant effects on its yield. The cadmium content in grains and brewed liquor of Dunuo 201 was lower than the national standard. Therefore, Dunuo 201 can be used in planting structure adjustment in heavy metal contaminated areas in southern China, which has positive significance for the rapid remediation of heavy metal contaminated soil and the improvement of farmers’ economic benefits. 展开更多
关键词 Glutinous sorghum soil heavy metals absorption REMOVE
下载PDF
Effect of sulfate erosion on strength and leaching characteristic of stabilized heavy metal contaminated red clay 被引量:8
18
作者 Hai-qing ZHANG Yu-you YANG Yu-cheng YI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第3期666-675,共10页
Solidification/stabilization(S/S)technology has been widely used for remediation of the heavy metal contaminated soils.The heavy metal ions will be leached from the stabilized contaminated soil under sulfate erosion c... Solidification/stabilization(S/S)technology has been widely used for remediation of the heavy metal contaminated soils.The heavy metal ions will be leached from the stabilized contaminated soil under sulfate erosion conditions,which gives rise tosecondary contamination to the areas around the mine sites.The commonly used Portland cement,fly ash and quicklime were takenas binder raw materials with various mix proportions.And then,the sulphuric acid and nitric acid method was used to investigate theleaching characteristic of stabilized heavy metal contaminated soils.The effects of binder types and binder contents,sulfateconcentrations(1.5,3.0and6.0g/L)and erosion time(0,7,14and28d)on leached concentrations of heavy metal ions fromcontaminated soils were studied.Moreover,a parameter named immobilization percentage(IP)was introduced to evaluate theinfluence of erosion time and sulfate concentration on immobilization effectiveness for heavy metal ions.The results showed that,theleached heavy metal concentrations increased with sulfate concentration and erosion time.Comparatively speaking,the compositebinders that had calcium oxide in it exhibited the worst solidification effectiveness and the lowest immobilization percentage,withthe largest leached heavy metal concentration. 展开更多
关键词 SOLIDIFICATION/STABILIZATION heavy metal contaminated soil sulfate erosion sulphuric acid and nitric acid method
下载PDF
Heavy Metal Contamination in Farmland Soil and Bioremediation Measures: A Case Study of the Mining Area in Shaoguan 被引量:5
19
作者 Xiangfeng WEI Yongxian LIU Liping PAN 《Asian Agricultural Research》 2016年第7期72-74,共3页
With the rapid development of mining,the soil heavy metal contamination is increasingly serious in Shaoguan,directly affecting the production of crops. This paper analyzes the farmland soil heavy metal contamination i... With the rapid development of mining,the soil heavy metal contamination is increasingly serious in Shaoguan,directly affecting the production of crops. This paper analyzes the farmland soil heavy metal contamination in the mining area of Shaoguan and the causes of heavy metal contamination in recent years,brings forward the bioremediation measures to control soil heavy metal contamination,and points out the development direction of bioremediation in farmland soil heavy metal contamination in the mining area. 展开更多
关键词 FARMLAND soil heavy metal contaminATION BIOREMEDIATION
下载PDF
Heavy metals contamination characteristics in soil of different mining activity zones 被引量:22
20
作者 廖国礼 廖大学 李全明 《中国有色金属学会会刊:英文版》 EI CSCD 2008年第1期207-211,共5页
Depending upon the polluted features of various mining activities in a typical nonferrous metal mine,the contaminated soil area was divided into four zones which were polluted by tailings,mine drainage,dust deposition... Depending upon the polluted features of various mining activities in a typical nonferrous metal mine,the contaminated soil area was divided into four zones which were polluted by tailings,mine drainage,dust deposition in wind and spreading minerals during vehicle transportation,respectively.In each zone,soil samples were collected.Total 28 soil samples were dug and analyzed by ICP-AES and other relevant methods.The results indicate that the average contents of Zn,Pb,Cd,Cu and As in soils are 508.6,384.8,7.53,356 and 44.6 mg/kg,respectively.But the contents of heavy metals in different zone have distinct differences.The proportion of oxidizing association with organic substance is small.Difference of the association of heavy metals is small in different polluted zones. 展开更多
关键词 采矿活度 重金属 土壤污染 矿山开采
下载PDF
上一页 1 2 83 下一页 到第
使用帮助 返回顶部