Flax is an ideal crop for remedying soil contaminated by heavy metals. It has high tolerance to heavy metals and strong adsorption to heavy metals. Through properly using or adjusting external conditions such as regul...Flax is an ideal crop for remedying soil contaminated by heavy metals. It has high tolerance to heavy metals and strong adsorption to heavy metals. Through properly using or adjusting external conditions such as regulator, moisture, fertilizer, microorganisms, and pH value, it is able to improve ability of flax to absorb, trans- fer, and accumulate heavy metals. To improve the ability of flax in remediating heavy metal contaminated soil, it is recommended to strengthen cultivation of flax varieties and screening of germplasm resources, actively carry out studies on tech- nologies of fax remedying heavy metal contaminated soil, implement large-scale and mechanized planting of flax, and promote control of heavy metal contaminated soil.展开更多
[Objective] To study the remediation efficiency of red mud on Pb, Zn and Cd in the heavy metal contaminated paddy soil of mine area, to clarify its remediation mechanism and fertilizer efficiency on heavy metal contam...[Objective] To study the remediation efficiency of red mud on Pb, Zn and Cd in the heavy metal contaminated paddy soil of mine area, to clarify its remediation mechanism and fertilizer efficiency on heavy metal contaminated soil. [Method] The soil incubation experiment was conducted to study the effect of red mud on the pH values and electrical conductivity (EC), and the remediation efficiency of red mud on lead (Pb), zinc (Zn) and cadmium (Cd) in heavy metal contaminated soil. [Result] Red mud addition reduced the content of exchangeable Pb, Zn and Cd in the soil significantly. Compared with the control, when incubated for 30, 60 and 90 d with the red mud dosage of 4% (W/W), the exchangeable Pb content was decreased by 39.25%, 41.38% and 50.19%; exchangeable Zn content was decreased by 49.26%, 57.32% and 47.16%; and exchangeable Cd content was decreased by 19.53%, 24.06% and 25.70%, respectively. The application of red mud had significant impact on the share of Pb, Zn and Cd contents in five forms, and different amounts of red mud application all reduced the proportion of exchangeable Pb, Zn and Cd to the total Pb, Zn and Cd. In addition, the proportion of exchangeable Pb, Zn and Cd to total Pb, Zn and Cd decreased with the increasing amount of red mud addition. [Conclusion] The study provided references for reasonable application of red mud and reduction of heavy metal pollution in paddy soil.展开更多
Cement-based composite grouting materials were used to construct grouting cutoff wall for heavy metal contaminated soil in non-ferrous metal mining areas. Cement, fly ash, and slag as principal ingredients were mixed ...Cement-based composite grouting materials were used to construct grouting cutoff wall for heavy metal contaminated soil in non-ferrous metal mining areas. Cement, fly ash, and slag as principal ingredients were mixed with water glass in different ways to produce three composite grouting materials. In order to investigate the effect of water glass mixing ratio, Baume degree, fly ash and slag contents on the mechanical properties of the composite grouting materials, particularly their gel time and compressive strength, the beaker-to-beaker method of gel time test and unconfined compressive strength test were conducted. In addition, the phase composition and microstructure of the composite grouting materials were analyzed by the X-ray diffraction(XRD) and scanning electron microscope(SEM) techniques. The test results show that their gel time increases when water glass mixing ratio and Baume degree increase. The gel time increases dramatically when fly ash is added, but decreases slightly if fly ash is partly replaced by slag. When the mixing ratio of water glass is below 20%, their compressive strength increases with the increases of the ratio; when the ratio is above 20%, it significantly decreases. The compressive strength also tends to increase as Baume degree increases, and improves if fly ash and slag are added.展开更多
The treatment of contaminated soil is a crucial issue in geotechnical and environmental engineering.This study proposes to incorporate appropriate polypropylene fibers and cements as an effective method to treat heavy...The treatment of contaminated soil is a crucial issue in geotechnical and environmental engineering.This study proposes to incorporate appropriate polypropylene fibers and cements as an effective method to treat heavy metal contaminated soil(HMCS).The objective of this paper is to investigate the effects of fiber content,fiber length,cement content,curing time,heavy metal types and concentration on the mechanical properties of soils.To this end,a series of direct shear test,unconfined compression strength(UCS)test,dry-wet cycle and freeze-thaw cycle test are performed.The results confirm that the appropriate reinforcement of polypropylene fibers and cement is an effective way to recycle HMCS as substitutable fillers in roadbed,which exhibits benefits in environment and economy development.展开更多
Solidification/stabilization (S/S) is one of the most effective methods of dealing with heavy metal contaminated soils. The effects of cyclic wetting and drying on solidified/stabilized contaminated soils were inves...Solidification/stabilization (S/S) is one of the most effective methods of dealing with heavy metal contaminated soils. The effects of cyclic wetting and drying on solidified/stabilized contaminated soils were investigated. A series of test program, unconfined compressive strength (UCS) test, TCLP leaching test and scanning electron microscopy (SEM) test, were performed on lead and zinc contaminated soils solidified/stabilized by fly ash. Test results show that UCS and the leaching characteristics of heavy metal ions of S/S contaminated soils are significantly improved with the increase of fly ash content. UCS of S/S soils firstly increases with the increase of the times of drying and wetting cycles, after reaching the peak, it decreases with it. When the pollutant content is lower (1 000 mg/kg), the TCLP concentration first slightly decreases under cyclic drying and wetting, then increases, but the change is minor. The TCLP concentration is higher under a high pollutant content of 5 000 mg/kg, and increases with the increase of the times of drying and wetting cycles. The results of scanning electron microscopy (SEM) test are consistent with UCS tests and TCLP leaching tests, which reveals the micro-mechanism of the variations of engineering properties of stabilized contaminated soils after drying and wetting cycles.展开更多
The effects of five amendments such as acetic acid(AA), citric acid (CA), ethylenediamine tetraacetic acid (EDTA), sepiolite and phosphogypsum on growth and metal uptake of giant reed (Arundo donax L.) grown o...The effects of five amendments such as acetic acid(AA), citric acid (CA), ethylenediamine tetraacetic acid (EDTA), sepiolite and phosphogypsum on growth and metal uptake of giant reed (Arundo donax L.) grown on soil contaminated by arsenic (As), cadmium (Cd) and lead (Pb) were studied. The results showed that the shoot biomass of giant reed was enhanced by 24.8% and 15.0%, while superoxide mutase and catalase activities slightly varied when adding 5.0 mmol/kg CA and 2.5 mol/kg EDTA to soil as compared to the control, respectively. The concentrations of As, Cd and Pb in shoots were remarkably increased by the addition of 2.5 mmol/kg AA and CA, 5.0 mmol/kg EDTA, and 4.0 g/kg sepiolite as compared to the control. The accumulations of As and Cd were also significantly enhanced in the above condition, while the shoot Pb accumulation was noticeably enhanced by amending with 4.0 g/kg sepiolite and 8.0 g/kg phosphogysum, respectively. The results suggested that AA, CA and sepiolite could be used as optimum soil amendments for giant reed remediation system.展开更多
Solidification/stabilization(S/S)technology has been widely used for remediation of the heavy metal contaminated soils.The heavy metal ions will be leached from the stabilized contaminated soil under sulfate erosion c...Solidification/stabilization(S/S)technology has been widely used for remediation of the heavy metal contaminated soils.The heavy metal ions will be leached from the stabilized contaminated soil under sulfate erosion conditions,which gives rise tosecondary contamination to the areas around the mine sites.The commonly used Portland cement,fly ash and quicklime were takenas binder raw materials with various mix proportions.And then,the sulphuric acid and nitric acid method was used to investigate theleaching characteristic of stabilized heavy metal contaminated soils.The effects of binder types and binder contents,sulfateconcentrations(1.5,3.0and6.0g/L)and erosion time(0,7,14and28d)on leached concentrations of heavy metal ions fromcontaminated soils were studied.Moreover,a parameter named immobilization percentage(IP)was introduced to evaluate theinfluence of erosion time and sulfate concentration on immobilization effectiveness for heavy metal ions.The results showed that,theleached heavy metal concentrations increased with sulfate concentration and erosion time.Comparatively speaking,the compositebinders that had calcium oxide in it exhibited the worst solidification effectiveness and the lowest immobilization percentage,withthe largest leached heavy metal concentration.展开更多
Pollution of agricultural land by heavy metals has imposed an increasingly serious risk to environmental and human health in recent years.Heavy metal pollutants may enter the human food chain through agricultural prod...Pollution of agricultural land by heavy metals has imposed an increasingly serious risk to environmental and human health in recent years.Heavy metal pollutants may enter the human food chain through agricultural products and groundwater from the polluted soils.Progress has been made in the past decade on phytoremediation,a safe and inexpen-sive approach to remove contaminants from soil and water using plants.However,in most cases,agricultural land in China cannot afford to grow phytoremediator plants instead of growing crops due to food supply for the great population.Therefore,new and effective methods to decrease the risk of heavy metal pollution in crops and to clean the contaminated soils are urgently needed.If we can find crop germplasms(including species and varieties)that accumulate heavy metals in their edible parts,such as the leaves of vegetables or grains of cereals,at a level low enough for safe consumption,then we can grow these selected species or varieties in the lands contaminated or potentially contaminated by heavy metals.If we can find crop germplasms that take in low con-centrations of heavy metals in their edible parts and high con-tent of the metals in their inedible parts,then we can use these selected species or varieties for soil remediation.In this study,the feasibility of the method is assessed by analyzing Pb concentrations in edible and inedible parts of 25 varieties of maize(Zea mays)grown in Pb-contaminated soils.The soil concentrations of Pb were 595.55 mg/kg in the high Pb exposed treatment and 195.55 mg/kg in the control.The results showed that the Pb concentrations in different tissues were in the order of root>shoot≌leaf>grain.Com-pared with the control,the Pb concentrations in root,shoot and leaf were greatly increased under the high Pb exposed condition,while the increments of Pb concentration in grain were relatively lower.Under the high Pb exposure,the grain Pb concentrations of 12 varieties exceeded the maximal Pb limitation of the National Food Hygiene Standard of China(NFHSC)and were inedible.This indicates that there is a high Pb pollution risk for maize grown on Pb polluted sites.Although 22 of the 25 tested varieties had harvest loss under the highly Pb stressed condition,ranging from 0.86%-38.7%of the grain biomass acquired at the control,the average harvest loss of all the tested varieties was only 12.6%,which is usually imperceptible in normal farming practices.There-fore the risk of Pb pollution in maize products cannot be promptly noticed and prevented based only on the outcome of the harvest.However,we did find that 13 of the 25 tested varieties had grain Pb concentrations lower than the limita-tion of the NFHSC.It is,therefore,possible to reduce the pollution risk if these favorable varieties are used for maize production in Pb-contaminated or potentially contaminated agricultural lands.Pb concentrations in vegetative tissues(root,stem and leaf)were significantly correlated with each other,while Pb concentrations of each vegetative tissue were not significant-ly correlated with that of grain.Among the 25 tested varieties,some varieties had Pb concentrations in grain lower than(No.1-3 and No.6)or slightly above(No.4)the limitation of the NFHSC,while their Pb concentrations in the vegetative tissues were among the highest.When excluding these variet-ies,correlations between the Pb concentrations of grain and those of vegetative tissues of the rest of the tested varieties became highly significant.In addition,variety No.1 had the lowest harvest loss under high Pb exposed,and the highest Pb accumulation in vegetative tissues(51.69 mg/plant,12 times as much as in the control).Similar features were also observed in varieties No.2,No.3 and No.6,which absorbed Pb for 36-42 mg/plant under high Pb exposed.We recommend these varieties of maize to be used for bioremediation of Pb contaminated soil and crop production at the same time.展开更多
基金Supported by The Agricultural Sciences and Technology Innovation Program(ASTIPIBFC06)China Agriculture Research System of Bast Fiber Crops(CARS-19-E14)~~
文摘Flax is an ideal crop for remedying soil contaminated by heavy metals. It has high tolerance to heavy metals and strong adsorption to heavy metals. Through properly using or adjusting external conditions such as regulator, moisture, fertilizer, microorganisms, and pH value, it is able to improve ability of flax to absorb, trans- fer, and accumulate heavy metals. To improve the ability of flax in remediating heavy metal contaminated soil, it is recommended to strengthen cultivation of flax varieties and screening of germplasm resources, actively carry out studies on tech- nologies of fax remedying heavy metal contaminated soil, implement large-scale and mechanized planting of flax, and promote control of heavy metal contaminated soil.
基金Supported by the National Natural Science Foundation of China(50874046)the National High-tech Research and Develop Program of China(863 Program)(2010AA065203)the Science and Technology Project of Education Bureau of Hunan Province,China(08A032)~~
文摘[Objective] To study the remediation efficiency of red mud on Pb, Zn and Cd in the heavy metal contaminated paddy soil of mine area, to clarify its remediation mechanism and fertilizer efficiency on heavy metal contaminated soil. [Method] The soil incubation experiment was conducted to study the effect of red mud on the pH values and electrical conductivity (EC), and the remediation efficiency of red mud on lead (Pb), zinc (Zn) and cadmium (Cd) in heavy metal contaminated soil. [Result] Red mud addition reduced the content of exchangeable Pb, Zn and Cd in the soil significantly. Compared with the control, when incubated for 30, 60 and 90 d with the red mud dosage of 4% (W/W), the exchangeable Pb content was decreased by 39.25%, 41.38% and 50.19%; exchangeable Zn content was decreased by 49.26%, 57.32% and 47.16%; and exchangeable Cd content was decreased by 19.53%, 24.06% and 25.70%, respectively. The application of red mud had significant impact on the share of Pb, Zn and Cd contents in five forms, and different amounts of red mud application all reduced the proportion of exchangeable Pb, Zn and Cd to the total Pb, Zn and Cd. In addition, the proportion of exchangeable Pb, Zn and Cd to total Pb, Zn and Cd decreased with the increasing amount of red mud addition. [Conclusion] The study provided references for reasonable application of red mud and reduction of heavy metal pollution in paddy soil.
基金Projects(41472278,41202220)supported by the National Natural Science Foundation of ChinaProject(20120022120003)supported by the Research Fund for the Doctoral Program of Higher Education,China+1 种基金Project(51900265647)supported by the Beijing Higher Education Young Elite Teacher Project,ChinaProject(2652012065)supported by the Fundamental Research Funds for the Central Universities,China
文摘Cement-based composite grouting materials were used to construct grouting cutoff wall for heavy metal contaminated soil in non-ferrous metal mining areas. Cement, fly ash, and slag as principal ingredients were mixed with water glass in different ways to produce three composite grouting materials. In order to investigate the effect of water glass mixing ratio, Baume degree, fly ash and slag contents on the mechanical properties of the composite grouting materials, particularly their gel time and compressive strength, the beaker-to-beaker method of gel time test and unconfined compressive strength test were conducted. In addition, the phase composition and microstructure of the composite grouting materials were analyzed by the X-ray diffraction(XRD) and scanning electron microscope(SEM) techniques. The test results show that their gel time increases when water glass mixing ratio and Baume degree increase. The gel time increases dramatically when fly ash is added, but decreases slightly if fly ash is partly replaced by slag. When the mixing ratio of water glass is below 20%, their compressive strength increases with the increases of the ratio; when the ratio is above 20%, it significantly decreases. The compressive strength also tends to increase as Baume degree increases, and improves if fly ash and slag are added.
基金Projects(51778386,51708377,51608059)supported by the National Natural Science Foundation of ChinaProject(BK20170339)supported by Natural Science Foundation of Jiangsu Province,China+2 种基金Project(17KJB560008)supported by Natural Science Fund for Colleges and Universities in Jiangsu Province,ChinaProjects(KFJ170106,KFJ180105)supported by Open Fund of National Engineering Laboratory of Highway Maintenance Technology(Changsha University of Science&Technology),ChinaProjects(2016ZD18,2017ZD002)supported by Jiangsu Provincial Department of Housing,Urban-Rural Development,China。
文摘The treatment of contaminated soil is a crucial issue in geotechnical and environmental engineering.This study proposes to incorporate appropriate polypropylene fibers and cements as an effective method to treat heavy metal contaminated soil(HMCS).The objective of this paper is to investigate the effects of fiber content,fiber length,cement content,curing time,heavy metal types and concentration on the mechanical properties of soils.To this end,a series of direct shear test,unconfined compression strength(UCS)test,dry-wet cycle and freeze-thaw cycle test are performed.The results confirm that the appropriate reinforcement of polypropylene fibers and cement is an effective way to recycle HMCS as substitutable fillers in roadbed,which exhibits benefits in environment and economy development.
基金Foundation item: Projects(41172273, 40802079, 51108288) supported by the National Natural Science Foundation of China Project(KLE-TJGE-B1106) supported by the Opening Fund of Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education (Tongji University), China
文摘Solidification/stabilization (S/S) is one of the most effective methods of dealing with heavy metal contaminated soils. The effects of cyclic wetting and drying on solidified/stabilized contaminated soils were investigated. A series of test program, unconfined compressive strength (UCS) test, TCLP leaching test and scanning electron microscopy (SEM) test, were performed on lead and zinc contaminated soils solidified/stabilized by fly ash. Test results show that UCS and the leaching characteristics of heavy metal ions of S/S contaminated soils are significantly improved with the increase of fly ash content. UCS of S/S soils firstly increases with the increase of the times of drying and wetting cycles, after reaching the peak, it decreases with it. When the pollutant content is lower (1 000 mg/kg), the TCLP concentration first slightly decreases under cyclic drying and wetting, then increases, but the change is minor. The TCLP concentration is higher under a high pollutant content of 5 000 mg/kg, and increases with the increase of the times of drying and wetting cycles. The results of scanning electron microscopy (SEM) test are consistent with UCS tests and TCLP leaching tests, which reveals the micro-mechanism of the variations of engineering properties of stabilized contaminated soils after drying and wetting cycles.
基金Project (2012BAC09B04) supported by National Key Technology Research and Development Program of the Ministry of Science and Technology of ChinaProject (2010-277-027) supported by Science and Technology Foundation of Environmental Protection in Hunan Province,ChinaProject (2011SK3262) supported by Science and Technology Planning of Hunan Province,China
文摘The effects of five amendments such as acetic acid(AA), citric acid (CA), ethylenediamine tetraacetic acid (EDTA), sepiolite and phosphogypsum on growth and metal uptake of giant reed (Arundo donax L.) grown on soil contaminated by arsenic (As), cadmium (Cd) and lead (Pb) were studied. The results showed that the shoot biomass of giant reed was enhanced by 24.8% and 15.0%, while superoxide mutase and catalase activities slightly varied when adding 5.0 mmol/kg CA and 2.5 mol/kg EDTA to soil as compared to the control, respectively. The concentrations of As, Cd and Pb in shoots were remarkably increased by the addition of 2.5 mmol/kg AA and CA, 5.0 mmol/kg EDTA, and 4.0 g/kg sepiolite as compared to the control. The accumulations of As and Cd were also significantly enhanced in the above condition, while the shoot Pb accumulation was noticeably enhanced by amending with 4.0 g/kg sepiolite and 8.0 g/kg phosphogysum, respectively. The results suggested that AA, CA and sepiolite could be used as optimum soil amendments for giant reed remediation system.
基金Project(41472278) supported by the National Natural Science Foundation of ChinaProject(2015B071) supported by the Beijing Nova Program,ChinaProjects(53200859533,53200859536) supported by the Fundamental Research Funds for the Central Universities of China
文摘Solidification/stabilization(S/S)technology has been widely used for remediation of the heavy metal contaminated soils.The heavy metal ions will be leached from the stabilized contaminated soil under sulfate erosion conditions,which gives rise tosecondary contamination to the areas around the mine sites.The commonly used Portland cement,fly ash and quicklime were takenas binder raw materials with various mix proportions.And then,the sulphuric acid and nitric acid method was used to investigate theleaching characteristic of stabilized heavy metal contaminated soils.The effects of binder types and binder contents,sulfateconcentrations(1.5,3.0and6.0g/L)and erosion time(0,7,14and28d)on leached concentrations of heavy metal ions fromcontaminated soils were studied.Moreover,a parameter named immobilization percentage(IP)was introduced to evaluate theinfluence of erosion time and sulfate concentration on immobilization effectiveness for heavy metal ions.The results showed that,theleached heavy metal concentrations increased with sulfate concentration and erosion time.Comparatively speaking,the compositebinders that had calcium oxide in it exhibited the worst solidification effectiveness and the lowest immobilization percentage,withthe largest leached heavy metal concentration.
基金This research was supported by Natural Science Foundation of Guangdong Province,China(No.021686)Research Foundation for Doctoral Programs of Chinese Universities(No.20020558004)Research Foundation for Talented Scientists of Guangdong Universities.
文摘Pollution of agricultural land by heavy metals has imposed an increasingly serious risk to environmental and human health in recent years.Heavy metal pollutants may enter the human food chain through agricultural products and groundwater from the polluted soils.Progress has been made in the past decade on phytoremediation,a safe and inexpen-sive approach to remove contaminants from soil and water using plants.However,in most cases,agricultural land in China cannot afford to grow phytoremediator plants instead of growing crops due to food supply for the great population.Therefore,new and effective methods to decrease the risk of heavy metal pollution in crops and to clean the contaminated soils are urgently needed.If we can find crop germplasms(including species and varieties)that accumulate heavy metals in their edible parts,such as the leaves of vegetables or grains of cereals,at a level low enough for safe consumption,then we can grow these selected species or varieties in the lands contaminated or potentially contaminated by heavy metals.If we can find crop germplasms that take in low con-centrations of heavy metals in their edible parts and high con-tent of the metals in their inedible parts,then we can use these selected species or varieties for soil remediation.In this study,the feasibility of the method is assessed by analyzing Pb concentrations in edible and inedible parts of 25 varieties of maize(Zea mays)grown in Pb-contaminated soils.The soil concentrations of Pb were 595.55 mg/kg in the high Pb exposed treatment and 195.55 mg/kg in the control.The results showed that the Pb concentrations in different tissues were in the order of root>shoot≌leaf>grain.Com-pared with the control,the Pb concentrations in root,shoot and leaf were greatly increased under the high Pb exposed condition,while the increments of Pb concentration in grain were relatively lower.Under the high Pb exposure,the grain Pb concentrations of 12 varieties exceeded the maximal Pb limitation of the National Food Hygiene Standard of China(NFHSC)and were inedible.This indicates that there is a high Pb pollution risk for maize grown on Pb polluted sites.Although 22 of the 25 tested varieties had harvest loss under the highly Pb stressed condition,ranging from 0.86%-38.7%of the grain biomass acquired at the control,the average harvest loss of all the tested varieties was only 12.6%,which is usually imperceptible in normal farming practices.There-fore the risk of Pb pollution in maize products cannot be promptly noticed and prevented based only on the outcome of the harvest.However,we did find that 13 of the 25 tested varieties had grain Pb concentrations lower than the limita-tion of the NFHSC.It is,therefore,possible to reduce the pollution risk if these favorable varieties are used for maize production in Pb-contaminated or potentially contaminated agricultural lands.Pb concentrations in vegetative tissues(root,stem and leaf)were significantly correlated with each other,while Pb concentrations of each vegetative tissue were not significant-ly correlated with that of grain.Among the 25 tested varieties,some varieties had Pb concentrations in grain lower than(No.1-3 and No.6)or slightly above(No.4)the limitation of the NFHSC,while their Pb concentrations in the vegetative tissues were among the highest.When excluding these variet-ies,correlations between the Pb concentrations of grain and those of vegetative tissues of the rest of the tested varieties became highly significant.In addition,variety No.1 had the lowest harvest loss under high Pb exposed,and the highest Pb accumulation in vegetative tissues(51.69 mg/plant,12 times as much as in the control).Similar features were also observed in varieties No.2,No.3 and No.6,which absorbed Pb for 36-42 mg/plant under high Pb exposed.We recommend these varieties of maize to be used for bioremediation of Pb contaminated soil and crop production at the same time.