Ultra-peripheral heavy-ion collisions(UPCs)offer unique opportunities to study processes under strong electromagnetic fields.In these collisions,highly charged fast-moving ions carry strong electromagnetic fields that...Ultra-peripheral heavy-ion collisions(UPCs)offer unique opportunities to study processes under strong electromagnetic fields.In these collisions,highly charged fast-moving ions carry strong electromagnetic fields that can be effectively treated as photon fluxes.The exchange of photons can induce photonuclear and two-photon interactions and excite ions.This excitation of the ions results in Coulomb dissociation with the emission of photons,neutrons,and other particles.Additionally,the electromagnetic fields generated by the ions can be sufficiently strong to enforce mutual interactions between the two colliding ions.Consequently,the two colliding ions experience an electromagnetic force that pushes them in opposite directions,causing a back-to-back correlation in the emitted neutrons.Using a Monte Carlo simulation,we qualitatively demonstrate that the above electromagnetic effect is large enough to be observed in UPCs,which would provide a clear means to study strong electromagnetic fields and their effects.展开更多
The relativistic mean-field approach was implemented in the Lanzhou quantum molecular dynamics transport model(LQMD.RMF). Using the LQMD.RMF, the properties of collective flow and pion production were investigated sys...The relativistic mean-field approach was implemented in the Lanzhou quantum molecular dynamics transport model(LQMD.RMF). Using the LQMD.RMF, the properties of collective flow and pion production were investigated systematically for nuclear reactions with various isospin asymmetries. The directed and elliptic flows of the LQMD.RMF are able to describe the experimental data of STAR Collaboration. The directed flow difference between free neutrons and protons was associated with the stiffness of the symmetry energy, that is, a softer symmetry energy led to a larger flow difference. For various collision energies, the ratio between the π^(-) and π^(+) yields increased with a decrease in the slope parameter of the symmetry energy. When the collision energy was 270 MeV/nucleon, the single ratio of the pion transverse momentum spectra also increased with decreasing slope parameter of the symmetry energy in both nearly symmetric and neutron-rich systems.However, it is difficult to constrain the stiffness of the symmetry energy with the double ratio because of the lack of threshold energy correction on the pion production.展开更多
Traditional particle identification methods face timeconsuming,experience-dependent,and poor repeatability challenges in heavy-ion collisions at low and intermediate energies.Researchers urgently need solutions to the...Traditional particle identification methods face timeconsuming,experience-dependent,and poor repeatability challenges in heavy-ion collisions at low and intermediate energies.Researchers urgently need solutions to the dilemma of traditional particle identification methods.This study explores the possibility of applying intelligent learning algorithms to the particle identification of heavy-ion collisions at low and intermediate energies.Multiple intelligent algorithms,including XgBoost and TabNet,were selected to test datasets from the neutron ion multi-detector for reaction-oriented dynamics(NIMROD-ISiS)and Geant4 simulation.Tree-based machine learning algorithms and deep learning algorithms e.g.TabNet show excellent performance and generalization ability.Adding additional data features besides energy deposition can improve the algorithm’s performance when the data distribution is nonuniform.Intelligent learning algorithms can be applied to solve the particle identification problem in heavy-ion collisions at low and intermediate energies.展开更多
The relativistic heavy-ion collisions create both hot quark–gluon matter and strong magnetic fields, and provide an arena to study the interplay between quantum chromodynamics and quantum electrodynamics. In recent y...The relativistic heavy-ion collisions create both hot quark–gluon matter and strong magnetic fields, and provide an arena to study the interplay between quantum chromodynamics and quantum electrodynamics. In recent years, it has been shown that such an interplay can generate a number of interesting quantum phenomena in hadronic and quark–gluon matter. In this short review, we first discuss some properties of the magnetic fields in heavy-ion collisions and then give an overview of the magnetic fieldinduced novel quantum effects. In particular, we focus on the magnetic effect on the heavy flavor mesons, the heavyquark transports, and the phenomena closely related to chiral anomaly.展开更多
Recent progress of the quantum molecular dynamics model for describing the dynamics of heavy-ion collisions is viewed, in particular the nuclear fragmentation, isospin physics, particle production and in-medium effect...Recent progress of the quantum molecular dynamics model for describing the dynamics of heavy-ion collisions is viewed, in particular the nuclear fragmentation, isospin physics, particle production and in-medium effect, hadron-induced nuclear reactions, hypernucleus, etc.The neck fragmentation in Fermi-energy heavy-ion collisions is investigated for extracting the symmetry energy at subsaturation densities. The isospin effects, in-medium properties, and the behavior of high-density symmetry energy in medium-and high-energy heavy-ion collisions are thoroughly discussed. The hypernuclide dynamics formed in heavy-ion collisions and in hadron-induced reactions is analyzed and addressed in the future experiments at the high-intensity heavy-ion accelerator facility(HIAF).展开更多
We present a concise review of the recent development of relativistic hydrodynamics and its applications to heavy-ion collisions.Theoretical progress on the extended formulation of hydrodynamics toward out-ofequilibri...We present a concise review of the recent development of relativistic hydrodynamics and its applications to heavy-ion collisions.Theoretical progress on the extended formulation of hydrodynamics toward out-ofequilibrium systems is addressed,with emphasis on the socalled attractor solution.Moreover,recent phenomenological improvements in the hydrodynamic modeling of heavy-ion collisions with respect to the ongoing beam energy scan program,the quantitative characterization of transport coefficients in three-dimensionally expanding quark–gluon plasma,the fluid description of small colliding systems,and certain other interdisciplinary connections are discussed.展开更多
Relativistic heavy-ion collisions create hot quark–gluon plasma as well as very strong electromagnetic(EM)and fluid vortical fields.The strong EM field and vorticity can induce intriguing macroscopic quantum phenomen...Relativistic heavy-ion collisions create hot quark–gluon plasma as well as very strong electromagnetic(EM)and fluid vortical fields.The strong EM field and vorticity can induce intriguing macroscopic quantum phenomena such as chiral magnetic,chiral separation,chiral electric separation,and chiral vortical effects as well as the spin polarization of hadrons.These phenomena provide us with experimentally feasible means to study the nontrivial topological sector of quantum chromodynamics,the possible parity violation of strong interaction at high temperature,and the subatomic spintronics of quark–gluon plasma.These studies,both in theory and in experiments,are strongly connected with other subfields of physics such as condensed matter physics,astrophysics,and cold atomic physics,and thus form an emerging interdisciplinary research area.We give an introduction to the aforementioned phenomena induced by the EM field and vorticity and an overview of the current status of experimental research in heavy-ion collisions.We also briefly discuss spin hydrodynamics as well as chiral and spin kinetic theories.展开更多
We give a brief overview of recent theoretical and experimental results on the chiral magnetic effect and spin polarization effect in heavy-ion collisions.We present updated experimental results for the chiral magneti...We give a brief overview of recent theoretical and experimental results on the chiral magnetic effect and spin polarization effect in heavy-ion collisions.We present updated experimental results for the chiral magnetic effect and related phenomena.The time evolution of the magnetic fields in different models is discussed.The newly developed quantum kinetic theory for massive fermions is reviewed.We present theoretical and experimental results for the polarization of K hyperons and the q00 value of vector mesons.展开更多
The propagation of single-event effects(SEEs)on a Xilinx Zynq-7000 system on chip(SoC)was inves-tigated using heavy-ion microbeam radiation.The irradia-tion results reveal several functional blocks’sensitivity locati...The propagation of single-event effects(SEEs)on a Xilinx Zynq-7000 system on chip(SoC)was inves-tigated using heavy-ion microbeam radiation.The irradia-tion results reveal several functional blocks’sensitivity locations and cross sections,for instance,the arithmetic logic unit,register,D-cache,and peripheral,while irradi-ating the on-chip memory(OCM)region.Moreover,event tree analysis was executed based on the obtained microbeam irradiation results.This study quantitatively assesses the probabilities of SEE propagation from the OCM to other blocks in the SoC.展开更多
In this study, the rapidity distribution, collective flows, and nuclear stopping power in ^(197)Au+^(197)Au collisions at intermediate energies were investigated using the ultrarelativistic quantum molecular dynamics(...In this study, the rapidity distribution, collective flows, and nuclear stopping power in ^(197)Au+^(197)Au collisions at intermediate energies were investigated using the ultrarelativistic quantum molecular dynamics(UrQMD) model with GEMINI++ code. The UrQMD model was adopted to simulate the dynamic evolution of heavy-ion collisions, whereas the GEMINI++ code was used to simulate the decay of primary fragments produced by UrQMD. The calculated results were compared with the INDRA and FOPI experimental data. It was found that the rapidity distribution, collective flows, and nuclear stopping power were affected to a certain extent by the decay of primary fragments, especially at lower beam energies. Furthermore, the experimental data of the collective flows and nuclear stopping power at the investigated beam energies were better reproduced when the sequential decay effect was included.展开更多
The squeezed back-to-back correlation(SBBC)of a boson-antiboson pair is sensitive to the time distribution of the particle-emitting source,and the SBBC function for an evolving source is expected to be affected by the...The squeezed back-to-back correlation(SBBC)of a boson-antiboson pair is sensitive to the time distribution of the particle-emitting source,and the SBBC function for an evolving source is expected to be affected by the relaxation time of the system.In this study,we investigated the effect of relaxation time on the SBBC function.We propose a method for calculating the SBBC function with relaxation-time approximation for evolving sources.SBBC functions of D^(0)D^(-0)in relativistic heavy-ion collisions were investigated using a hydrodynamic model.We found that the relaxation time reduces the amplitudes of the SBBC functions.This becomes apparent for long relaxation times and large initial relative deviations of the chaotic and squeezed amplitudes from their equilibrium values in the temporal steps.展开更多
We investigate the squeezed back-to-back correlation(BBC) of D^0~0 in relativistic heavy-ion collisions, using the in-medium mass modification calculated with a self-energy in hot pion gas and the source space-time ...We investigate the squeezed back-to-back correlation(BBC) of D^0~0 in relativistic heavy-ion collisions, using the in-medium mass modification calculated with a self-energy in hot pion gas and the source space-time distributions provided by the viscous hydrodynamic code VISH2+1. It is found that the squeezed BBC of D^0~0 is significant in peripheral Au+Au collisions at the relativistic heavy ion collider energy. A possible way to detect the squeezed BBC in an experiment is presented.展开更多
The dissipation phenomenon in the heavy-ion reaction at incident energy near the Fermi energy is studied by simulating the reaction ^129Xe+^129Sn with the isospin-dependent quantum molecular dynamics model. The calcu...The dissipation phenomenon in the heavy-ion reaction at incident energy near the Fermi energy is studied by simulating the reaction ^129Xe+^129Sn with the isospin-dependent quantum molecular dynamics model. The calculations involving a proper prescription of implementing the Pauli exclusion principle show that the isotropy ratio measured by free protons emitted in the reaction at energy slightly higher than the Fermi energy is in agreement with the experimental data recently released by the INDRA collaboration. A feasible value of the Pauli-blocking factor is estimated by comparing the theoretical results with the experimental data for the energy range considered here.展开更多
The multi-source pion interferometry in relativistic heavy-ion collisions is presented and two-source models for hadron gas and hadron gas plus quark-gluon plasma are proposed. The models can resolve the HBT puzzle. F...The multi-source pion interferometry in relativistic heavy-ion collisions is presented and two-source models for hadron gas and hadron gas plus quark-gluon plasma are proposed. The models can resolve the HBT puzzle. For the same q and different direction of q, the two-pion correlation functions show characteristic oscillation behaviors, which may be used to distinguish the two-source models. Our research also showes that the multi-source pion correlations can resolve the HBT puzzle.展开更多
The derivation of the harmonic approximation of the Hamiltonian of a model of coupled three-dimensional harmonic oscillator is presented. It is shown how the splitting of the total Hamiltonian into the intrinsic and c...The derivation of the harmonic approximation of the Hamiltonian of a model of coupled three-dimensional harmonic oscillator is presented. It is shown how the splitting of the total Hamiltonian into the intrinsic and collective Hamiltonians leads to the description of the mechanism for energy dissipation in physical systems.展开更多
As a prime candidate for the structure components of fusion reactors, irradiation resistance of the reduced activation ferritic/martensitic steel (RAFM) has obtained intensive concern. In the present work, irradiation...As a prime candidate for the structure components of fusion reactors, irradiation resistance of the reduced activation ferritic/martensitic steel (RAFM) has obtained intensive concern. In the present work, irradiation response of a domestic 8%-Cr RAFM was tested at the terminal SFC-T1 of HIRFL.展开更多
The emission of high-energy particles in 16O + 197Au collisions at energy 20 MeV / nucleon is considered within the framework of the time evolution of a hot spot taking into account the hydrodynamic compression and ex...The emission of high-energy particles in 16O + 197Au collisions at energy 20 MeV / nucleon is considered within the framework of the time evolution of a hot spot taking into account the hydrodynamic compression and expansion stages. In addition, the evaporation of the particles that are formed in the early (hot) stage of the evolution of the hot spot is included in the calculation of the spectrum. This leads to a hardening of the particle spectrum in its high-energy part, which is in agreement with experimental data.展开更多
In Eq. (1), A?? and Nln(N/A)+Zln(Z/A) originate from the increases of the entropy and the mixing entropy at the time of the fragment formation, respectively. n (p) is the neutron (proton) chemical potential. is t...In Eq. (1), A?? and Nln(N/A)+Zln(Z/A) originate from the increases of the entropy and the mixing entropy at the time of the fragment formation, respectively. n (p) is the neutron (proton) chemical potential. is the critical exponent. In this work, the value of =2.3 is adopted from the previous studies[1]. In general coefficients, av, as, asym, ac, ap and the chemical potentials are temperature and density dependent.展开更多
The Relativistic Vlasov-Uehling-Uhlenbeck(RVUU)model is used to study the properties of pi-ons and kaons produced in heavy ion collisions.We include the nuclear medium effect on kaon and pionin the model,and simulate ...The Relativistic Vlasov-Uehling-Uhlenbeck(RVUU)model is used to study the properties of pi-ons and kaons produced in heavy ion collisions.We include the nuclear medium effect on kaon and pionin the model,and simulate pion production and subthreshold kaon production in Kr+Zr reactions at 1GeV/u.The calculated results show that the attractive pion optical potential changes the final-state pionmomentum spectrum,enhancing the yield of pions with low transverse momenta.At the same ti1e it alsoincreases the kaon abundance and modifies the kaon momentum distribution.展开更多
Generally,the interaction of low-energy ions with matter used to attract less attention than that of high-energy ions.In the 1980s,when the study of ion beam modification of materials was prosperous both at home and a...Generally,the interaction of low-energy ions with matter used to attract less attention than that of high-energy ions.In the 1980s,when the study of ion beam modification of materials was prosperous both at home and abroad,a new biological effect caused by ion beam implantation was discovered by Prof. Yu Zengliang and his postgraduates at CAS institute of Plasma Physics.In their research into the interaction between low energy ions and organism,they put forward and developed some new concepts,such as the bio damage model of mass-deposition and cell itching processing with ion beam.And they applied those principles in breeding new cultivars and made sig-展开更多
基金This work is supported in part by the National Key Research and Development Program of China(Nos.2022YFA1604900)the Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008)+3 种基金the National Natural Science Foundation of China(Nos.12275053,12025501,11890710,11890714,12147101,12075061,and 12225502)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB34030000)Shanghai National Science Foundation(No.20ZR1404100)STCSM(No.23590780100).
文摘Ultra-peripheral heavy-ion collisions(UPCs)offer unique opportunities to study processes under strong electromagnetic fields.In these collisions,highly charged fast-moving ions carry strong electromagnetic fields that can be effectively treated as photon fluxes.The exchange of photons can induce photonuclear and two-photon interactions and excite ions.This excitation of the ions results in Coulomb dissociation with the emission of photons,neutrons,and other particles.Additionally,the electromagnetic fields generated by the ions can be sufficiently strong to enforce mutual interactions between the two colliding ions.Consequently,the two colliding ions experience an electromagnetic force that pushes them in opposite directions,causing a back-to-back correlation in the emitted neutrons.Using a Monte Carlo simulation,we qualitatively demonstrate that the above electromagnetic effect is large enough to be observed in UPCs,which would provide a clear means to study strong electromagnetic fields and their effects.
基金This study was supported by the National Natural Science Foundation ofChina(Nos.12147106,12175072,and 11722546)the Talent Programof South China University of Technology(No.20210115).
文摘The relativistic mean-field approach was implemented in the Lanzhou quantum molecular dynamics transport model(LQMD.RMF). Using the LQMD.RMF, the properties of collective flow and pion production were investigated systematically for nuclear reactions with various isospin asymmetries. The directed and elliptic flows of the LQMD.RMF are able to describe the experimental data of STAR Collaboration. The directed flow difference between free neutrons and protons was associated with the stiffness of the symmetry energy, that is, a softer symmetry energy led to a larger flow difference. For various collision energies, the ratio between the π^(-) and π^(+) yields increased with a decrease in the slope parameter of the symmetry energy. When the collision energy was 270 MeV/nucleon, the single ratio of the pion transverse momentum spectra also increased with decreasing slope parameter of the symmetry energy in both nearly symmetric and neutron-rich systems.However, it is difficult to constrain the stiffness of the symmetry energy with the double ratio because of the lack of threshold energy correction on the pion production.
基金This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB34030000)the National Key Research and Development Program of China(No.2022YFA1602404)+1 种基金the National Natural Science Foundation(No.U1832129)the Youth Innovation Promotion Association CAS(No.2017309).
文摘Traditional particle identification methods face timeconsuming,experience-dependent,and poor repeatability challenges in heavy-ion collisions at low and intermediate energies.Researchers urgently need solutions to the dilemma of traditional particle identification methods.This study explores the possibility of applying intelligent learning algorithms to the particle identification of heavy-ion collisions at low and intermediate energies.Multiple intelligent algorithms,including XgBoost and TabNet,were selected to test datasets from the neutron ion multi-detector for reaction-oriented dynamics(NIMROD-ISiS)and Geant4 simulation.Tree-based machine learning algorithms and deep learning algorithms e.g.TabNet show excellent performance and generalization ability.Adding additional data features besides energy deposition can improve the algorithm’s performance when the data distribution is nonuniform.Intelligent learning algorithms can be applied to solve the particle identification problem in heavy-ion collisions at low and intermediate energies.
基金supported by Shanghai Natural Science Foundation(No.14ZR1403000)1000 Young Talents Program of China+2 种基金the National Natural Science Foundation of China(No.11535012)supported by China Postdoctoral Science Foundation under Grant No.2016M590312support from RIKEN-BNL Research Center
文摘The relativistic heavy-ion collisions create both hot quark–gluon matter and strong magnetic fields, and provide an arena to study the interplay between quantum chromodynamics and quantum electrodynamics. In recent years, it has been shown that such an interplay can generate a number of interesting quantum phenomena in hadronic and quark–gluon matter. In this short review, we first discuss some properties of the magnetic fields in heavy-ion collisions and then give an overview of the magnetic fieldinduced novel quantum effects. In particular, we focus on the magnetic effect on the heavy flavor mesons, the heavyquark transports, and the phenomena closely related to chiral anomaly.
基金supported by the National Natural Science Foundation of China(Nos.11675226 and 11722546)the Major State Basic Research Development Program of China(Nos.2014CB845405 and 2015CB856903)
文摘Recent progress of the quantum molecular dynamics model for describing the dynamics of heavy-ion collisions is viewed, in particular the nuclear fragmentation, isospin physics, particle production and in-medium effect, hadron-induced nuclear reactions, hypernucleus, etc.The neck fragmentation in Fermi-energy heavy-ion collisions is investigated for extracting the symmetry energy at subsaturation densities. The isospin effects, in-medium properties, and the behavior of high-density symmetry energy in medium-and high-energy heavy-ion collisions are thoroughly discussed. The hypernuclide dynamics formed in heavy-ion collisions and in hadron-induced reactions is analyzed and addressed in the future experiments at the high-intensity heavy-ion accelerator facility(HIAF).
基金the US Department of Energy(DOE)(No.DE-SC0013460)the National Science Foundation(NSF)(No.PHY-2012922)+1 种基金the National Natural Science Foundation of China(No.11975079)the US Department of Energy,Office of Science,Office of Nuclear Physics,within the framework of the Beam Energy Scan Theory(BEST)Topical Collaboration.
文摘We present a concise review of the recent development of relativistic hydrodynamics and its applications to heavy-ion collisions.Theoretical progress on the extended formulation of hydrodynamics toward out-ofequilibrium systems is addressed,with emphasis on the socalled attractor solution.Moreover,recent phenomenological improvements in the hydrodynamic modeling of heavy-ion collisions with respect to the ongoing beam energy scan program,the quantitative characterization of transport coefficients in three-dimensionally expanding quark–gluon plasma,the fluid description of small colliding systems,and certain other interdisciplinary connections are discussed.
基金supported by National Natural Science Foundation of China(Nos.11535012 and 11675041)。
文摘Relativistic heavy-ion collisions create hot quark–gluon plasma as well as very strong electromagnetic(EM)and fluid vortical fields.The strong EM field and vorticity can induce intriguing macroscopic quantum phenomena such as chiral magnetic,chiral separation,chiral electric separation,and chiral vortical effects as well as the spin polarization of hadrons.These phenomena provide us with experimentally feasible means to study the nontrivial topological sector of quantum chromodynamics,the possible parity violation of strong interaction at high temperature,and the subatomic spintronics of quark–gluon plasma.These studies,both in theory and in experiments,are strongly connected with other subfields of physics such as condensed matter physics,astrophysics,and cold atomic physics,and thus form an emerging interdisciplinary research area.We give an introduction to the aforementioned phenomena induced by the EM field and vorticity and an overview of the current status of experimental research in heavy-ion collisions.We also briefly discuss spin hydrodynamics as well as chiral and spin kinetic theories.
基金supported in part by the National Natural Science Foundation of China(Nos.11890713,11890714,11835002,11961131011,11421505,11535012 and 11890713)the Strategic Priority Research Program of the Chinese Academy of Sciences(Nos.XDB34030202 and XDB34030102)。
文摘We give a brief overview of recent theoretical and experimental results on the chiral magnetic effect and spin polarization effect in heavy-ion collisions.We present updated experimental results for the chiral magnetic effect and related phenomena.The time evolution of the magnetic fields in different models is discussed.The newly developed quantum kinetic theory for massive fermions is reviewed.We present theoretical and experimental results for the polarization of K hyperons and the q00 value of vector mesons.
基金This work was supported by the National Natural Science Foundation of China(Nos.11575138,11835006,11690040,11690043,and 11705216)the Innovation Center of Radiation Application(No.KFZC2019050321)the China Scholarships Council program(No.201906280343).
文摘The propagation of single-event effects(SEEs)on a Xilinx Zynq-7000 system on chip(SoC)was inves-tigated using heavy-ion microbeam radiation.The irradia-tion results reveal several functional blocks’sensitivity locations and cross sections,for instance,the arithmetic logic unit,register,D-cache,and peripheral,while irradi-ating the on-chip memory(OCM)region.Moreover,event tree analysis was executed based on the obtained microbeam irradiation results.This study quantitatively assesses the probabilities of SEE propagation from the OCM to other blocks in the SoC.
基金partly supported by the National Natural Science Foundation of China (Nos. U2032145 and 11875125)the National Key Research and Development Program of China (No. 2020YFE0202002)。
文摘In this study, the rapidity distribution, collective flows, and nuclear stopping power in ^(197)Au+^(197)Au collisions at intermediate energies were investigated using the ultrarelativistic quantum molecular dynamics(UrQMD) model with GEMINI++ code. The UrQMD model was adopted to simulate the dynamic evolution of heavy-ion collisions, whereas the GEMINI++ code was used to simulate the decay of primary fragments produced by UrQMD. The calculated results were compared with the INDRA and FOPI experimental data. It was found that the rapidity distribution, collective flows, and nuclear stopping power were affected to a certain extent by the decay of primary fragments, especially at lower beam energies. Furthermore, the experimental data of the collective flows and nuclear stopping power at the investigated beam energies were better reproduced when the sequential decay effect was included.
基金supported by the National Natural Science Foundation of China (Nos. 12175031 and 11675034)
文摘The squeezed back-to-back correlation(SBBC)of a boson-antiboson pair is sensitive to the time distribution of the particle-emitting source,and the SBBC function for an evolving source is expected to be affected by the relaxation time of the system.In this study,we investigated the effect of relaxation time on the SBBC function.We propose a method for calculating the SBBC function with relaxation-time approximation for evolving sources.SBBC functions of D^(0)D^(-0)in relativistic heavy-ion collisions were investigated using a hydrodynamic model.We found that the relaxation time reduces the amplitudes of the SBBC functions.This becomes apparent for long relaxation times and large initial relative deviations of the chaotic and squeezed amplitudes from their equilibrium values in the temporal steps.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11675034,11647166 and 11675033
文摘We investigate the squeezed back-to-back correlation(BBC) of D^0~0 in relativistic heavy-ion collisions, using the in-medium mass modification calculated with a self-energy in hot pion gas and the source space-time distributions provided by the viscous hydrodynamic code VISH2+1. It is found that the squeezed BBC of D^0~0 is significant in peripheral Au+Au collisions at the relativistic heavy ion collider energy. A possible way to detect the squeezed BBC in an experiment is presented.
基金Supported by the National Natural Science Foundation Of China under Grant Nos 11265013,11175074,11264033 and 11464040
文摘The dissipation phenomenon in the heavy-ion reaction at incident energy near the Fermi energy is studied by simulating the reaction ^129Xe+^129Sn with the isospin-dependent quantum molecular dynamics model. The calculations involving a proper prescription of implementing the Pauli exclusion principle show that the isotropy ratio measured by free protons emitted in the reaction at energy slightly higher than the Fermi energy is in agreement with the experimental data recently released by the INDRA collaboration. A feasible value of the Pauli-blocking factor is estimated by comparing the theoretical results with the experimental data for the energy range considered here.
文摘The multi-source pion interferometry in relativistic heavy-ion collisions is presented and two-source models for hadron gas and hadron gas plus quark-gluon plasma are proposed. The models can resolve the HBT puzzle. For the same q and different direction of q, the two-pion correlation functions show characteristic oscillation behaviors, which may be used to distinguish the two-source models. Our research also showes that the multi-source pion correlations can resolve the HBT puzzle.
文摘The derivation of the harmonic approximation of the Hamiltonian of a model of coupled three-dimensional harmonic oscillator is presented. It is shown how the splitting of the total Hamiltonian into the intrinsic and collective Hamiltonians leads to the description of the mechanism for energy dissipation in physical systems.
文摘As a prime candidate for the structure components of fusion reactors, irradiation resistance of the reduced activation ferritic/martensitic steel (RAFM) has obtained intensive concern. In the present work, irradiation response of a domestic 8%-Cr RAFM was tested at the terminal SFC-T1 of HIRFL.
文摘The emission of high-energy particles in 16O + 197Au collisions at energy 20 MeV / nucleon is considered within the framework of the time evolution of a hot spot taking into account the hydrodynamic compression and expansion stages. In addition, the evaporation of the particles that are formed in the early (hot) stage of the evolution of the hot spot is included in the calculation of the spectrum. This leads to a hardening of the particle spectrum in its high-energy part, which is in agreement with experimental data.
文摘In Eq. (1), A?? and Nln(N/A)+Zln(Z/A) originate from the increases of the entropy and the mixing entropy at the time of the fragment formation, respectively. n (p) is the neutron (proton) chemical potential. is the critical exponent. In this work, the value of =2.3 is adopted from the previous studies[1]. In general coefficients, av, as, asym, ac, ap and the chemical potentials are temperature and density dependent.
基金The project supported in part by the National Natural Science Foundation of China and the Science Foundation of Nuclear Industry of China
文摘The Relativistic Vlasov-Uehling-Uhlenbeck(RVUU)model is used to study the properties of pi-ons and kaons produced in heavy ion collisions.We include the nuclear medium effect on kaon and pionin the model,and simulate pion production and subthreshold kaon production in Kr+Zr reactions at 1GeV/u.The calculated results show that the attractive pion optical potential changes the final-state pionmomentum spectrum,enhancing the yield of pions with low transverse momenta.At the same ti1e it alsoincreases the kaon abundance and modifies the kaon momentum distribution.
文摘Generally,the interaction of low-energy ions with matter used to attract less attention than that of high-energy ions.In the 1980s,when the study of ion beam modification of materials was prosperous both at home and abroad,a new biological effect caused by ion beam implantation was discovered by Prof. Yu Zengliang and his postgraduates at CAS institute of Plasma Physics.In their research into the interaction between low energy ions and organism,they put forward and developed some new concepts,such as the bio damage model of mass-deposition and cell itching processing with ion beam.And they applied those principles in breeding new cultivars and made sig-