Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in p...Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in passive satellite radiometer observations, few operational satellite CBH products are currently available. This study presents a new method for retrieving CBH from satellite radiometers. The method first uses the combined measurements of satellite radiometers and ground-based cloud radars to develop a lookup table(LUT) of effective cloud water content(ECWC), representing the vertically varying cloud water content. This LUT allows for the conversion of cloud water path to cloud geometric thickness(CGT), enabling the estimation of CBH as the difference between cloud top height and CGT. Detailed comparative analysis of CBH estimates from the state-of-the-art ECWC LUT are conducted against four ground-based millimeter-wave cloud radar(MMCR) measurements, and results show that the mean bias(correlation coefficient) is0.18±1.79 km(0.73), which is lower(higher) than 0.23±2.11 km(0.67) as derived from the combined measurements of satellite radiometers and satellite radar-lidar(i.e., Cloud Sat and CALIPSO). Furthermore, the percentages of the CBH biases within 250 m increase by 5% to 10%, which varies by location. This indicates that the CBH estimates from our algorithm are more consistent with ground-based MMCR measurements. Therefore, this algorithm shows great potential for further improvement of the CBH retrievals as ground-based MMCR are being increasingly included in global surface meteorological observing networks, and the improved CBH retrievals will contribute to better cloud radiative effect estimates.展开更多
Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stre...Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.展开更多
HY-2 has been launched by China on August 16, 2011 which assembles multi-microwave remote sensing payloads in a body and has the ability of monitoring ocean dynamic environments. The HY-2 satellite data need to be cal...HY-2 has been launched by China on August 16, 2011 which assembles multi-microwave remote sensing payloads in a body and has the ability of monitoring ocean dynamic environments. The HY-2 satellite data need to be calibrated and validated before being put into use. Based on the in-situ buoys from the Nation- al Data Buoy Center (NDBC), Ku-band significant wave heights (SWH, hs) of HY-2 altimeter are validated. Eleven months of HY-2 altimeter Level 2 products data are chose from October 1, 2011 to August 29, 2012. Using NDBC 60 buoys yield 902 collocations for HY-2 by adopting collocation criteria of 30 min for tempo- ral window and 50 km for a spatial window. An overall RMS difference of the SWH between HY-2 and buoy data is 0.297 m. A correlation coefficient between these is 0.964. An ordinary least squares (OLS) regression is performed with the buoy data as an independent variable and the altimeter data as a dependent vari- able. The regression equation of hs is hs (HY-2)=0.891 × hs (NDBC)+0.022. In addition, 2016 collocations are matched with temporal window of 30 rain at the crossing points of HY-2 and Jason-2 orbits. RMS difference of Ku-band SWH between the two data sets is 0.452 m.展开更多
Clouds are critical to the global radiation budget and hydrological cycle, but knowledge is still poor concerning the observed climatology of cloud-base height (CBH) in China. Based on fine-resolution sounding obser...Clouds are critical to the global radiation budget and hydrological cycle, but knowledge is still poor concerning the observed climatology of cloud-base height (CBH) in China. Based on fine-resolution sounding observations from the China Radiosonde Network (CRN), the method used to estimate CBH was modified, and uncertainty analyses indicated that the CBH is good enough. The accuracy of CBH estimation is verified by the comparison between the sounding-derived CBHs and those estimated from the micro-pulse lidar and millimeter-wave cloud radar. As such, the CBH climatology was compiled for the period 2006-16. Overall, the CBH exhibits large geographic variability across China, at both 0800 Local Standard Time (LST) and 2000 LST, irrespective of season. In addition, the summertime cloud base tends to be elevated to higher altitudes in dry regions [i.e., Inner Mongolia and the North China Plain (NCP)]. By comparison, the Tibetan Plateau (TP), Pearl River Delta (PRD) and Sichuan Basin (SCB) have relatively low CBHs (〈 2.4 km above ground level). In terms of seasonality, the CBH reaches its maximum in summer and minimum in winter. A low cloud base tends to occur frequently (〉 70%) over the TP, PRD and SCB. In contrast, at most sites over the Yangtze River Delta (YRD) and the NCP, about half the cloud belongs to the high-cloud category. The CBH does not exhibit marked diurnal variation in summer, throughout all CRN sites, probably due to the persistent cloud coverage caused by the East Asia Summer Monsson. To the best of our knowledge, this is the first CBH climatology produced from sounding measurements in China, and provides a useful reference for obtaining observational cloud base information.展开更多
AIM: To explore a new diagnostic index for differentiating the evaporative dry eye(EDE) subtypes by analysis of their respective clinical characteristics. METHODS: A cross-sectional study of 139 patients(139 eyes...AIM: To explore a new diagnostic index for differentiating the evaporative dry eye(EDE) subtypes by analysis of their respective clinical characteristics. METHODS: A cross-sectional study of 139 patients(139 eyes) with EDE who were enrolled and classified as obstructive meibomian gland dysfunction(MGD)(n=81) and non-obstructive MGD(n=58) EDE. All patients completed a Standard Patient Evaluation of Eye Dryness(SPEED) questionnaire and were evaluated for average lipid layer thickness(LLT), tear meniscus height measurements(TMH), tear break-up time(TBUT), ocular surface staining score, Schirmer I test(SIT), lid margin abnormalities, and meibomian gland function and morphology. RESULTS: Age, average LLT, TMH, scores of lid margin abnormalities, meibum quality, meibomian gland loss(MGL)(all P≤0.001), and TBUT(P=0.03) were all significantly different between obstructive MGD EDE patients and nonobstructive MGD EDE patients. Average LLT in obstructive MGD EDE was correlated with meibomian expressibility(r=-0.541, P≤0.001), lid margin abnormalities were marginally not significant(r=0.197, P=0.077), and TMH was correlated with MGL(total MGL: r=0.552, P≤0.001; upper MGL: r=0.438, P≤0.001; lower MGL: r=0.407, P≤0.001). Average LLT in non-obstructive MGD EDE, was correlated with meibomian expressibility and Oxford staining(r=-0.396, P=0.002; r=-0.461, P≤0.001). The efficiency of combining average LLT and TMH was optimal, with a sensitivity of 80.2% and a specificity of 74.1%. Obstructive MGD EDE patients had an average LLT≥69 nm and TMH≥0.25 mm, while non-obstructive MGD EDE patients had an average LLT〈69 nm and TMH〈0.25 mm.CONCLUSION: Obstructive MGD EDE and nonobstructive MGD EDE have significantly different clinical characteristics. Combining average LLT and TMH measurements enhanced their reliability for differentiating these two subtypes and provided guidance for offering more precise treatments for EDE subtypes.展开更多
As an important equipment for sea state remote sensing, high frequency surface wave radar (HFSWR) has received more and more attention. The conventional method for wave height inversion is based on the ratio of the ...As an important equipment for sea state remote sensing, high frequency surface wave radar (HFSWR) has received more and more attention. The conventional method for wave height inversion is based on the ratio of the integration of the second-order spectral continuum to that of the first-order region, where the strong external noise and the incorrect delineation of the first- and second-order Doppler spectral regions due to spectral aliasing are two major sources of errors in the wave height. To account for these factors, two more indices are introduced to the wave height estimation, i.e., the ratio of the maximum power of the second-or- der continuum to that of the Bragg spectral region (RSCB) and the ratio of the power of the second harmonic peak to that of the Bragg peak (RSHB). Both indices also have a strong correlation with the underlying wave height. On the basis of all these indices an empirical model is proposed to estimate the wave height. This method has been used in a three-months long experiment of the ocean state measuring and analyzing ra- dar, type S (OSMAR-S), which is a portable HFSWR with compact cross-loop/monopole receive antennas developed by Wuhan University since 2006. During the experiment in the Taiwan Strait, the significant wave height varied from 0 to 5 m. The significant wave heights estimated by the OSMAR-S correlate well with the data provided by the Oceanweather Inc. for comparison, with a correlation coefficient of 0.74 and a root mean square error (RMSE) of 0.77 m. The proposed method has made an effective improvement to the wave height estimation and thus a further step toward operational use of the OSMAR-S in the wave height extraction.展开更多
Background: The LiBackpack is a recently developed backpack light detection and ranging(LiDAR) system that combines the flexibility of human walking with the nearby measurement in all directions to provide a novel and...Background: The LiBackpack is a recently developed backpack light detection and ranging(LiDAR) system that combines the flexibility of human walking with the nearby measurement in all directions to provide a novel and efficient approach to LiDAR remote sensing, especially useful for forest structure inventory. However, the measurement accuracy and error sources have not been systematically explored for this system.Method: In this study, we used the LiBackpack D-50 system to measure the diameter at breast height(DBH) for a Pinus sylvestris tree population in the Saihanba National Forest Park of China, and estimated the accuracy of LiBackpack measurements of DBH based on comparisons with manually measured DBH values in the field. We determined the optimal vertical slice thickness of the point cloud sample for achieving the most stable and accurate LiBackpack measurements of DBH for this tree species, and explored the effects of different factors on the measurement error.Result: 1) A vertical thickness of 30 cm for the point cloud sample slice provided the highest fitting accuracy(adjusted R2= 0.89, Root Mean Squared Error(RMSE) = 20.85 mm);2) the point cloud density had a significant negative, logarithmic relationship with measurement error of DBH and it explained 35.1% of the measurement error;3) the LiBackpack measurements of DBH were generally smaller than the manually measured values, and the corresponding measurement errors increased for larger trees;and 4) by considering the effect of the point cloud density correction, a transitional model can be fitted to approximate field measured DBH using LiBackpackscanned value with satisfactory accuracy(adjusted R2= 0.920;RMSE = 14.77 mm), and decrease the predicting error by 29.2%. Our study confirmed the reliability of the novel LiBackpack system in accurate forestry inventory, set up a useful transitional model between scanning data and the traditional manual-measured data specifically for P.sylvestris, and implied the applicable substitution of this new approach for more species, with necessary parameter calibration.展开更多
A method for measurement of ultra-low flying height in head-disk spacing is described. Three different wavelengths are selected out from white light by filters to measure the spacing simultaneously. Besides solving th...A method for measurement of ultra-low flying height in head-disk spacing is described. Three different wavelengths are selected out from white light by filters to measure the spacing simultaneously. Besides solving the ambiguity problem, a more reliable result is achieved by using weighted average of measurement results from three different wavelengths, where the weight is dependent upon spacing. Fringe-bunching correction algorithm (FBC) and spot-tilling technique are adopted to suppress calibration and random errors. Moreover, incident bandwidth correction (IBC) method is introduced to compensate the error caused by low monochromaticity of incident light. Based on dynamic flying height tester (DFHT Ⅱ), with the redesigned of photo-electric conversion and signal acquirement module, an instrument has been developed. And comparing the experimental data from the instrument with those from a KLA-FHT D6, the discrepancy is less than 5%. It indicates that the instrument is suitable to perform ultra-low flying height measurement and satisfies the reauirement of magnetic heads manufacturing.展开更多
Haiyang-2A(HY-2A) is China's first ocean dynamic environment satellite and the radar altimeter is one of its main payloads. One of the main purposes of the radar altimeter is to measure the sea surface height(SSH...Haiyang-2A(HY-2A) is China's first ocean dynamic environment satellite and the radar altimeter is one of its main payloads. One of the main purposes of the radar altimeter is to measure the sea surface height(SSH). The SSH determined from the altimeter range measurements includes some range and geophysical corrections. These corrections largely affect the accuracy of the SSH measurements. The range and the geophysical corrections are reprocessed and the altimeter waveforms in HY-2A sensor interim geophysical data set records(S-IGDR) are retracked from June 1, 2014 to June 14, 2014, and the accuracy of the reprocessed SSH measurements is evaluated.The methods of the range and geophysical corrections used to reprocess HY-2A altimeter data are validated by using these methods to reprocess the Jason-2 range and geophysical corrections and comparing the results with the range and geophysical corrections in Jason-2 geophysical dataset records(GDR) product. A crossover analysis is used to evaluate the accuracy of the reprocessed HY-2A SSH measurements. The standard deviation(STD) of the crossover SSH differences for HY-2A is around 4.53 cm while the STD of the SSH differences between HY-2A and Jason-2 is around 5.22 cm. The performance of the reprocessed HY-2A SSH measurements is significantly improved with respect to the SSH measurements derived from HY-2A interim geophysical dataset records(IGDR)product. The 2015–2016 El Ni?o has been the strongest El Ni?o event since 1997–1998. The range and the geophysical corrections in HY-2A IGDR are reprocessed and sea level anomalies are used to monitor the2015–2016 El Ni?o. The results show that the HY-2A altimeter can well observe the 2015–2016 El Ni?o.展开更多
A dedicated GPS buoy is designed for calibration and validation(Cal/Val)of satellite altimeters since 2014.In order to evaluate the accuracy of the sea surface height(SSH)measured by the GPS buoy,twelve campaigns have...A dedicated GPS buoy is designed for calibration and validation(Cal/Val)of satellite altimeters since 2014.In order to evaluate the accuracy of the sea surface height(SSH)measured by the GPS buoy,twelve campaigns have been done within China sea area between 2014 and 2021.In six of these campaigns,two static Global Navigation Satellite System stations were installed at distances of<1 km and 19 km from the buoy to assess how the baseline length influenced the derived SSH from the buoy solutions.The GPS buoy data was processed using the GAMIT/GLOBK software+TRACK module and CSRS-PPP tool to achieve the SSH.The SSH was compared with conventionally tide gauge(TG)data to evaluate the accuracy of the buoy with the standard deviation of the height element.The results showed that the difference in the standard deviation of the SSH from the buoy and the TG was less than 16 mm.The SSHs processed with different ephemeris(Ultra-Rapid,Rapid,Final)were not significantly different.When the baseline length was 19 km,the SSH solution of the GPS buoy performed well,with standard bias of less than 26 mm between the heights measured by the buoy and TG,meaning that the buoy could be used for Cal/Val of altimeters.The bias between the Canadian Spatial Reference System-precise point positioning tool and the TRACK varied a lot,and some of them were over 130 mm.This deemed too high to be useful for Cal/Val of satellite altimeters.Moreover,the GPS buoy solutions processed by GAMIT/GLOBK software+TRACK module were used for in-orbit Cal/Val of HY-2B/C satellites in ten campaigns.The SSH and significant wave height of the altimeters showed good agreements with the GPS buoy solutions.展开更多
Silver indium cadmium(Ag–In–Cd) control rod is widely used in pressurized water reactor nuclear power plants,and it is continuously consumed in a high neutron flux environment. The mass ratio of ^(107)Ag in the Ag...Silver indium cadmium(Ag–In–Cd) control rod is widely used in pressurized water reactor nuclear power plants,and it is continuously consumed in a high neutron flux environment. The mass ratio of ^(107)Ag in the Ag–In–Cd control rod is 41.44%. To accurately calculate the consumption value of the control rod, a reliable neutron reaction cross section of the ^(107)Ag is required. Meanwhile,^(107)Ag is also an important weak r nucleus. Thus, the cross sections for neutron induced interactions with ^(107)Ag are very important both in nuclear energy and nuclear astrophysics. The(n, γ) cross section of ^(107)Ag has been measured in the energy range of 1–60 eV using a back streaming white neutron beam line at China spallation neutron source. The resonance parameters are extracted by an R-matrix code. All the cross section of ^(107)Ag and resonance parameters are given in this paper as datasets. The datasets are openly available at http://www.doi.org/10.11922/sciencedb.j00113.00010.展开更多
Plant height influences plant architecture,lodging resistance,and yield performance.It is modulated by gibberellic acid(GA)metabolism and signaling.DELLA proteins,acting as central repressors of GA signaling,integrate...Plant height influences plant architecture,lodging resistance,and yield performance.It is modulated by gibberellic acid(GA)metabolism and signaling.DELLA proteins,acting as central repressors of GA signaling,integrate various environmental and hormonal signals to regulate plant growth and development in Arabidopsis.We examined the role of two DELLA proteins,GmRGAa and GmRGAb,in soybean plant height control.Knockout of these proteins led to longer internodes and increased plant height,primarily by increasing cell elongation.GmRGAs functioned under different light conditions,including red,blue,and far-red light,to repress plant height.Interaction studies revealed that GmRGAs interacted with the blue light receptor GmCRY1b.Consistent with this,GmCRY1b partially regulated plant height via GmRGAs.Additionally,DELLA proteins were found to stabilize the protein GmSTF1/2,a key positive regulator of photomorphogenesis.This stabilization led to increased transcription of GmGA2ox-7b and subsequent reduction in plant height.This study enhances our understanding of DELLA-mediated plant height control,offering Gmrgaab mutants for soybean structure and yield optimization.展开更多
Atmospheric O_(x)(nitrogen dioxide(NO_(2))+ozone(O_(3)))can better reflect the local and regional change character-istics of oxidants compared to O_(3)alone,so obtaining O_(x)accurately and rapidly is the basis for ev...Atmospheric O_(x)(nitrogen dioxide(NO_(2))+ozone(O_(3)))can better reflect the local and regional change character-istics of oxidants compared to O_(3)alone,so obtaining O_(x)accurately and rapidly is the basis for evaluating the O_(3)production rate.Furthermore,O_(x)has proved to be a more representative indicator and can serve as a reflection of pollution prevention efficacy.A portable instrument for measuring atmospheric O_(x)and NO_(2)based on cavity ring-down spectroscopy(O_(x)/NO_(2)-CRDS)was developed in this work.The NO_(2)concentration is accurately mea-sured according to its absorption characteristic at 407.86 nm.Ambient O_(3)is converted into NO_(2)by chemical titration of high concentrations of nitrogen oxide(NO),and the O_(3)conversion efficiencies obtained are nearly 99%.The detection limit of the O_(x)/NO_(2)-CRDS system for O_(x)is 0.024 ppbv(0.1 s),and the overall uncertainty of the instrument is±6%.Moreover,the Kalman filtering technique was applied to improve the measurement accuracy of O_(x)/NO_(2)-CRDS.The system was applied in a comprehensive field observation campaign at Hefei Sci-ence Island from 26 to 30 September 2022,and the time concentration series and change characteristics of O_(x)and NO_(2)were obtained for five days.The measured O_(x)concentrations were compared with those of two com-mercial instruments,and the consistency was good(R^(2)=0.98),indicating that this system can be deployed to accurately and rapidly obtain the concentrations of atmospheric O_(x)and NO_(2).It will be a useful tool for assessing the atmospheric oxidation capacity and controlling O_(3)pollution.展开更多
In order to improve rib stability,failure criteria and instability mode of a thick coal seam with inter-band rock layer are analysed in this study.A three-dimensional mechanical model is established for the rib by con...In order to improve rib stability,failure criteria and instability mode of a thick coal seam with inter-band rock layer are analysed in this study.A three-dimensional mechanical model is established for the rib by considering the rock layer.A safety factor is defined foy the rib,and it is observed that the safety factor exhibits a positive correlation with the thickness and strength of the inter-band rock.A calculation method for determining critical parameters of the rock layer is presented to ensure the rib stability.It is revealed that incomplete propagation of the fracture at the hard rock constitutes a fundamental prerequisite for ensuring the rib stability.The influence of the position of the inter-band rock in the coal seam on failure mechanism of the rib was thoroughly investigated by developing a series of physical models for the rib at the face area.The best position for the inter-band rock in the coal seam is at a height of 1.5 m away from the roof line,which tends to provide a good stability state for the rib.For different inter-band rock positions,two ways of controlling rib by increasing supports stiffness and flexible grouting reinforcement are proposed.展开更多
The conversion of the cartesian coordinates of a point to its geodetic equivalent coordinates in reference to the geodetic ellipsoid is one of the main challenges in geodesy.The ellipse equation in the meridian plane ...The conversion of the cartesian coordinates of a point to its geodetic equivalent coordinates in reference to the geodetic ellipsoid is one of the main challenges in geodesy.The ellipse equation in the meridian plane significantly influences the value of the geodetic coordinates.This research analyzes this influence and how it can contribute to their solutions.The study investigates the mathematical relation between them and presents an exact formula relating to the geodetic height and the ellipse equation.In addition,a heuristic formula for the relation between the geodetic height and the ellipse equation is proposed,which is independent of the geodetic latitude and has a relative accuracy better than 99.9 %.The calculation is stable,and the cost is low.展开更多
To analyze the influence of movement in shallow-buried working faces with large mining heights on mine pressure manifestation, the key stratum at a working face was categorised using the 1313 top-coal caving face with...To analyze the influence of movement in shallow-buried working faces with large mining heights on mine pressure manifestation, the key stratum at a working face was categorised using the 1313 top-coal caving face with super great mining height under cover as a case study. The research combined theoretical analysis, field measurement, and numerical simulation to analyze the influencing mechanism of key stratum. Moreover, the research results were verified by numerical simulation and indicate that the sub-key stratum is prone to be broken to form a "cantilever beam" structure rather than a stable hinged structure during the excavation of working faces with super great mining heights. When the "cantilever beam" structure is unstable, a low pressure will occur on the working face, and the overlying strata will subside simultaneously with the sub-key stratum to induce the breakage of the primary key stratum: the breakage will further trigger the periodic breakage of sub-key stratum, causing a greater load on the working face. Finally, steps, and strength of weighting in the working face vary to be great or small alternatively. This is the main reason explaining why the 1313 working face shows strong mine pressure manifestation. The results provide theoretical and practical experience for forecasting and controlling mine pressure manifestation.展开更多
Utilizing the adopted average topographic density of 2670 kg/m^(3)in the reduction of gravity anomalies introduces errors attributed to topographic density variations,which consequently affect geoid modeling accuracy....Utilizing the adopted average topographic density of 2670 kg/m^(3)in the reduction of gravity anomalies introduces errors attributed to topographic density variations,which consequently affect geoid modeling accuracy.Furthermore,the mean gravity along the plumbline within the topography in the definition of Helmert orthometric heights is computed approximately by applying the Poincar e-Prey gravity reduction where the topographic density variations are disregarded.The Helmert orthometric heights of benchmarks are then affected by errors.These errors could be random or systematic depending on the specific geological setting of the region where the leveling network is physically established and/or the geoid model is determined.An example of systematic errors in orthometric heights can be given for large regions characterized by sediment or volcanic deposits,the density of which is substantially lower than the adopted topographic density used in Helmert's definition of heights.The same applies to geoid modeling errors.In this study,we investigate these errors in the Hong Kong territory,where topographic density is about 20%lower than the density of 2670 kg/m^(3).We use the digital rock density model to estimate the effect of topographic density variations on the geoid and orthometric heights.Our results show that this effect on the geoid and Helmert orthometric heights reach maxima of about 2.1 and 0.5 cm,respectively.Both results provide clear evidence that rock density models are essential in physical geodesy applications involving gravimetric geoid modeling and orthometric height determination despite some criticism that could be raised regarding the reliability of these density models.However,in regions dominated by sedimentary and igneous rocks,the geological information is essential in these applications because topographic densities are substantially lower than the average density of 2670 kg/m^(3),thus introducing large systematic errors in geoid and orthometric heights.展开更多
Rapeseed(Brassica napus L.)is one of the main oil crops in the world,and increasing its yield is of great significance for ensuring the safety of edible oil.Presently,improving rapeseed plant architecture is an effect...Rapeseed(Brassica napus L.)is one of the main oil crops in the world,and increasing its yield is of great significance for ensuring the safety of edible oil.Presently,improving rapeseed plant architecture is an effective way to increase rapeseed yield with higher planting density.However,the regulatory mechanism of rapeseed plant architecture is poorly understood.In this study,a dwarf rapeseed mutant dwarf08(df08)is obtained by ethyl methane sulfonate(EMS)-mutagenesis.The decrease in plant height of df08 is mainly caused by the reduction in main inflorescence length and first effective branch height and controlled by a single semi-dominant gene.The hybrid plants(F1)show a semi-dwarf phenotype.Through map-based cloning and transgenic assay,we confirm that the nonsynonymous single nucleotide variant(SNV)(C to T)in BnaC03.BIN2,which is homologous with Arabidopsis(Arabidopsis thaliana)BIN2,is responsible for the dwarfism of df08.BnaC03.BIN2 interacts with BnaBZR1/BES1 and involves in brassinosteroids(BRs)signal transduction.Proline to Leucine substitution in 284(P284L)enhances the protein stability of BnaC03.bin2-D,disrupts BRs signal transduction and affects the expression of genes regulating cell division,leading to dwarfism of df08.This study provides a new insight for the mechanism of rapeseed plant height regulation and creates an elite germplasm that can be used for genetic improvement of rapeseed architecture.展开更多
In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation o...In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation of CCD pixels was analyzed,and its expression was given.Then,based on the discrete expression of deformation fringes obtained after sampling,its Fourier spectrum expression was derived,resulting in an infinitely repeated"spectra island"in the frequency domain.Finally,on the basis of using a low-pass filter to remove high-order harmonic components and retaining only one fundamental frequency component,the inverse Fourier transform was used to reconstruct the signal strength.A method of reducing the sampling interval,i.e.,reducing the number of sampling points per fringe,was proposed to increase the ratio between the sampling frequency and the fundamental frequency of the grating.This was done to reconstruct the object’s surface shape more accurately under the condition of m>4.The basic principle was verified through simulation and experiment.In the simulation,the sampling intervals were 8 pixels,4 pixels,2 pixels,and 1 pixel,the maximum absolute error values obtained in the last three situations were 88.80%,38.38%,and 31.50%in the first situation,respectively,and the corresponding average absolute error values are 71.84%,43.27%,and 32.26%.It is demonstrated that the smaller the sampling interval,the better the recovery effect.Taking the same four sampling intervals in the experiment as in the simulation can also lead to the same conclusions.The simulated and experimental results show that reducing the sampling interval can improve the accuracy of object surface shape measurement and achieve better reconstruction results.展开更多
基金funded by the National Natural Science Foundation of China (Grant Nos. 42305150 and 42325501)the China Postdoctoral Science Foundation (Grant No. 2023M741774)。
文摘Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in passive satellite radiometer observations, few operational satellite CBH products are currently available. This study presents a new method for retrieving CBH from satellite radiometers. The method first uses the combined measurements of satellite radiometers and ground-based cloud radars to develop a lookup table(LUT) of effective cloud water content(ECWC), representing the vertically varying cloud water content. This LUT allows for the conversion of cloud water path to cloud geometric thickness(CGT), enabling the estimation of CBH as the difference between cloud top height and CGT. Detailed comparative analysis of CBH estimates from the state-of-the-art ECWC LUT are conducted against four ground-based millimeter-wave cloud radar(MMCR) measurements, and results show that the mean bias(correlation coefficient) is0.18±1.79 km(0.73), which is lower(higher) than 0.23±2.11 km(0.67) as derived from the combined measurements of satellite radiometers and satellite radar-lidar(i.e., Cloud Sat and CALIPSO). Furthermore, the percentages of the CBH biases within 250 m increase by 5% to 10%, which varies by location. This indicates that the CBH estimates from our algorithm are more consistent with ground-based MMCR measurements. Therefore, this algorithm shows great potential for further improvement of the CBH retrievals as ground-based MMCR are being increasingly included in global surface meteorological observing networks, and the improved CBH retrievals will contribute to better cloud radiative effect estimates.
基金financially supported by the National Natural Science Foundation of China(No.52204084)the Open Research Fund of the State Key Laboratory of Coal Resources and safe Mining,CUMT,China(No.SKLCRSM 23KF004)+3 种基金the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities),China(No.FRF-IDRY-GD22-002)the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange and Growth Program,China(No.QNXM20220009)the National Key R&D Program of China(Nos.2022YFC2905600 and 2022 YFC3004601)the Science,Technology&Innovation Project of Xiongan New Area,China(No.2023XAGG0061)。
文摘Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.
基金The Special Funds of State Oceanic Administration for Marine Commonweal Research under contract Nos 201105032-1and 201305032the Special Project of State Oceanic Administration of Poles Environmental Investigation and Assessment under contract No.CHINARE2012-02-04the European Space Agency (ESA)-Minister of Science and Technology of the Peoples Republic of China (MOST) Dragon 3 Cooperation Programme under contract No.10466
文摘HY-2 has been launched by China on August 16, 2011 which assembles multi-microwave remote sensing payloads in a body and has the ability of monitoring ocean dynamic environments. The HY-2 satellite data need to be calibrated and validated before being put into use. Based on the in-situ buoys from the Nation- al Data Buoy Center (NDBC), Ku-band significant wave heights (SWH, hs) of HY-2 altimeter are validated. Eleven months of HY-2 altimeter Level 2 products data are chose from October 1, 2011 to August 29, 2012. Using NDBC 60 buoys yield 902 collocations for HY-2 by adopting collocation criteria of 30 min for tempo- ral window and 50 km for a spatial window. An overall RMS difference of the SWH between HY-2 and buoy data is 0.297 m. A correlation coefficient between these is 0.964. An ordinary least squares (OLS) regression is performed with the buoy data as an independent variable and the altimeter data as a dependent vari- able. The regression equation of hs is hs (HY-2)=0.891 × hs (NDBC)+0.022. In addition, 2016 collocations are matched with temporal window of 30 rain at the crossing points of HY-2 and Jason-2 orbits. RMS difference of Ku-band SWH between the two data sets is 0.452 m.
基金the Ministry of Science and Technology of China (Grant Nos. 2017YFC1501701, 2017YFC1501401, 2017YFA0603501 and 2016YFA0600403)the National Natural Science Foundation of China (Grant Nos. 91544217, 41771399 and 41471301)+1 种基金the Chinese Academy of Meteorological Sciences (Grant Nos. 2017Z005 and 2017R001)the Fundamental Research Funds for the Central Universities (Grant No. 2017STUD17)
文摘Clouds are critical to the global radiation budget and hydrological cycle, but knowledge is still poor concerning the observed climatology of cloud-base height (CBH) in China. Based on fine-resolution sounding observations from the China Radiosonde Network (CRN), the method used to estimate CBH was modified, and uncertainty analyses indicated that the CBH is good enough. The accuracy of CBH estimation is verified by the comparison between the sounding-derived CBHs and those estimated from the micro-pulse lidar and millimeter-wave cloud radar. As such, the CBH climatology was compiled for the period 2006-16. Overall, the CBH exhibits large geographic variability across China, at both 0800 Local Standard Time (LST) and 2000 LST, irrespective of season. In addition, the summertime cloud base tends to be elevated to higher altitudes in dry regions [i.e., Inner Mongolia and the North China Plain (NCP)]. By comparison, the Tibetan Plateau (TP), Pearl River Delta (PRD) and Sichuan Basin (SCB) have relatively low CBHs (〈 2.4 km above ground level). In terms of seasonality, the CBH reaches its maximum in summer and minimum in winter. A low cloud base tends to occur frequently (〉 70%) over the TP, PRD and SCB. In contrast, at most sites over the Yangtze River Delta (YRD) and the NCP, about half the cloud belongs to the high-cloud category. The CBH does not exhibit marked diurnal variation in summer, throughout all CRN sites, probably due to the persistent cloud coverage caused by the East Asia Summer Monsson. To the best of our knowledge, this is the first CBH climatology produced from sounding measurements in China, and provides a useful reference for obtaining observational cloud base information.
基金Supported by the Provincial Frontier and Key Technology Innovation Special Fund of Guangdong Province(No.2015B020227001)the Guangzhou Science and Technology Plan Scientific Research Projects(No.201504010023)
文摘AIM: To explore a new diagnostic index for differentiating the evaporative dry eye(EDE) subtypes by analysis of their respective clinical characteristics. METHODS: A cross-sectional study of 139 patients(139 eyes) with EDE who were enrolled and classified as obstructive meibomian gland dysfunction(MGD)(n=81) and non-obstructive MGD(n=58) EDE. All patients completed a Standard Patient Evaluation of Eye Dryness(SPEED) questionnaire and were evaluated for average lipid layer thickness(LLT), tear meniscus height measurements(TMH), tear break-up time(TBUT), ocular surface staining score, Schirmer I test(SIT), lid margin abnormalities, and meibomian gland function and morphology. RESULTS: Age, average LLT, TMH, scores of lid margin abnormalities, meibum quality, meibomian gland loss(MGL)(all P≤0.001), and TBUT(P=0.03) were all significantly different between obstructive MGD EDE patients and nonobstructive MGD EDE patients. Average LLT in obstructive MGD EDE was correlated with meibomian expressibility(r=-0.541, P≤0.001), lid margin abnormalities were marginally not significant(r=0.197, P=0.077), and TMH was correlated with MGL(total MGL: r=0.552, P≤0.001; upper MGL: r=0.438, P≤0.001; lower MGL: r=0.407, P≤0.001). Average LLT in non-obstructive MGD EDE, was correlated with meibomian expressibility and Oxford staining(r=-0.396, P=0.002; r=-0.461, P≤0.001). The efficiency of combining average LLT and TMH was optimal, with a sensitivity of 80.2% and a specificity of 74.1%. Obstructive MGD EDE patients had an average LLT≥69 nm and TMH≥0.25 mm, while non-obstructive MGD EDE patients had an average LLT〈69 nm and TMH〈0.25 mm.CONCLUSION: Obstructive MGD EDE and nonobstructive MGD EDE have significantly different clinical characteristics. Combining average LLT and TMH measurements enhanced their reliability for differentiating these two subtypes and provided guidance for offering more precise treatments for EDE subtypes.
基金The National Natural Science Foundation of China under contract No.61371198the National Special Program for Key Scientific Instrument and Equipment Development of China under contract No.2013YQ160793the Natural Science Foundation of Jiangsu Province of China under contract No.BK2012199
文摘As an important equipment for sea state remote sensing, high frequency surface wave radar (HFSWR) has received more and more attention. The conventional method for wave height inversion is based on the ratio of the integration of the second-order spectral continuum to that of the first-order region, where the strong external noise and the incorrect delineation of the first- and second-order Doppler spectral regions due to spectral aliasing are two major sources of errors in the wave height. To account for these factors, two more indices are introduced to the wave height estimation, i.e., the ratio of the maximum power of the second-or- der continuum to that of the Bragg spectral region (RSCB) and the ratio of the power of the second harmonic peak to that of the Bragg peak (RSHB). Both indices also have a strong correlation with the underlying wave height. On the basis of all these indices an empirical model is proposed to estimate the wave height. This method has been used in a three-months long experiment of the ocean state measuring and analyzing ra- dar, type S (OSMAR-S), which is a portable HFSWR with compact cross-loop/monopole receive antennas developed by Wuhan University since 2006. During the experiment in the Taiwan Strait, the significant wave height varied from 0 to 5 m. The significant wave heights estimated by the OSMAR-S correlate well with the data provided by the Oceanweather Inc. for comparison, with a correlation coefficient of 0.74 and a root mean square error (RMSE) of 0.77 m. The proposed method has made an effective improvement to the wave height estimation and thus a further step toward operational use of the OSMAR-S in the wave height extraction.
基金supported by the projects (41790425,41971228) of Natural Science Foundation of China。
文摘Background: The LiBackpack is a recently developed backpack light detection and ranging(LiDAR) system that combines the flexibility of human walking with the nearby measurement in all directions to provide a novel and efficient approach to LiDAR remote sensing, especially useful for forest structure inventory. However, the measurement accuracy and error sources have not been systematically explored for this system.Method: In this study, we used the LiBackpack D-50 system to measure the diameter at breast height(DBH) for a Pinus sylvestris tree population in the Saihanba National Forest Park of China, and estimated the accuracy of LiBackpack measurements of DBH based on comparisons with manually measured DBH values in the field. We determined the optimal vertical slice thickness of the point cloud sample for achieving the most stable and accurate LiBackpack measurements of DBH for this tree species, and explored the effects of different factors on the measurement error.Result: 1) A vertical thickness of 30 cm for the point cloud sample slice provided the highest fitting accuracy(adjusted R2= 0.89, Root Mean Squared Error(RMSE) = 20.85 mm);2) the point cloud density had a significant negative, logarithmic relationship with measurement error of DBH and it explained 35.1% of the measurement error;3) the LiBackpack measurements of DBH were generally smaller than the manually measured values, and the corresponding measurement errors increased for larger trees;and 4) by considering the effect of the point cloud density correction, a transitional model can be fitted to approximate field measured DBH using LiBackpackscanned value with satisfactory accuracy(adjusted R2= 0.920;RMSE = 14.77 mm), and decrease the predicting error by 29.2%. Our study confirmed the reliability of the novel LiBackpack system in accurate forestry inventory, set up a useful transitional model between scanning data and the traditional manual-measured data specifically for P.sylvestris, and implied the applicable substitution of this new approach for more species, with necessary parameter calibration.
基金National Basic Research Program of China(973 Program,No. 2003CB716207)National Natural Science Foundation of China(No.50775091)
文摘A method for measurement of ultra-low flying height in head-disk spacing is described. Three different wavelengths are selected out from white light by filters to measure the spacing simultaneously. Besides solving the ambiguity problem, a more reliable result is achieved by using weighted average of measurement results from three different wavelengths, where the weight is dependent upon spacing. Fringe-bunching correction algorithm (FBC) and spot-tilling technique are adopted to suppress calibration and random errors. Moreover, incident bandwidth correction (IBC) method is introduced to compensate the error caused by low monochromaticity of incident light. Based on dynamic flying height tester (DFHT Ⅱ), with the redesigned of photo-electric conversion and signal acquirement module, an instrument has been developed. And comparing the experimental data from the instrument with those from a KLA-FHT D6, the discrepancy is less than 5%. It indicates that the instrument is suitable to perform ultra-low flying height measurement and satisfies the reauirement of magnetic heads manufacturing.
文摘Haiyang-2A(HY-2A) is China's first ocean dynamic environment satellite and the radar altimeter is one of its main payloads. One of the main purposes of the radar altimeter is to measure the sea surface height(SSH). The SSH determined from the altimeter range measurements includes some range and geophysical corrections. These corrections largely affect the accuracy of the SSH measurements. The range and the geophysical corrections are reprocessed and the altimeter waveforms in HY-2A sensor interim geophysical data set records(S-IGDR) are retracked from June 1, 2014 to June 14, 2014, and the accuracy of the reprocessed SSH measurements is evaluated.The methods of the range and geophysical corrections used to reprocess HY-2A altimeter data are validated by using these methods to reprocess the Jason-2 range and geophysical corrections and comparing the results with the range and geophysical corrections in Jason-2 geophysical dataset records(GDR) product. A crossover analysis is used to evaluate the accuracy of the reprocessed HY-2A SSH measurements. The standard deviation(STD) of the crossover SSH differences for HY-2A is around 4.53 cm while the STD of the SSH differences between HY-2A and Jason-2 is around 5.22 cm. The performance of the reprocessed HY-2A SSH measurements is significantly improved with respect to the SSH measurements derived from HY-2A interim geophysical dataset records(IGDR)product. The 2015–2016 El Ni?o has been the strongest El Ni?o event since 1997–1998. The range and the geophysical corrections in HY-2A IGDR are reprocessed and sea level anomalies are used to monitor the2015–2016 El Ni?o. The results show that the HY-2A altimeter can well observe the 2015–2016 El Ni?o.
文摘A dedicated GPS buoy is designed for calibration and validation(Cal/Val)of satellite altimeters since 2014.In order to evaluate the accuracy of the sea surface height(SSH)measured by the GPS buoy,twelve campaigns have been done within China sea area between 2014 and 2021.In six of these campaigns,two static Global Navigation Satellite System stations were installed at distances of<1 km and 19 km from the buoy to assess how the baseline length influenced the derived SSH from the buoy solutions.The GPS buoy data was processed using the GAMIT/GLOBK software+TRACK module and CSRS-PPP tool to achieve the SSH.The SSH was compared with conventionally tide gauge(TG)data to evaluate the accuracy of the buoy with the standard deviation of the height element.The results showed that the difference in the standard deviation of the SSH from the buoy and the TG was less than 16 mm.The SSHs processed with different ephemeris(Ultra-Rapid,Rapid,Final)were not significantly different.When the baseline length was 19 km,the SSH solution of the GPS buoy performed well,with standard bias of less than 26 mm between the heights measured by the buoy and TG,meaning that the buoy could be used for Cal/Val of altimeters.The bias between the Canadian Spatial Reference System-precise point positioning tool and the TRACK varied a lot,and some of them were over 130 mm.This deemed too high to be useful for Cal/Val of satellite altimeters.Moreover,the GPS buoy solutions processed by GAMIT/GLOBK software+TRACK module were used for in-orbit Cal/Val of HY-2B/C satellites in ten campaigns.The SSH and significant wave height of the altimeters showed good agreements with the GPS buoy solutions.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11875311, 11905274, 1705156, U2032146, 11865010, 11765015, and 1160509)the Natural Science Foundation of Inner Mongolia, China (Grant Nos. 2019JQ01 and 2018MS01009)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB34030000)。
文摘Silver indium cadmium(Ag–In–Cd) control rod is widely used in pressurized water reactor nuclear power plants,and it is continuously consumed in a high neutron flux environment. The mass ratio of ^(107)Ag in the Ag–In–Cd control rod is 41.44%. To accurately calculate the consumption value of the control rod, a reliable neutron reaction cross section of the ^(107)Ag is required. Meanwhile,^(107)Ag is also an important weak r nucleus. Thus, the cross sections for neutron induced interactions with ^(107)Ag are very important both in nuclear energy and nuclear astrophysics. The(n, γ) cross section of ^(107)Ag has been measured in the energy range of 1–60 eV using a back streaming white neutron beam line at China spallation neutron source. The resonance parameters are extracted by an R-matrix code. All the cross section of ^(107)Ag and resonance parameters are given in this paper as datasets. The datasets are openly available at http://www.doi.org/10.11922/sciencedb.j00113.00010.
基金supported by the Sci-Tech Innovation 2030(2022ZD0400701-2)Agricultural Science and Technology Innovation Program of CAAS+1 种基金the National Natural Science Foundation of China(31871705)the Central Public-Interest Scientific Institution Basal Research Fund。
文摘Plant height influences plant architecture,lodging resistance,and yield performance.It is modulated by gibberellic acid(GA)metabolism and signaling.DELLA proteins,acting as central repressors of GA signaling,integrate various environmental and hormonal signals to regulate plant growth and development in Arabidopsis.We examined the role of two DELLA proteins,GmRGAa and GmRGAb,in soybean plant height control.Knockout of these proteins led to longer internodes and increased plant height,primarily by increasing cell elongation.GmRGAs functioned under different light conditions,including red,blue,and far-red light,to repress plant height.Interaction studies revealed that GmRGAs interacted with the blue light receptor GmCRY1b.Consistent with this,GmCRY1b partially regulated plant height via GmRGAs.Additionally,DELLA proteins were found to stabilize the protein GmSTF1/2,a key positive regulator of photomorphogenesis.This stabilization led to increased transcription of GmGA2ox-7b and subsequent reduction in plant height.This study enhances our understanding of DELLA-mediated plant height control,offering Gmrgaab mutants for soybean structure and yield optimization.
基金supported by the National Natural Science Foundation of China[grant number 62275250]the Natural Science Foundation of Anhui Province[grant number 2008085J20]+1 种基金the National Key R&D Program of China[grant number 2022YFC3700301]the Anhui Provincial Key R&D Program[grant number 2022l07020022]。
文摘Atmospheric O_(x)(nitrogen dioxide(NO_(2))+ozone(O_(3)))can better reflect the local and regional change character-istics of oxidants compared to O_(3)alone,so obtaining O_(x)accurately and rapidly is the basis for evaluating the O_(3)production rate.Furthermore,O_(x)has proved to be a more representative indicator and can serve as a reflection of pollution prevention efficacy.A portable instrument for measuring atmospheric O_(x)and NO_(2)based on cavity ring-down spectroscopy(O_(x)/NO_(2)-CRDS)was developed in this work.The NO_(2)concentration is accurately mea-sured according to its absorption characteristic at 407.86 nm.Ambient O_(3)is converted into NO_(2)by chemical titration of high concentrations of nitrogen oxide(NO),and the O_(3)conversion efficiencies obtained are nearly 99%.The detection limit of the O_(x)/NO_(2)-CRDS system for O_(x)is 0.024 ppbv(0.1 s),and the overall uncertainty of the instrument is±6%.Moreover,the Kalman filtering technique was applied to improve the measurement accuracy of O_(x)/NO_(2)-CRDS.The system was applied in a comprehensive field observation campaign at Hefei Sci-ence Island from 26 to 30 September 2022,and the time concentration series and change characteristics of O_(x)and NO_(2)were obtained for five days.The measured O_(x)concentrations were compared with those of two com-mercial instruments,and the consistency was good(R^(2)=0.98),indicating that this system can be deployed to accurately and rapidly obtain the concentrations of atmospheric O_(x)and NO_(2).It will be a useful tool for assessing the atmospheric oxidation capacity and controlling O_(3)pollution.
基金financial support from the National Key Research and Development Program of China (No.2023YFC2907501)the National Natural Science Foundation of China (No.52374106)the Fundamental Research Funds for the Central Universities (No.2023ZKPYNY01)。
文摘In order to improve rib stability,failure criteria and instability mode of a thick coal seam with inter-band rock layer are analysed in this study.A three-dimensional mechanical model is established for the rib by considering the rock layer.A safety factor is defined foy the rib,and it is observed that the safety factor exhibits a positive correlation with the thickness and strength of the inter-band rock.A calculation method for determining critical parameters of the rock layer is presented to ensure the rib stability.It is revealed that incomplete propagation of the fracture at the hard rock constitutes a fundamental prerequisite for ensuring the rib stability.The influence of the position of the inter-band rock in the coal seam on failure mechanism of the rib was thoroughly investigated by developing a series of physical models for the rib at the face area.The best position for the inter-band rock in the coal seam is at a height of 1.5 m away from the roof line,which tends to provide a good stability state for the rib.For different inter-band rock positions,two ways of controlling rib by increasing supports stiffness and flexible grouting reinforcement are proposed.
文摘The conversion of the cartesian coordinates of a point to its geodetic equivalent coordinates in reference to the geodetic ellipsoid is one of the main challenges in geodesy.The ellipse equation in the meridian plane significantly influences the value of the geodetic coordinates.This research analyzes this influence and how it can contribute to their solutions.The study investigates the mathematical relation between them and presents an exact formula relating to the geodetic height and the ellipse equation.In addition,a heuristic formula for the relation between the geodetic height and the ellipse equation is proposed,which is independent of the geodetic latitude and has a relative accuracy better than 99.9 %.The calculation is stable,and the cost is low.
基金Project(2015-29)supported by Jiangsu Distinguished Professor,ChinaProject(BRA2015311)supported by the Jiangsu Province Fourth 333 Engineering,China
文摘To analyze the influence of movement in shallow-buried working faces with large mining heights on mine pressure manifestation, the key stratum at a working face was categorised using the 1313 top-coal caving face with super great mining height under cover as a case study. The research combined theoretical analysis, field measurement, and numerical simulation to analyze the influencing mechanism of key stratum. Moreover, the research results were verified by numerical simulation and indicate that the sub-key stratum is prone to be broken to form a "cantilever beam" structure rather than a stable hinged structure during the excavation of working faces with super great mining heights. When the "cantilever beam" structure is unstable, a low pressure will occur on the working face, and the overlying strata will subside simultaneously with the sub-key stratum to induce the breakage of the primary key stratum: the breakage will further trigger the periodic breakage of sub-key stratum, causing a greater load on the working face. Finally, steps, and strength of weighting in the working face vary to be great or small alternatively. This is the main reason explaining why the 1313 working face shows strong mine pressure manifestation. The results provide theoretical and practical experience for forecasting and controlling mine pressure manifestation.
基金supported by the Hong Kong GRF RGC project 15217222:“Modernization of the leveling network in the Hong Kong territories”。
文摘Utilizing the adopted average topographic density of 2670 kg/m^(3)in the reduction of gravity anomalies introduces errors attributed to topographic density variations,which consequently affect geoid modeling accuracy.Furthermore,the mean gravity along the plumbline within the topography in the definition of Helmert orthometric heights is computed approximately by applying the Poincar e-Prey gravity reduction where the topographic density variations are disregarded.The Helmert orthometric heights of benchmarks are then affected by errors.These errors could be random or systematic depending on the specific geological setting of the region where the leveling network is physically established and/or the geoid model is determined.An example of systematic errors in orthometric heights can be given for large regions characterized by sediment or volcanic deposits,the density of which is substantially lower than the adopted topographic density used in Helmert's definition of heights.The same applies to geoid modeling errors.In this study,we investigate these errors in the Hong Kong territory,where topographic density is about 20%lower than the density of 2670 kg/m^(3).We use the digital rock density model to estimate the effect of topographic density variations on the geoid and orthometric heights.Our results show that this effect on the geoid and Helmert orthometric heights reach maxima of about 2.1 and 0.5 cm,respectively.Both results provide clear evidence that rock density models are essential in physical geodesy applications involving gravimetric geoid modeling and orthometric height determination despite some criticism that could be raised regarding the reliability of these density models.However,in regions dominated by sedimentary and igneous rocks,the geological information is essential in these applications because topographic densities are substantially lower than the average density of 2670 kg/m^(3),thus introducing large systematic errors in geoid and orthometric heights.
基金supported by the National Key Research and Development Program of China(2022YFD1200401)the National Natural Science Foundation of China(U22A20477,32172095)the Central Public-interest Scientific Institution Basal Research Fund(Y2022QC21).
文摘Rapeseed(Brassica napus L.)is one of the main oil crops in the world,and increasing its yield is of great significance for ensuring the safety of edible oil.Presently,improving rapeseed plant architecture is an effective way to increase rapeseed yield with higher planting density.However,the regulatory mechanism of rapeseed plant architecture is poorly understood.In this study,a dwarf rapeseed mutant dwarf08(df08)is obtained by ethyl methane sulfonate(EMS)-mutagenesis.The decrease in plant height of df08 is mainly caused by the reduction in main inflorescence length and first effective branch height and controlled by a single semi-dominant gene.The hybrid plants(F1)show a semi-dwarf phenotype.Through map-based cloning and transgenic assay,we confirm that the nonsynonymous single nucleotide variant(SNV)(C to T)in BnaC03.BIN2,which is homologous with Arabidopsis(Arabidopsis thaliana)BIN2,is responsible for the dwarfism of df08.BnaC03.BIN2 interacts with BnaBZR1/BES1 and involves in brassinosteroids(BRs)signal transduction.Proline to Leucine substitution in 284(P284L)enhances the protein stability of BnaC03.bin2-D,disrupts BRs signal transduction and affects the expression of genes regulating cell division,leading to dwarfism of df08.This study provides a new insight for the mechanism of rapeseed plant height regulation and creates an elite germplasm that can be used for genetic improvement of rapeseed architecture.
文摘In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation of CCD pixels was analyzed,and its expression was given.Then,based on the discrete expression of deformation fringes obtained after sampling,its Fourier spectrum expression was derived,resulting in an infinitely repeated"spectra island"in the frequency domain.Finally,on the basis of using a low-pass filter to remove high-order harmonic components and retaining only one fundamental frequency component,the inverse Fourier transform was used to reconstruct the signal strength.A method of reducing the sampling interval,i.e.,reducing the number of sampling points per fringe,was proposed to increase the ratio between the sampling frequency and the fundamental frequency of the grating.This was done to reconstruct the object’s surface shape more accurately under the condition of m>4.The basic principle was verified through simulation and experiment.In the simulation,the sampling intervals were 8 pixels,4 pixels,2 pixels,and 1 pixel,the maximum absolute error values obtained in the last three situations were 88.80%,38.38%,and 31.50%in the first situation,respectively,and the corresponding average absolute error values are 71.84%,43.27%,and 32.26%.It is demonstrated that the smaller the sampling interval,the better the recovery effect.Taking the same four sampling intervals in the experiment as in the simulation can also lead to the same conclusions.The simulated and experimental results show that reducing the sampling interval can improve the accuracy of object surface shape measurement and achieve better reconstruction results.