Tsunami ran-up height is a significant parameter for dimensions of coastal structures. In the present study, tsunami run-up heights are estimated by three different Artificial Neural Network (ANN) models, i.e. Feed ...Tsunami ran-up height is a significant parameter for dimensions of coastal structures. In the present study, tsunami run-up heights are estimated by three different Artificial Neural Network (ANN) models, i.e. Feed Forward Back Propagation (FFBP), Radial Basis Functions (RBF) and Generalized Regression Neural Network (GRNN). As the input for the ANN configuration, the wave height (H) values are employed. It is shown that the tsunami ran-up height values are closely approximated with all of the applied ANN methods. The ANN estimations are slightly superior to those of the empirical equation. It can be seen that the ANN applications are especially significant in the absence of adequate number of laboratory experiments. The results also prove that the available experiment data set can be extended with ANN simulations. This may be helpful to decrease the burden of the experimental studies and to supply results for comparisons.展开更多
Factures caused by deformation and destruction of bedrocks over coal seams can easily lead to water flooding(inrush)in mines,a threat to safety production.Fractures with high hydraulic conductivity are good watercours...Factures caused by deformation and destruction of bedrocks over coal seams can easily lead to water flooding(inrush)in mines,a threat to safety production.Fractures with high hydraulic conductivity are good watercourses as well as passages for inrush in mines and tunnels.An accurate height prediction of water flowing fractured zones is a key issue in today's mine water prevention and control.The theory of leveraging BP artificial neural network in height prediction of water flowing fractured zones is analysed and applied in Qianjiaying Mine as an example in this paper.Per the comparison with traditional calculation results,the BP artificial neural network better reflects the geological conditions of the research mine areas and produces more objective,accurate and reasonable results,which can be applied to predict the height of water flowing fractured zones.展开更多
Artificial neural networks (ANN) are employed using different combinations among the surface friction velocity u*, surface buoyancy flux Bs, free-flow stability N, Coriolis parameter f, and surface roughness length z0...Artificial neural networks (ANN) are employed using different combinations among the surface friction velocity u*, surface buoyancy flux Bs, free-flow stability N, Coriolis parameter f, and surface roughness length z0 from large-eddy simulation data as inputs to investigate which variables are essential in determining the stable boundary layer(SBL) height h. In addition, the performances of several conventional linear SBL height parameterizations are evaluated. ANN results indicate that the surface friction velocity u* is the most predominant variable in the estimation of SBL height h. When u* is absent, the secondly important variable is the surface buoyancy flux Bs. The relevance of N, f, and z0 to h is also discussed;f affects more than N does, and z0 shows to be the most insensitive variable to h.展开更多
In recent years, development of a proper country-specific height system has become a major challenge for the scholars and specialists working in the field of geodesy. The National Geodetic Services of many countries a...In recent years, development of a proper country-specific height system has become a major challenge for the scholars and specialists working in the field of geodesy. The National Geodetic Services of many countries are trying to establish a new system that can provide the customers and decision-makers with high accuracy basic geodetic data obtained by modern satellite measurements. Although, Mongolia has a long tradition with geodesy and land surveying, the country still lacks a refined height system that can be effectively used for mapping and other purposes. In the present study, we tried to solve the problem related to the Mongolian height system using of a modern satellite technology. The research had some very important results: 1) evaluation of the main height network and height system of Mongolia, 2) development of a new method for calculating the normal height system in Mongolia, and 3) creation of the height unified system by considering surface potential of the global ellipsoidal level as normal.展开更多
由于复杂海况随机海浪对船舶航行及人命安全造成威胁,通过构建海浪波高预测模型实现高海况海浪预警对提升航行安全具有重要意义。针对海浪波高预测问题,本文提出一种MAF-GWO-LSTM预测模型。首先利用滑动平均滤波器(Moving Average Filte...由于复杂海况随机海浪对船舶航行及人命安全造成威胁,通过构建海浪波高预测模型实现高海况海浪预警对提升航行安全具有重要意义。针对海浪波高预测问题,本文提出一种MAF-GWO-LSTM预测模型。首先利用滑动平均滤波器(Moving Average Filter,MAF)对实测海浪数据进行处理得到有效波高的光滑趋势序列,作为预测模型的输入训练集;再选用长短时记忆神经网络LSTM作为预测浪模型,依据灰狼优化算法(Grey Wolf Optimization,GWO)对滑动窗口MA及神经网络训练过程中的参数进行自适应寻优,并以南海实测有效波高数据进行验证。研究结果表明,采用MAF滤波有利于提取海浪有效波高特征,再通过GWO-LSTM预测模型优化神经网络参数,最优参数下波高预报精度达到R^(2)=0.991 0。论文研究可为高海况下海浪有效波高预报预警提供一种有效手段。展开更多
文摘Tsunami ran-up height is a significant parameter for dimensions of coastal structures. In the present study, tsunami run-up heights are estimated by three different Artificial Neural Network (ANN) models, i.e. Feed Forward Back Propagation (FFBP), Radial Basis Functions (RBF) and Generalized Regression Neural Network (GRNN). As the input for the ANN configuration, the wave height (H) values are employed. It is shown that the tsunami ran-up height values are closely approximated with all of the applied ANN methods. The ANN estimations are slightly superior to those of the empirical equation. It can be seen that the ANN applications are especially significant in the absence of adequate number of laboratory experiments. The results also prove that the available experiment data set can be extended with ANN simulations. This may be helpful to decrease the burden of the experimental studies and to supply results for comparisons.
基金funded by Royalty and Price of the Mining Right of the Ministry of Finance and the Ministry of Land and Resources in 2012 ([2012]145)
文摘Factures caused by deformation and destruction of bedrocks over coal seams can easily lead to water flooding(inrush)in mines,a threat to safety production.Fractures with high hydraulic conductivity are good watercourses as well as passages for inrush in mines and tunnels.An accurate height prediction of water flowing fractured zones is a key issue in today's mine water prevention and control.The theory of leveraging BP artificial neural network in height prediction of water flowing fractured zones is analysed and applied in Qianjiaying Mine as an example in this paper.Per the comparison with traditional calculation results,the BP artificial neural network better reflects the geological conditions of the research mine areas and produces more objective,accurate and reasonable results,which can be applied to predict the height of water flowing fractured zones.
文摘Artificial neural networks (ANN) are employed using different combinations among the surface friction velocity u*, surface buoyancy flux Bs, free-flow stability N, Coriolis parameter f, and surface roughness length z0 from large-eddy simulation data as inputs to investigate which variables are essential in determining the stable boundary layer(SBL) height h. In addition, the performances of several conventional linear SBL height parameterizations are evaluated. ANN results indicate that the surface friction velocity u* is the most predominant variable in the estimation of SBL height h. When u* is absent, the secondly important variable is the surface buoyancy flux Bs. The relevance of N, f, and z0 to h is also discussed;f affects more than N does, and z0 shows to be the most insensitive variable to h.
文摘In recent years, development of a proper country-specific height system has become a major challenge for the scholars and specialists working in the field of geodesy. The National Geodetic Services of many countries are trying to establish a new system that can provide the customers and decision-makers with high accuracy basic geodetic data obtained by modern satellite measurements. Although, Mongolia has a long tradition with geodesy and land surveying, the country still lacks a refined height system that can be effectively used for mapping and other purposes. In the present study, we tried to solve the problem related to the Mongolian height system using of a modern satellite technology. The research had some very important results: 1) evaluation of the main height network and height system of Mongolia, 2) development of a new method for calculating the normal height system in Mongolia, and 3) creation of the height unified system by considering surface potential of the global ellipsoidal level as normal.
文摘由于复杂海况随机海浪对船舶航行及人命安全造成威胁,通过构建海浪波高预测模型实现高海况海浪预警对提升航行安全具有重要意义。针对海浪波高预测问题,本文提出一种MAF-GWO-LSTM预测模型。首先利用滑动平均滤波器(Moving Average Filter,MAF)对实测海浪数据进行处理得到有效波高的光滑趋势序列,作为预测模型的输入训练集;再选用长短时记忆神经网络LSTM作为预测浪模型,依据灰狼优化算法(Grey Wolf Optimization,GWO)对滑动窗口MA及神经网络训练过程中的参数进行自适应寻优,并以南海实测有效波高数据进行验证。研究结果表明,采用MAF滤波有利于提取海浪有效波高特征,再通过GWO-LSTM预测模型优化神经网络参数,最优参数下波高预报精度达到R^(2)=0.991 0。论文研究可为高海况下海浪有效波高预报预警提供一种有效手段。