The planetary boundary layer height(PBLH) was calculated using the radiosonde sounding data, including120 L-band operational sites and 8 GPS sites in China. The diurnal and seasonal variations of PBLH were analyzed us...The planetary boundary layer height(PBLH) was calculated using the radiosonde sounding data, including120 L-band operational sites and 8 GPS sites in China. The diurnal and seasonal variations of PBLH were analyzed using radiosonde sounding(OBS-PBLH) and ERA data(ERA-PBLH). Based on comparison and error analyses, we discussed the main error sources in these data. The frequency distributions of PBLH variations under different regimes(the convective boundary layer, the neutral residual layer, and the stable boundary layer) can be well fitted by a Gamma distribution and the shape parameter k and scale parameter s values were obtained for different regions of China. The variation characteristics of PBLH were found in summer under these three regimes for different regions. The relationships between PBLH and PM_(2.5) concentration generally follow a power law under very low or no precipitation conditions in the region of Beijing, Tianjin and Hebei in summer. The results usually deviated from this power distribution only under strong precipitation or high relative humidity conditions because of the effects of hygroscopic growth of aerosols or wet deposition. The OBS-PBLH provided a reasonable spatial distribution relative to ERA-PBLH.This indicates that OBS-PBLH has the potential for identifying the variation of PM_(2.5) concentration.展开更多
[Objective] This study aimed to investigate the genetic effects and heterosis of plant height and internode traits of japonica-indica hybrid rice. [Methed] Incomplete diallel crosses were made between six japonica CMS...[Objective] This study aimed to investigate the genetic effects and heterosis of plant height and internode traits of japonica-indica hybrid rice. [Methed] Incomplete diallel crosses were made between six japonica CMS lines and nine indica widecompatibility restorer lines; the genetic effects of plant height and internode traits of japonica-indica hybrid rice were analyzed using the additive-dominance genetic model. [Result] The ple, nt height, panicle length and the length of internode 1 of japonica-in- dica hybrid rice were mainly controlled by the additive effects; but the length of in- ternode 3, internode 4 and internode 5 were mainly controlled by dominance effects. Both the narrow sense heritability and broad sense heritability of plant height, panicle length, number of elongated internodes and length of most internodes reached signifi- cance level. The positive phenotypic correlation, genetic correlation, additive correla- tion and dominance correlation between plant height and panicle length, number of e- longated internodes and internode length were significant; and most of the other paired traits were significantly positively correlated. Heterosis analysis showed that the positive heterosis value over mid-parent and positive heterosis value over better- parent of the length of internode 3, internode 4, internode 5 and internode 6 reached significant level, and the heterosis value over mid-parent of plant height reached extreme significance level. [Conclusion] This study will provide reliable theoretical basis for the genetic improvement and heterosis utilization of plant height and internode traits in japonica-indica hybrid rice.展开更多
To understand better the impact on mist net capture rates of the activity height of birds, light intensity, bird richness and abundance, we compared data from mist nets and point counts at the Jianfengling Forest Area...To understand better the impact on mist net capture rates of the activity height of birds, light intensity, bird richness and abundance, we compared data from mist nets and point counts at the Jianfengling Forest Area, Hainan Island. Mist-nets were operated for a total of 7135 net-hours. A total of 587 individuals of 45 bird species were captured. The total mean capture rate was 8.6 ± 10.4 per 100 net-hours. A total of 4932 individuals of 107 bird species were recorded by visual observation alone and 7616 individuals of 120 species were recorded in a visual and aural combination. The Grey-cheeked Fulvetta (Alcippe morrisonia) was the most abundant species, accounting for 38.7% of total captures, 27.9% of visual observations and 22.2% of visual + aural observations. The capture number was correlated with the number observed. Thirty-one species were more likely to be captured than observed. Canopy species, such as members of the Corvidae and Dicruridae, were seldom captured. For all ground feeding species, the capture number was greater than that of observation. Some cryptic species, such as the Lesser Wren Babbler (Napothera epilepidota), Spotnecked Babbler (Stachyris striolata) and Cuckoo Owl (Glaucidium cuculoides) also had a higher relative capture rate than that of observations. There was a significant relationship between light intensity and the number of birds captured.展开更多
[Objective] The aim was to carry out the genetic analysis on plant height of rice(Oryza sativa L.)cultivated in different seasons.[Method] Three rice parents with great difference in plant height including CB1(83.1...[Objective] The aim was to carry out the genetic analysis on plant height of rice(Oryza sativa L.)cultivated in different seasons.[Method] Three rice parents with great difference in plant height including CB1(83.1 cm),CB4(105.5 cm)and CB7(115.6 cm)were chosen to construct two parental combinations:CB1×CB4 and CB7×CB4,and the corresponding filial generations P1,F1,P2,B1,B2 and F2 were obtained.The 6 populations were planted in middle and late seasons respectively to measure their height traits.The Akaike's information criterion(AIC)of the mixed major gene and polygene model was used to indentify the existence of major genes affecting quantitative traits in B1,B2,F2 populations.When the major genes existed,the genetic effects of the major genes and polygenes and their genetic variance were estimated through segregation analysis.[Result] One additive major gene plus additive-dominance polygenes was the most fitted genetic model for the trait in all B1,B2,F2 populations in two planting seasons.The heritability values of the major genes varied from 38.63% to 78.53% and those of polygenes varied from 1.72% to 36.04%,and the total heritability values were 45.52-92.93%.The additive effect d value of the two genetic populations under two planting seasons was-4.56,-9.16,-7.19,and-9.38,respectively,as suggested that additive effect of the major genes would decrease the express of the plant height trait.[Conclusion] The heritability of plant height trait was affected by planting seasons and the combinations clearly as a whole.展开更多
The adjusted GPS height is the height above the surface of the WGS-84ellipsoid. It is necessary to convert a GPS height into a normal height in engineering. The conicoidfitting method (CFM) and the neural networks met...The adjusted GPS height is the height above the surface of the WGS-84ellipsoid. It is necessary to convert a GPS height into a normal height in engineering. The conicoidfitting method (CFM) and the neural networks method (NNM) are used for this purpose, but each ofthem has its advantages and disadvantages. After studying these two methods, a new method (abbr.CF&NNM) is conceived. The procedure of the CF&NNM is introduced. A practical engineering example isused to study these three different methods. The results by the three methods are listed. The CF&NNMmethod can produce better results than either the CFM or the NNM in deriving normal height from GPSheight. The theory of the CF&NNM method is analyzed.展开更多
The developmental genetics of plant height was analyzed from two groups of three-line indica hybrid rice at two environmental conditions based on the NCII design, using the additive-dominant developmental genetics mod...The developmental genetics of plant height was analyzed from two groups of three-line indica hybrid rice at two environmental conditions based on the NCII design, using the additive-dominant developmental genetics models and the statistic methods. The results showed that the rice genotypes and environmental conditions could both affect plant height, and the effects of environment on plant height decreased gradually with plant development. Additive and dominant effects both governed the performance of plant height at all developmental stages. However, the degrees of effect varied among the rice genotypes. Moreover, the interaction between environments and genotypes also affected plant height. The genetic effects differed at most developmental stages. Furthermore, the expressJon of additive effect was more active than that of dominant effect. Conditional interaction effects with environment also influenced plant height during genetic development, especially at the eady stage. Mid-parent heterosis (HMP) increased gradually with the developmental stage of plant height, and maximized at the latest stage, whereas the heterosis over the better parent (HBP) showed small differences among the genotypes, and kept stable at the later stage, with positive numeric value. At most developmental stages, conditional HMP was positively significant, while conditional HBP was negatively significant. All above results suggest that HMP and HBP have some new expressions in all developmental periods and the levels and directions are quite different.展开更多
Radiative aerosols are known to influence the surface energy budget and hence the evolution of the planetary boundary layer. In this study, we develop a method to estimate the aerosol-induced reduction in the planetar...Radiative aerosols are known to influence the surface energy budget and hence the evolution of the planetary boundary layer. In this study, we develop a method to estimate the aerosol-induced reduction in the planetary boundary layer height (PBLH) based on two years of ground-based measurements at a site, the Station for Observing Regional Processes of the Earth System (SORPES), at Nanjing University, China, and radiosonde data from the meteorological station of Nanjing. The observations show that increased aerosol loads lead to a mean decrease of 67.1 W m-2 for downward shortwave radiation (DSR) and a mean increase of 19.2 W m-2 for downward longwave radiation (DLR), as well as a mean decrease of 9.6 W m-2 for the surface sensible heat flux (SHF) in the daytime. The relative variations of DSR, DLR and SHF are shown as a function of the increment of column mass concentration of particulate matter (PM2.5). High aerosol loading can significantly increase the atmospheric stability in the planetary boundary layer during both daytime and nighttime. Based on the statistical relationship between SHF and PM2.5 column mass concentrations, the SHF under clean atmospheric conditions (same as the background days) is derived. In this case, the derived SHF, together with observed SHF, are then used to estimate changes in the PBLH related to aerosols. Our results suggest that the PBLH decreases more rapidly with increasing aerosol loading at high aerosol loading. When the daytime mean column mass concentration of PM2.5 reaches 200 mg m-2, the decrease in the PBLH at 1600 LST (local standard time) is about 450 m.展开更多
Utilizing aircraft sounding data collected from the Surface Heat Budget of the Arctic Ocean (SHEBA, 1998) campaign, the authors evaluated commonly-used profile methods for Arctic ABL height estimation by validating ag...Utilizing aircraft sounding data collected from the Surface Heat Budget of the Arctic Ocean (SHEBA, 1998) campaign, the authors evaluated commonly-used profile methods for Arctic ABL height estimation by validating against the'true'ABL height from aircraft sounding profiles, where ABL height is defined as the top of the layer with significant turbulence. Furthermore, the best performing method was used to estimate ABL height from the one-year GPS soundings obtained during SHEBA (October 1997-October 1998). It was found that the temperature gradient method produces a reliable estimate of ABL height. Additionally, the authors determined optimal threshold values of temperature gradient for stable boundary layer (SBL) and convective boundary layer (CBL) to be 6.5 K/100 m and 1.0 K/100 m, respectively. The maximum ABL height during the year was 1150 m occurred in May. Median values of Arctic ABL height in May, June, July, and August were 400 m, 430 m, 180 m, and 320 m, respectively. Arctic ABL heights are clearly higher in the spring than in the summer.展开更多
To explore new operational forecasting methods of waves,a forecasting model for wave heights at three stations in the Bohai Sea has been developed.This model is based on long short-term memory(LSTM)neural network with...To explore new operational forecasting methods of waves,a forecasting model for wave heights at three stations in the Bohai Sea has been developed.This model is based on long short-term memory(LSTM)neural network with sea surface wind and wave heights as training samples.The prediction performance of the model is evaluated,and the error analysis shows that when using the same set of numerically predicted sea surface wind as input,the prediction error produced by the proposed LSTM model at Sta.N01 is 20%,18%and 23%lower than the conventional numerical wave models in terms of the total root mean square error(RMSE),scatter index(SI)and mean absolute error(MAE),respectively.Particularly,for significant wave height in the range of 3–5 m,the prediction accuracy of the LSTM model is improved the most remarkably,with RMSE,SI and MAE all decreasing by 24%.It is also evident that the numbers of hidden neurons,the numbers of buoys used and the time length of training samples all have impact on the prediction accuracy.However,the prediction does not necessary improve with the increase of number of hidden neurons or number of buoys used.The experiment trained by data with the longest time length is found to perform the best overall compared to other experiments with a shorter time length for training.Overall,long short-term memory neural network was proved to be a very promising method for future development and applications in wave forecasting.展开更多
Background:The assessment of change in forest ecosystems,especially the change of canopy heights,is essential for improving global carbon estimates and understanding effects of climate change.Spaceborne lidar systems ...Background:The assessment of change in forest ecosystems,especially the change of canopy heights,is essential for improving global carbon estimates and understanding effects of climate change.Spaceborne lidar systems provide a unique opportunity to monitor changes in the vertical structure of forests.NASA’s Ice,Cloud and Land Elevation Satellites,ICESat-1 for the period 2003 to 2009,and ICESat-2(available since 2018),have collected elevation data over the Earth’s surface with a time interval of 10 years.In this study,we tried to discover forest canopy changes by utilizing the global forest canopy height map of 2005(complete global coverage with 1 km resolution)derived from ICESat-1 data and the ATL08 land and vegetation products of 2019(sampling footprints with 17 m diameter)from ICESat-2.Results:Our study revealed a significant increase in forest canopy heights of China’s Beijing-Tianjin-Hebei region.Evaluations of unchanging areas for data consistency of two products show that the bias values decreased significantly from line-transect-level(−8.0 to 6.2 m)to site-level(^(−1).5 to 1.1 m),while RMSE values are still relatively high(6.1 to 15.2 m,10.2 to 12.0 m).Additionally,58%of ATL08 data are located in‘0m’pixels with an average height of 7.9 m,which are likely to reflect the ambitious tree planting programs in China.Conclusions:Our study shows that it is possible,with proper calibrations,to use ICESat-1 and-2 products to detect forest canopy height changes in a regional context.We expect that the approach presented in this study is potentially suitable to derive a fine-scale map of global forest change.展开更多
Main-effect QTL, epistatic effects and their interactions with environment are important genetic components of quantitativetraits. In this study, we analyzed the QTL, epistatic effects and QTL by environment interacti...Main-effect QTL, epistatic effects and their interactions with environment are important genetic components of quantitativetraits. In this study, we analyzed the QTL, epistatic effects and QTL by environment interactions (QE) underlying plantheight and heading date, using a doubled-haploid ( DH) population consisting of 190 lines from the cross between anindica parent Zhenshan 97 and a japonica parent Wuyujing 2, and tested in two-year replicated field trials. A geneticlinkage map with 179 SSR (simple sequence repeat) marker loci was constructed. A mixed linear model approach wasapplied to detect QTL, digenic interactions and QEs for the two traits. In total, 20 main-effect QTLs, 9 digenic interactionsinvolving 18 loci, and 5 QTL by environment interactions were found to be responsible for the two traits. No interactionswere detected between the digenic interaction and environment. The amounts of variations explained by QTLs of maineffect were 53.9% for plant height and 57.8% for heading date, larger than that explained by epistasis and QEs. However,the epistasis and QE interactions sometimes accounted for a significant part of phenotypic variation and should not bedisregarded.展开更多
Background:Accurate mapping of forest canopy heights at a fine spatial resolution over large geographical areas is challenging.It is essential for the estimation of forest aboveground biomass and the evaluation of for...Background:Accurate mapping of forest canopy heights at a fine spatial resolution over large geographical areas is challenging.It is essential for the estimation of forest aboveground biomass and the evaluation of forest ecosystems.Yet current regional to national scale forest height maps were mainly produced at coarse-scale.Such maps lack spatial details for decision-making at local scales.Recent advances in remote sensing provide great opportunities to fill this gap.Method:In this study,we evaluated the utility of multi-source satellite data for mapping forest heights over Hunan Province in China.A total of 523 plot data collected from 2017 to 2018 were utilized for calibration and validation of forest height models.Specifically,the relationships between three types of in-situ measured tree heights(maximum-,averaged-,and basal area-weighted-tree heights)and plot-level remote sensing metrics(multispectral,radar,and topo variables from Landsat,Sentinel-1/PALSAR-2,and SRTM)were analyzed.Three types of models(multilinear regression,random forest,and support vector regression)were evaluated.Feature variables were selected by two types of variable selection approaches(stepwise regression and random forest).Model parameters and model performances for different models were tuned and evaluated via a 10-fold cross-validation approach.Then,tuned models were applied to generate wall-to-wall forest height maps for Hunan Province.Results:The best estimation of plot-level tree heights(R2 ranged from 0.47 to 0.52,RMSE ranged from 3.8 to 5.3 m,and rRMSE ranged from 28%to 31%)was achieved using the random forest model.A comparison with existing forest height maps showed similar estimates of mean height,however,the ranges varied under different definitions of forest and types of tree height.Conclusions:Primary results indicate that there are small biases in estimated heights at the province scale.This study provides a framework toward establishing regional to national scale maps of vertical forest structure.展开更多
Objective To explore the influence of secular trends in body height and weight on the prevalence of overweight and obesity among Chinese children and adolescents. Methods The data were obtained from five cross-section...Objective To explore the influence of secular trends in body height and weight on the prevalence of overweight and obesity among Chinese children and adolescents. Methods The data were obtained from five cross-sectional Chinese National Surveys on Students' Constitution and Health. Overweight/obesity was defined as BMI-for-age Z-score of per the Wold Health Organization (WHO) reference values. Body height and weight for each sex and age were standardized to those reported in 1985 (standardized height" SHY, standardized weight: SWY) and for each sex and year at age 7 (standardized height: SHA; standardized weight: SWA) using the Z-score method. Results The prevalence of overweight/obesity in Chinese children was 20.2% among boys and 10.7% among girls in 2010 and increased continuously from 1985 to 2010. Among boys and girls of normal weight, SHY and SHA were significantly greater than SWY and SWA, respectively (P 〈 0.001). Among boys and girls with overweight/obesity, SHY was significantly lower than SWY (P 〈 0.001), and showed an obvious decreasing trend after age 12. SHA was lower than SWA among overweight boys aged 7-8 years and girls aged 7-9 years. SHY/SHW and SHA/SWA among normal-weight groups were greater than among overweight and obese groups (P 〈 0.001). Conclusion The continuous increase in the prevalence of overweight/obesity among Chinese children may be related to a rapid increase in body weight before age 9 and lack of secular increase in body height after age 12.展开更多
Deep convection systems (DCSs) can rapidly lift water vapor and other pollutants from the lower troposphere to the upper troposphere and lower stratosphere. The main detrainment height determines the level to which th...Deep convection systems (DCSs) can rapidly lift water vapor and other pollutants from the lower troposphere to the upper troposphere and lower stratosphere. The main detrainment height determines the level to which the air parcel is lifted. We analyzed the main detrainment height over the Tibetan Plateau and its southern slope based on the CloudSat Cloud Profiling Radar 2B_GEOPROF dataset and the Aura Microwave Limb Sounder Level 2 cloud ice product onboard the Atrain constellation of Earth-observing satellites. It was found that the DCSs over the Tibetan Plateau and its southern slope have a higher main detrainment height (about 10-16 km) than other regions in the same latitude. The mean main detrainment heights are 12.9 and 13.3 km over the Tibetan Plateau and its southern slope, respectively. The cloud ice water path decreases by 16.8% after excluding the influences of DCSs, and the height with the maximum increase in cloud ice water content is located at 178 hPa (about 13 km). The main detrainment height and outflow horizontal range are higher and larger over the central and eastern Tibetan Plateau, the west of the southern slope, and the southeastern edge of the Tibetan Plateau than that over the northwestern Tibetan Plateau. The main detrainment height and outflow horizontal range are lower and broader at nighttime than during daytime.展开更多
Though numerical wave models have been applied widely to significant wave height prediction,they consume massive computing memory and their accuracy needs to be further improved.In this paper,a two-dimensional(2D)sign...Though numerical wave models have been applied widely to significant wave height prediction,they consume massive computing memory and their accuracy needs to be further improved.In this paper,a two-dimensional(2D)significant wave height(SWH)prediction model is established for the South and East China Seas.The proposed model is trained by Wave Watch III(WW3)reanalysis data based on a convolutional neural network,the bidirectional long short-term memory and the attention mechanism(CNNBiLSTM-Attention).It adopts the convolutional neural network to extract spatial features of original wave height to reduce the redundant information input into the BiLSTM network.Meanwhile,the BiLSTM model is applied to fully extract the features of the associated information of time series data.Besides,the attention mechanism is used to assign probability weight to the output information of the BiLSTM layer units,and finally,a training model is constructed.Up to 24-h prediction experiments are conducted under normal and extreme conditions,respectively.Under the normal wave condition,for 3-,6-,12-and 24-h forecasting,the mean values of the correlation coefficients on the test set are 0.996,0.991,0.980,and 0.945,respectively.The corresponding mean values of the root mean square errors are measured at 0.063 m,0.105 m,0.172 m,and 0.281 m,respectively.Under the typhoon-forced extreme condition,the model based on CNN-BiLSTM-Attention is trained by typhooninduced SWH extracted from the WW3 reanalysis data.For 3-,6-,12-and 24-h forecasting,the mean values of correlation coefficients on the test set are respectively 0.993,0.983,0.958,and 0.921,and the averaged root mean square errors are 0.159 m,0.257 m,0.437 m,and 0.555 m,respectively.The model performs better than that trained by all the WW3 reanalysis data.The result suggests that the proposed algorithm can be applied to the 2D wave forecast with higher accuracy and efficiency.展开更多
Plant height (PH) is one of the most important agronomic traits of rice, as it directly affects the lodging resistance and the high yield potential. Meanwhile, PH is often constrained by water supply over the entire...Plant height (PH) is one of the most important agronomic traits of rice, as it directly affects the lodging resistance and the high yield potential. Meanwhile, PH is often constrained by water supply over the entire growth period. In this study, a recombinant inbred line (RIL) derived from Xiaobaijingzi and Kongyu 131 strains grown under drought stress and with normal irrigation over 2 yr (2013 and 2014), respectively (regarded as four environments), was used to dissect the genetic basis of PH by developmental dynamics QTL analysis combined with QTL^environment interactions. QTLs with net effects excluding the accumulated effects were detected to explore the relationship between genexgene interactions and genexenvironment interactions in specific growth period. A total of 26 additive QTLs (A-QTLs) and 37 epistatic QTLs (E-QTLs) associated with PH were detected by unconditional and conditional mapping over seven growth periods, qPH-2-3, qPH-4-3, qPH-6-1, qPH-7-1, and qPH-12-5 could be detected by both unconditional and conditional analyses, qPH-4-3 and qPH-7-5 were detected in four stages (periods) to be sequentially expressed QTLs controlling PH continuous variation. QTLs with additive effects (A-QTLs) were mostly expressed in the period $3iS2 (the time interval from stages 2 to 3), and QTLxenvironment interactions performed actively in the first three stages (periods) which could be an important developmental period for rice to undergo external morphogenesis during drought stress. Several QTLs showed high adaptability for drought stress and many QTLs were closely related to the environments such as qPH-3-5, qPH-2-2 and qPH-6-1. 72.5% of the QTLs with a and aa effects detected by conditional analysis were under drought stress, and the PVE of QTLs detected by conditional analysis under drought stress were also much higher than that under normal irrigation. We infer that environments would influence the detection results and sequential expression of genes was highly influenced by environments as well. Many QTLs (qPH-1-2, qPH-3-5, qPH-4-1, qPH-2-3) coincident with previously identified drought resistance genes. The result of this study is helpful to elucidating the genetic mechanism and regulatory network underlying the development of PH in rice and providing references to marker assisted selection.展开更多
The height of fractured zone(HFZ) at the high-intensity longwall mining panel plays a vital role in the safety analysis of coal mining under bodies of water. This paper described definitions of the highintensity minin...The height of fractured zone(HFZ) at the high-intensity longwall mining panel plays a vital role in the safety analysis of coal mining under bodies of water. This paper described definitions of the highintensity mining. The processes of overburden failure transfer(OFT) were analyzed, which were divided into the development stage and the termination stage. Through theoretical analysis, the limited suspension-distance and the limited overhanging distance were proposed to judge the damage of each stratum. Mechanical models of strata suspended integrity and overhanging stability were established.A theoretical method to predict the HFZ at the high-intensity longwall mining panel was put forward based on the processes of OFT. Taking a high-intensity longwall mining panel(No. 11915 panel) as an example, the theoretical method proposed, the engineering analogy and the empirical formulas in the Regulation were used to predict the HFZ. The results show that the theoretical result is consistent with the engineering analogies' result and empirical formulas' result. The rationality and reliability of the theoretical method proposed is verified.展开更多
Low stature in wheat is closely associated with lodging resistance,and this impacts harvest index and grain yield.The discovery of novel dwarfing or semi-dwarfing genes can have great significance for dwarf wheat bree...Low stature in wheat is closely associated with lodging resistance,and this impacts harvest index and grain yield.The discovery of novel dwarfing or semi-dwarfing genes can have great significance for dwarf wheat breeding.In this study,we identified an EMS induced dwarf wheat mutant JE0124 from the elite cultivar Jing411.JE0124 possesses increased stem strength and a 33%reduction in plant height compared with wild type.Giberelic acid(GA)treatment analysis suggested that JE0124 was GA-sensitive.Analysis of the frequency distribution of plant height in four F,populations derived from crosses between JE0124 and the relatively taller varieties Nongda 5181 and WT indicated that the dwarfism phenotype was quantitatively inherited.We used two F,populations and 312 individuals from the reciprocal cross of Nongda 5181 and JE0124 to map the quantitative trait locus(QTL)for reduced height to a 0.85-cM interval on chromosome 2DL.The mapping was done by using a combination of 660K SNP array-based bulked segregant analysis(BSA)and genetic linkage analysis,with logarithm of odds(LOD)scores of 5.34 and 5.78,respectively.Additionally,this QTL accounted for 8.27-8.52%of the variation in the phenotype.The dwarf mutant JE0124 and the newly discovered dwarfing gene on chromosome 2DL in this study will enrich genetic resources for dwarf wheat breeding.展开更多
It is nontrivial to extract the dust top height(DTH) accurately from passive instruments over land due to the complexity of the surface conditions. The Moderate Resolution Imaging Spectroradiometer(MODIS) deep blu...It is nontrivial to extract the dust top height(DTH) accurately from passive instruments over land due to the complexity of the surface conditions. The Moderate Resolution Imaging Spectroradiometer(MODIS) deep blue(DB) algorithm can be used to infer the aerosol optical depth(AOD) over high-reflective surfaces. The Atmospheric Infrared Sounder(AIRS) can simultaneously obtain the DTH and optical depth information. This study focuses on the synergistic use of AIRS observations and MODIS DB results for improving the DTH by using a stable relationship between the AIRS infrared and MODIS DB AODs. A one-dimensional variational(1DVAR) algorithm is applied to extract the DTH from AIRS. Simulation experiments indicate that when the uncertainty of the dust optical depth decreases from 50% to 20%, the improvement of the DTH retrieval accuracy from AIRS reaches 200 m for most of the assumed dust conditions. For two cases over the Taklimakan Desert, the results are compared against Cloud-Aerosol Lidar with Orthogonal Polarization(CALIOP) measurements. The results confirm that the MODIS DB product could help extract the DTH over land from AIRS.展开更多
The mining space of large mining height coal face is large,the range of movement and caving of rock strata is large and the stability of supports at coal face is low and damage rate of supports is high,which significa...The mining space of large mining height coal face is large,the range of movement and caving of rock strata is large and the stability of supports at coal face is low and damage rate of supports is high,which significantly affects the safe and efficient production of coal mines.By similar simulation experiment and theoretical analysis,the mode of fractured roofing structure of large mining height coal face and the method of determination of reasonable support resistance of the support was evaluated.Analysis shows that the structural mode of "combined cantilever beam – non-hinged roofing – hinged roofing" of the large mining height coal face appears at the roofing of large mining height coal face.The supporting factor of caved gangue at the gob is introduced,the calculating equations of the fractured step distance of roofing were derived and conventional calculating method of caved height of roofing was corrected and the method of determination of the length and height of each structural area of the roofing was provided.With reference to the excavating conditions at Jinhuagong coal mine in Datong minefield,the dimensions of structural areas of the roofing of the coal face were determined and analyzed,and reasonable support resistance of the height coal face was acquired.By selecting Model ZZ13000/28/60 support and with procedures of advanced pre-cracking blasting,the safe production of large mining height coal face was assured.展开更多
基金National Key R&D Program Pilot Projects of China(2016YFC203300)Major Program of National Natural Science Foundation of China(91644223)+2 种基金Special Funding Project for Public Industry Research and Development of Ministry of Environmental Protection(201509001)National Natural Science Foundation of China(9133700041575008)
文摘The planetary boundary layer height(PBLH) was calculated using the radiosonde sounding data, including120 L-band operational sites and 8 GPS sites in China. The diurnal and seasonal variations of PBLH were analyzed using radiosonde sounding(OBS-PBLH) and ERA data(ERA-PBLH). Based on comparison and error analyses, we discussed the main error sources in these data. The frequency distributions of PBLH variations under different regimes(the convective boundary layer, the neutral residual layer, and the stable boundary layer) can be well fitted by a Gamma distribution and the shape parameter k and scale parameter s values were obtained for different regions of China. The variation characteristics of PBLH were found in summer under these three regimes for different regions. The relationships between PBLH and PM_(2.5) concentration generally follow a power law under very low or no precipitation conditions in the region of Beijing, Tianjin and Hebei in summer. The results usually deviated from this power distribution only under strong precipitation or high relative humidity conditions because of the effects of hygroscopic growth of aerosols or wet deposition. The OBS-PBLH provided a reasonable spatial distribution relative to ERA-PBLH.This indicates that OBS-PBLH has the potential for identifying the variation of PM_(2.5) concentration.
基金Supported by National High Technology Research and Development Program of China(863Program,2010AA101301)Chinese Super Rice Breeding and Experiment Demonstration Program,Ministry of Agriculture+1 种基金the 0406 Program of zhejiang ProvinceScientific Research Fund of China National Rice Research Institute(2009RG001-5)~~
文摘[Objective] This study aimed to investigate the genetic effects and heterosis of plant height and internode traits of japonica-indica hybrid rice. [Methed] Incomplete diallel crosses were made between six japonica CMS lines and nine indica widecompatibility restorer lines; the genetic effects of plant height and internode traits of japonica-indica hybrid rice were analyzed using the additive-dominance genetic model. [Result] The ple, nt height, panicle length and the length of internode 1 of japonica-in- dica hybrid rice were mainly controlled by the additive effects; but the length of in- ternode 3, internode 4 and internode 5 were mainly controlled by dominance effects. Both the narrow sense heritability and broad sense heritability of plant height, panicle length, number of elongated internodes and length of most internodes reached signifi- cance level. The positive phenotypic correlation, genetic correlation, additive correla- tion and dominance correlation between plant height and panicle length, number of e- longated internodes and internode length were significant; and most of the other paired traits were significantly positively correlated. Heterosis analysis showed that the positive heterosis value over mid-parent and positive heterosis value over better- parent of the length of internode 3, internode 4, internode 5 and internode 6 reached significant level, and the heterosis value over mid-parent of plant height reached extreme significance level. [Conclusion] This study will provide reliable theoretical basis for the genetic improvement and heterosis utilization of plant height and internode traits in japonica-indica hybrid rice.
基金funded by the Kadoorie Farm and Botanical Garden and the Hong Kong Special Administrative Region,China
文摘To understand better the impact on mist net capture rates of the activity height of birds, light intensity, bird richness and abundance, we compared data from mist nets and point counts at the Jianfengling Forest Area, Hainan Island. Mist-nets were operated for a total of 7135 net-hours. A total of 587 individuals of 45 bird species were captured. The total mean capture rate was 8.6 ± 10.4 per 100 net-hours. A total of 4932 individuals of 107 bird species were recorded by visual observation alone and 7616 individuals of 120 species were recorded in a visual and aural combination. The Grey-cheeked Fulvetta (Alcippe morrisonia) was the most abundant species, accounting for 38.7% of total captures, 27.9% of visual observations and 22.2% of visual + aural observations. The capture number was correlated with the number observed. Thirty-one species were more likely to be captured than observed. Canopy species, such as members of the Corvidae and Dicruridae, were seldom captured. For all ground feeding species, the capture number was greater than that of observation. Some cryptic species, such as the Lesser Wren Babbler (Napothera epilepidota), Spotnecked Babbler (Stachyris striolata) and Cuckoo Owl (Glaucidium cuculoides) also had a higher relative capture rate than that of observations. There was a significant relationship between light intensity and the number of birds captured.
基金Supported by the Science and Technology Project of Food Production in Jiangxi Province(2006BAD02A04)~~
文摘[Objective] The aim was to carry out the genetic analysis on plant height of rice(Oryza sativa L.)cultivated in different seasons.[Method] Three rice parents with great difference in plant height including CB1(83.1 cm),CB4(105.5 cm)and CB7(115.6 cm)were chosen to construct two parental combinations:CB1×CB4 and CB7×CB4,and the corresponding filial generations P1,F1,P2,B1,B2 and F2 were obtained.The 6 populations were planted in middle and late seasons respectively to measure their height traits.The Akaike's information criterion(AIC)of the mixed major gene and polygene model was used to indentify the existence of major genes affecting quantitative traits in B1,B2,F2 populations.When the major genes existed,the genetic effects of the major genes and polygenes and their genetic variance were estimated through segregation analysis.[Result] One additive major gene plus additive-dominance polygenes was the most fitted genetic model for the trait in all B1,B2,F2 populations in two planting seasons.The heritability values of the major genes varied from 38.63% to 78.53% and those of polygenes varied from 1.72% to 36.04%,and the total heritability values were 45.52-92.93%.The additive effect d value of the two genetic populations under two planting seasons was-4.56,-9.16,-7.19,and-9.38,respectively,as suggested that additive effect of the major genes would decrease the express of the plant height trait.[Conclusion] The heritability of plant height trait was affected by planting seasons and the combinations clearly as a whole.
文摘The adjusted GPS height is the height above the surface of the WGS-84ellipsoid. It is necessary to convert a GPS height into a normal height in engineering. The conicoidfitting method (CFM) and the neural networks method (NNM) are used for this purpose, but each ofthem has its advantages and disadvantages. After studying these two methods, a new method (abbr.CF&NNM) is conceived. The procedure of the CF&NNM is introduced. A practical engineering example isused to study these three different methods. The results by the three methods are listed. The CF&NNMmethod can produce better results than either the CFM or the NNM in deriving normal height from GPSheight. The theory of the CF&NNM method is analyzed.
基金supported by the National Natural Science Foundation of China(Grant No. 30370865) and the Innovation Projects of New Plant and Animal Breeding in Chongqing Municipality, China
文摘The developmental genetics of plant height was analyzed from two groups of three-line indica hybrid rice at two environmental conditions based on the NCII design, using the additive-dominant developmental genetics models and the statistic methods. The results showed that the rice genotypes and environmental conditions could both affect plant height, and the effects of environment on plant height decreased gradually with plant development. Additive and dominant effects both governed the performance of plant height at all developmental stages. However, the degrees of effect varied among the rice genotypes. Moreover, the interaction between environments and genotypes also affected plant height. The genetic effects differed at most developmental stages. Furthermore, the expressJon of additive effect was more active than that of dominant effect. Conditional interaction effects with environment also influenced plant height during genetic development, especially at the eady stage. Mid-parent heterosis (HMP) increased gradually with the developmental stage of plant height, and maximized at the latest stage, whereas the heterosis over the better parent (HBP) showed small differences among the genotypes, and kept stable at the later stage, with positive numeric value. At most developmental stages, conditional HMP was positively significant, while conditional HBP was negatively significant. All above results suggest that HMP and HBP have some new expressions in all developmental periods and the levels and directions are quite different.
基金supported by the National Natural Science Foundation of China (Grant No. 91544231)the State Key Research and Development Program of China (Grant No. 2016YFC0200500)+1 种基金Jiangsu Provincial Collaborative Innovation Center of Climate ChangeJun ZOU was also supported by the Program for Outstanding Ph D Candidates of Nanjing University
文摘Radiative aerosols are known to influence the surface energy budget and hence the evolution of the planetary boundary layer. In this study, we develop a method to estimate the aerosol-induced reduction in the planetary boundary layer height (PBLH) based on two years of ground-based measurements at a site, the Station for Observing Regional Processes of the Earth System (SORPES), at Nanjing University, China, and radiosonde data from the meteorological station of Nanjing. The observations show that increased aerosol loads lead to a mean decrease of 67.1 W m-2 for downward shortwave radiation (DSR) and a mean increase of 19.2 W m-2 for downward longwave radiation (DLR), as well as a mean decrease of 9.6 W m-2 for the surface sensible heat flux (SHF) in the daytime. The relative variations of DSR, DLR and SHF are shown as a function of the increment of column mass concentration of particulate matter (PM2.5). High aerosol loading can significantly increase the atmospheric stability in the planetary boundary layer during both daytime and nighttime. Based on the statistical relationship between SHF and PM2.5 column mass concentrations, the SHF under clean atmospheric conditions (same as the background days) is derived. In this case, the derived SHF, together with observed SHF, are then used to estimate changes in the PBLH related to aerosols. Our results suggest that the PBLH decreases more rapidly with increasing aerosol loading at high aerosol loading. When the daytime mean column mass concentration of PM2.5 reaches 200 mg m-2, the decrease in the PBLH at 1600 LST (local standard time) is about 450 m.
基金supported by the China Meteorological Administration under Grant GYHY201006024the Chinese Academy of Sciences Strategic Priority Research Program under Grant XDA05110104spon-sorship of National Science Foundation
文摘Utilizing aircraft sounding data collected from the Surface Heat Budget of the Arctic Ocean (SHEBA, 1998) campaign, the authors evaluated commonly-used profile methods for Arctic ABL height estimation by validating against the'true'ABL height from aircraft sounding profiles, where ABL height is defined as the top of the layer with significant turbulence. Furthermore, the best performing method was used to estimate ABL height from the one-year GPS soundings obtained during SHEBA (October 1997-October 1998). It was found that the temperature gradient method produces a reliable estimate of ABL height. Additionally, the authors determined optimal threshold values of temperature gradient for stable boundary layer (SBL) and convective boundary layer (CBL) to be 6.5 K/100 m and 1.0 K/100 m, respectively. The maximum ABL height during the year was 1150 m occurred in May. Median values of Arctic ABL height in May, June, July, and August were 400 m, 430 m, 180 m, and 320 m, respectively. Arctic ABL heights are clearly higher in the spring than in the summer.
基金The National Key R&D Program of China under contract No.2016YFC1402103
文摘To explore new operational forecasting methods of waves,a forecasting model for wave heights at three stations in the Bohai Sea has been developed.This model is based on long short-term memory(LSTM)neural network with sea surface wind and wave heights as training samples.The prediction performance of the model is evaluated,and the error analysis shows that when using the same set of numerically predicted sea surface wind as input,the prediction error produced by the proposed LSTM model at Sta.N01 is 20%,18%and 23%lower than the conventional numerical wave models in terms of the total root mean square error(RMSE),scatter index(SI)and mean absolute error(MAE),respectively.Particularly,for significant wave height in the range of 3–5 m,the prediction accuracy of the LSTM model is improved the most remarkably,with RMSE,SI and MAE all decreasing by 24%.It is also evident that the numbers of hidden neurons,the numbers of buoys used and the time length of training samples all have impact on the prediction accuracy.However,the prediction does not necessary improve with the increase of number of hidden neurons or number of buoys used.The experiment trained by data with the longest time length is found to perform the best overall compared to other experiments with a shorter time length for training.Overall,long short-term memory neural network was proved to be a very promising method for future development and applications in wave forecasting.
基金National Natural Science Foundation of China:41971289.
文摘Background:The assessment of change in forest ecosystems,especially the change of canopy heights,is essential for improving global carbon estimates and understanding effects of climate change.Spaceborne lidar systems provide a unique opportunity to monitor changes in the vertical structure of forests.NASA’s Ice,Cloud and Land Elevation Satellites,ICESat-1 for the period 2003 to 2009,and ICESat-2(available since 2018),have collected elevation data over the Earth’s surface with a time interval of 10 years.In this study,we tried to discover forest canopy changes by utilizing the global forest canopy height map of 2005(complete global coverage with 1 km resolution)derived from ICESat-1 data and the ATL08 land and vegetation products of 2019(sampling footprints with 17 m diameter)from ICESat-2.Results:Our study revealed a significant increase in forest canopy heights of China’s Beijing-Tianjin-Hebei region.Evaluations of unchanging areas for data consistency of two products show that the bias values decreased significantly from line-transect-level(−8.0 to 6.2 m)to site-level(^(−1).5 to 1.1 m),while RMSE values are still relatively high(6.1 to 15.2 m,10.2 to 12.0 m).Additionally,58%of ATL08 data are located in‘0m’pixels with an average height of 7.9 m,which are likely to reflect the ambitious tree planting programs in China.Conclusions:Our study shows that it is possible,with proper calibrations,to use ICESat-1 and-2 products to detect forest canopy height changes in a regional context.We expect that the approach presented in this study is potentially suitable to derive a fine-scale map of global forest change.
基金We gratefully acknowledge Prof.Zhu Jun for kind pro-V1sion of software QTLMapper 1.0.The work was in part supported by the National High Tech R&D Pro-gram of China(863 Program)the National Natural Sci-ence Foundation of China and the National Program on Key Basic Research Project of China(973 Program).
文摘Main-effect QTL, epistatic effects and their interactions with environment are important genetic components of quantitativetraits. In this study, we analyzed the QTL, epistatic effects and QTL by environment interactions (QE) underlying plantheight and heading date, using a doubled-haploid ( DH) population consisting of 190 lines from the cross between anindica parent Zhenshan 97 and a japonica parent Wuyujing 2, and tested in two-year replicated field trials. A geneticlinkage map with 179 SSR (simple sequence repeat) marker loci was constructed. A mixed linear model approach wasapplied to detect QTL, digenic interactions and QEs for the two traits. In total, 20 main-effect QTLs, 9 digenic interactionsinvolving 18 loci, and 5 QTL by environment interactions were found to be responsible for the two traits. No interactionswere detected between the digenic interaction and environment. The amounts of variations explained by QTLs of maineffect were 53.9% for plant height and 57.8% for heading date, larger than that explained by epistasis and QEs. However,the epistasis and QE interactions sometimes accounted for a significant part of phenotypic variation and should not bedisregarded.
基金This work was funded by the Open Fund of State Key Laboratory of Remote Sensing Science(OFSLRSS201904)National Natural Science Foundation of China(41901351)+1 种基金Start-up Program of Wuhan University(2019-2021)Natural Science Foundation of Ningxia Province(2021AAC03017).
文摘Background:Accurate mapping of forest canopy heights at a fine spatial resolution over large geographical areas is challenging.It is essential for the estimation of forest aboveground biomass and the evaluation of forest ecosystems.Yet current regional to national scale forest height maps were mainly produced at coarse-scale.Such maps lack spatial details for decision-making at local scales.Recent advances in remote sensing provide great opportunities to fill this gap.Method:In this study,we evaluated the utility of multi-source satellite data for mapping forest heights over Hunan Province in China.A total of 523 plot data collected from 2017 to 2018 were utilized for calibration and validation of forest height models.Specifically,the relationships between three types of in-situ measured tree heights(maximum-,averaged-,and basal area-weighted-tree heights)and plot-level remote sensing metrics(multispectral,radar,and topo variables from Landsat,Sentinel-1/PALSAR-2,and SRTM)were analyzed.Three types of models(multilinear regression,random forest,and support vector regression)were evaluated.Feature variables were selected by two types of variable selection approaches(stepwise regression and random forest).Model parameters and model performances for different models were tuned and evaluated via a 10-fold cross-validation approach.Then,tuned models were applied to generate wall-to-wall forest height maps for Hunan Province.Results:The best estimation of plot-level tree heights(R2 ranged from 0.47 to 0.52,RMSE ranged from 3.8 to 5.3 m,and rRMSE ranged from 28%to 31%)was achieved using the random forest model.A comparison with existing forest height maps showed similar estimates of mean height,however,the ranges varied under different definitions of forest and types of tree height.Conclusions:Primary results indicate that there are small biases in estimated heights at the province scale.This study provides a framework toward establishing regional to national scale maps of vertical forest structure.
基金supported by the National Natural Science Foundation of China(81502823)
文摘Objective To explore the influence of secular trends in body height and weight on the prevalence of overweight and obesity among Chinese children and adolescents. Methods The data were obtained from five cross-sectional Chinese National Surveys on Students' Constitution and Health. Overweight/obesity was defined as BMI-for-age Z-score of per the Wold Health Organization (WHO) reference values. Body height and weight for each sex and age were standardized to those reported in 1985 (standardized height" SHY, standardized weight: SWY) and for each sex and year at age 7 (standardized height: SHA; standardized weight: SWA) using the Z-score method. Results The prevalence of overweight/obesity in Chinese children was 20.2% among boys and 10.7% among girls in 2010 and increased continuously from 1985 to 2010. Among boys and girls of normal weight, SHY and SHA were significantly greater than SWY and SWA, respectively (P 〈 0.001). Among boys and girls with overweight/obesity, SHY was significantly lower than SWY (P 〈 0.001), and showed an obvious decreasing trend after age 12. SHA was lower than SWA among overweight boys aged 7-8 years and girls aged 7-9 years. SHY/SHW and SHA/SWA among normal-weight groups were greater than among overweight and obese groups (P 〈 0.001). Conclusion The continuous increase in the prevalence of overweight/obesity among Chinese children may be related to a rapid increase in body weight before age 9 and lack of secular increase in body height after age 12.
基金supported by the National Key Research and Development Program on Monitoring, Early Warning and Prevention of Major Natural Disasters (Grant No. 2018YFC1506006)the National Natural Science Foundation of China (Project Nos. 41875108 and 41475037)
文摘Deep convection systems (DCSs) can rapidly lift water vapor and other pollutants from the lower troposphere to the upper troposphere and lower stratosphere. The main detrainment height determines the level to which the air parcel is lifted. We analyzed the main detrainment height over the Tibetan Plateau and its southern slope based on the CloudSat Cloud Profiling Radar 2B_GEOPROF dataset and the Aura Microwave Limb Sounder Level 2 cloud ice product onboard the Atrain constellation of Earth-observing satellites. It was found that the DCSs over the Tibetan Plateau and its southern slope have a higher main detrainment height (about 10-16 km) than other regions in the same latitude. The mean main detrainment heights are 12.9 and 13.3 km over the Tibetan Plateau and its southern slope, respectively. The cloud ice water path decreases by 16.8% after excluding the influences of DCSs, and the height with the maximum increase in cloud ice water content is located at 178 hPa (about 13 km). The main detrainment height and outflow horizontal range are higher and larger over the central and eastern Tibetan Plateau, the west of the southern slope, and the southeastern edge of the Tibetan Plateau than that over the northwestern Tibetan Plateau. The main detrainment height and outflow horizontal range are lower and broader at nighttime than during daytime.
基金This study is supported by the project supported by the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(SML2020SP007)the National Natural Science Foundation of China(Nos.61772280 and 62072249).
文摘Though numerical wave models have been applied widely to significant wave height prediction,they consume massive computing memory and their accuracy needs to be further improved.In this paper,a two-dimensional(2D)significant wave height(SWH)prediction model is established for the South and East China Seas.The proposed model is trained by Wave Watch III(WW3)reanalysis data based on a convolutional neural network,the bidirectional long short-term memory and the attention mechanism(CNNBiLSTM-Attention).It adopts the convolutional neural network to extract spatial features of original wave height to reduce the redundant information input into the BiLSTM network.Meanwhile,the BiLSTM model is applied to fully extract the features of the associated information of time series data.Besides,the attention mechanism is used to assign probability weight to the output information of the BiLSTM layer units,and finally,a training model is constructed.Up to 24-h prediction experiments are conducted under normal and extreme conditions,respectively.Under the normal wave condition,for 3-,6-,12-and 24-h forecasting,the mean values of the correlation coefficients on the test set are 0.996,0.991,0.980,and 0.945,respectively.The corresponding mean values of the root mean square errors are measured at 0.063 m,0.105 m,0.172 m,and 0.281 m,respectively.Under the typhoon-forced extreme condition,the model based on CNN-BiLSTM-Attention is trained by typhooninduced SWH extracted from the WW3 reanalysis data.For 3-,6-,12-and 24-h forecasting,the mean values of correlation coefficients on the test set are respectively 0.993,0.983,0.958,and 0.921,and the averaged root mean square errors are 0.159 m,0.257 m,0.437 m,and 0.555 m,respectively.The model performs better than that trained by all the WW3 reanalysis data.The result suggests that the proposed algorithm can be applied to the 2D wave forecast with higher accuracy and efficiency.
基金supported by the National Key Technologies R&D Program of China during the 12th Five-Year Plan period (2013BAD20B04)
文摘Plant height (PH) is one of the most important agronomic traits of rice, as it directly affects the lodging resistance and the high yield potential. Meanwhile, PH is often constrained by water supply over the entire growth period. In this study, a recombinant inbred line (RIL) derived from Xiaobaijingzi and Kongyu 131 strains grown under drought stress and with normal irrigation over 2 yr (2013 and 2014), respectively (regarded as four environments), was used to dissect the genetic basis of PH by developmental dynamics QTL analysis combined with QTL^environment interactions. QTLs with net effects excluding the accumulated effects were detected to explore the relationship between genexgene interactions and genexenvironment interactions in specific growth period. A total of 26 additive QTLs (A-QTLs) and 37 epistatic QTLs (E-QTLs) associated with PH were detected by unconditional and conditional mapping over seven growth periods, qPH-2-3, qPH-4-3, qPH-6-1, qPH-7-1, and qPH-12-5 could be detected by both unconditional and conditional analyses, qPH-4-3 and qPH-7-5 were detected in four stages (periods) to be sequentially expressed QTLs controlling PH continuous variation. QTLs with additive effects (A-QTLs) were mostly expressed in the period $3iS2 (the time interval from stages 2 to 3), and QTLxenvironment interactions performed actively in the first three stages (periods) which could be an important developmental period for rice to undergo external morphogenesis during drought stress. Several QTLs showed high adaptability for drought stress and many QTLs were closely related to the environments such as qPH-3-5, qPH-2-2 and qPH-6-1. 72.5% of the QTLs with a and aa effects detected by conditional analysis were under drought stress, and the PVE of QTLs detected by conditional analysis under drought stress were also much higher than that under normal irrigation. We infer that environments would influence the detection results and sequential expression of genes was highly influenced by environments as well. Many QTLs (qPH-1-2, qPH-3-5, qPH-4-1, qPH-2-3) coincident with previously identified drought resistance genes. The result of this study is helpful to elucidating the genetic mechanism and regulatory network underlying the development of PH in rice and providing references to marker assisted selection.
基金supported by the National Natural Science Foundation of China (No.51774111)Henan province science and technology innovation outstanding talent fund of China (No.184200510003)
文摘The height of fractured zone(HFZ) at the high-intensity longwall mining panel plays a vital role in the safety analysis of coal mining under bodies of water. This paper described definitions of the highintensity mining. The processes of overburden failure transfer(OFT) were analyzed, which were divided into the development stage and the termination stage. Through theoretical analysis, the limited suspension-distance and the limited overhanging distance were proposed to judge the damage of each stratum. Mechanical models of strata suspended integrity and overhanging stability were established.A theoretical method to predict the HFZ at the high-intensity longwall mining panel was put forward based on the processes of OFT. Taking a high-intensity longwall mining panel(No. 11915 panel) as an example, the theoretical method proposed, the engineering analogy and the empirical formulas in the Regulation were used to predict the HFZ. The results show that the theoretical result is consistent with the engineering analogies' result and empirical formulas' result. The rationality and reliability of the theoretical method proposed is verified.
基金This work was financially supported by the National Key Research and Development Program of China(2016YFD0102100 and 2016YFD0101802)the National Natural Science Foundation of China(31801346)the earmarked fund for China Agriculture Research System(CARS-03).
文摘Low stature in wheat is closely associated with lodging resistance,and this impacts harvest index and grain yield.The discovery of novel dwarfing or semi-dwarfing genes can have great significance for dwarf wheat breeding.In this study,we identified an EMS induced dwarf wheat mutant JE0124 from the elite cultivar Jing411.JE0124 possesses increased stem strength and a 33%reduction in plant height compared with wild type.Giberelic acid(GA)treatment analysis suggested that JE0124 was GA-sensitive.Analysis of the frequency distribution of plant height in four F,populations derived from crosses between JE0124 and the relatively taller varieties Nongda 5181 and WT indicated that the dwarfism phenotype was quantitatively inherited.We used two F,populations and 312 individuals from the reciprocal cross of Nongda 5181 and JE0124 to map the quantitative trait locus(QTL)for reduced height to a 0.85-cM interval on chromosome 2DL.The mapping was done by using a combination of 660K SNP array-based bulked segregant analysis(BSA)and genetic linkage analysis,with logarithm of odds(LOD)scores of 5.34 and 5.78,respectively.Additionally,this QTL accounted for 8.27-8.52%of the variation in the phenotype.The dwarf mutant JE0124 and the newly discovered dwarfing gene on chromosome 2DL in this study will enrich genetic resources for dwarf wheat breeding.
基金funded by the National Science Foundation (Grant no. 41375024)the China Public Science and Technology Research Funds Projects of Meteorology (Grant No. GYHY201406015)the Basic Research Program (Grant No. 2010CB950802)
文摘It is nontrivial to extract the dust top height(DTH) accurately from passive instruments over land due to the complexity of the surface conditions. The Moderate Resolution Imaging Spectroradiometer(MODIS) deep blue(DB) algorithm can be used to infer the aerosol optical depth(AOD) over high-reflective surfaces. The Atmospheric Infrared Sounder(AIRS) can simultaneously obtain the DTH and optical depth information. This study focuses on the synergistic use of AIRS observations and MODIS DB results for improving the DTH by using a stable relationship between the AIRS infrared and MODIS DB AODs. A one-dimensional variational(1DVAR) algorithm is applied to extract the DTH from AIRS. Simulation experiments indicate that when the uncertainty of the dust optical depth decreases from 50% to 20%, the improvement of the DTH retrieval accuracy from AIRS reaches 200 m for most of the assumed dust conditions. For two cases over the Taklimakan Desert, the results are compared against Cloud-Aerosol Lidar with Orthogonal Polarization(CALIOP) measurements. The results confirm that the MODIS DB product could help extract the DTH over land from AIRS.
基金Project(51174192)supported by the National Natural Science Foundation of ChinaProject(BRA2010024)supported by "333" Training Foundation of Jiangsu Province,China+2 种基金Projects(2011QNB03,2014ZDPY21,2014QNB30)supported by the Fundamental Research Funds for the Central Universities,ChinaProject Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,ChinaProject(2015M581896)supported by China Postdoctoral Science Foundation
文摘The mining space of large mining height coal face is large,the range of movement and caving of rock strata is large and the stability of supports at coal face is low and damage rate of supports is high,which significantly affects the safe and efficient production of coal mines.By similar simulation experiment and theoretical analysis,the mode of fractured roofing structure of large mining height coal face and the method of determination of reasonable support resistance of the support was evaluated.Analysis shows that the structural mode of "combined cantilever beam – non-hinged roofing – hinged roofing" of the large mining height coal face appears at the roofing of large mining height coal face.The supporting factor of caved gangue at the gob is introduced,the calculating equations of the fractured step distance of roofing were derived and conventional calculating method of caved height of roofing was corrected and the method of determination of the length and height of each structural area of the roofing was provided.With reference to the excavating conditions at Jinhuagong coal mine in Datong minefield,the dimensions of structural areas of the roofing of the coal face were determined and analyzed,and reasonable support resistance of the height coal face was acquired.By selecting Model ZZ13000/28/60 support and with procedures of advanced pre-cracking blasting,the safe production of large mining height coal face was assured.