In helical cone-beam computed tomography(CT), Feldkamp-Davis-Kress(FDK) based image reconstruction algorithms are by far the most popular. However, artifacts are commonly met in the presence of lateral projection trun...In helical cone-beam computed tomography(CT), Feldkamp-Davis-Kress(FDK) based image reconstruction algorithms are by far the most popular. However, artifacts are commonly met in the presence of lateral projection truncation. The reason is that the ramp filter is global. To restrain the truncation artifacts, an approximate reconstruction formula is proposed based on the Derivative-Hilbert-Backprojection(DHB) framework. In the method, the first order derivative filter is followed by the Hilbert transform. Since the filtered projection values are almost zero by the first order derivative filter, the following Hilbert transform has little influence on the projection values, even though the projections are laterally truncated. The proposed method has two main advantages. First, it has comparable computational efficiency and image quality as well as the conventional helical FDK algorithm for non-truncated projections. The second advantage is that images can be reconstructed with acceptable quality and much lower computational cost in comparison to the Laplace operator based algorithm in cases with truncated projections. To point out the advantages of our method, simulations on the computer and real data experiments on our laboratory industrial cone-beam CT are conducted. The simulated and experimental results demonstrate that the method is feasible for image reconstruction in the case of projection truncation.展开更多
Cone-beam computed tomography(CBCT) is mostly used for position verification during the treatment process. However,severe image artifacts in CBCT hinder its direct use in dose calculation and adaptive radiation therap...Cone-beam computed tomography(CBCT) is mostly used for position verification during the treatment process. However,severe image artifacts in CBCT hinder its direct use in dose calculation and adaptive radiation therapy re-planning for proton therapy. In this study, an improved U-Net neural network named CBAM-U-Net was proposed for CBCT noise reduction in proton therapy, which is a CBCT denoised U-Net network with convolutional block attention modules. The datasets contained 20 groups of head and neck images. The CT images were registered to CBCT images as ground truth. The original CBCT denoised U-Net network, sCTU-Net, was trained for model performance comparison. The synthetic CT(SCT) images generated by CBAM-U-Net and the original sCTU-Net are called CBAM-SCT and U-Net-SCT images, respectively. The HU accuracies of the CT, CBCT, and SCT images were compared using four metrics: mean absolute error(MAE), root mean square error(RMSE), peak signal-to-noise ratio(PSNR), and structure similarity index measure(SSIM). The mean values of the MAE, RMSE, PSNR, and SSIM of CBAM-SCT images were 23.80 HU, 64.63 HU, 52.27 dB, and 0.9919, respectively,which were superior to those of the U-Net-SCT images. To evaluate dosimetric accuracy, the range accuracy was compared for a single-energy proton beam. The γ-index pass rates of a 4 cm × 4 cm scanned field and simple plan were calculated to compare the effects of the noise reduction capabilities of the original U-Net and CBAM-U-Net on the dose calculation results. CBAM-U-Net reduced noise more effectively than sCTU-Net, particularly in high-density tissues. We proposed a CBAM-U-Net model for CBCT noise reduction in proton therapy. Owing to the excellent noise reduction capabilities of CBAM-U-Net, the proposed model provided relatively explicit information regarding patient tissues. Moreover, it maybe be used in dose calculation and adaptive treatment planning in the future.展开更多
In cone-beam computed tomography (CBCT), there are often cases where the size of the specimen is larger than the field of view (FOV) (referred to as over FOV-sized (OFS)). To acquire the complete projection da...In cone-beam computed tomography (CBCT), there are often cases where the size of the specimen is larger than the field of view (FOV) (referred to as over FOV-sized (OFS)). To acquire the complete projection data for OFS objects, some scan modes have been developed for long objects and short but over-wide objects. However, these modes still cannot meet the requirements for both longitudinally long and transversely wide objects. In this paper, we propose a multiple helical scan mode and a corresponding reconstruction algorithm for both longitudinally long and transversely wide objects. The simulation results show that our model can deal with the problem and that the results are acceptable, while the OFS object is twice as long compared with the FOV in the same latitude.展开更多
Objective: To assess the value of helical CT in the di- agnosis of liver diseases. Methods: 59 patients with different liver diseases were examined by two-phase or multi-phase dynamic helical CT. Results: Small hepato...Objective: To assess the value of helical CT in the di- agnosis of liver diseases. Methods: 59 patients with different liver diseases were examined by two-phase or multi-phase dynamic helical CT. Results: Small hepatocellular carcinoma showed a higher density in the arterial phase, and a lower den- sity in the portal vein phase. Large hepatic carcino- ma showed a mixed pattern of higher-density in the arterial phase, and a lower density in the portal vein phase. Metastasis carcinoma showed an 'oxeye sign' in the portal vein phase. Hemangioma was not obvi- ously enhanced in the early arterial phase, marginal- ly enhanced in the arterial phase, and equally-densed in the balanced phase. Conclusion: Two-phase helical CT is of value in im- proving the detection rate of or determining the fea- tures of hepatic diseases by two-phase helical dyna- mic scan (2.0-3.0 ml/s speed, and delay time 25- 30 s and 70-85 s).展开更多
To explore the value of helical CT volume rendering technique (VRT) in post-operative evaluation of screw fixation of axis fractures.Methods There were 21 cases of screw fixation of axis fractures between February 200...To explore the value of helical CT volume rendering technique (VRT) in post-operative evaluation of screw fixation of axis fractures.Methods There were 21 cases of screw fixation of axis fractures between February 2002 and May 2004 in the study including six cases with fractures on axis body,five on odontoid process and 10 on axis body and odontoid process.All cases received X-ray plain film,helical CT scanning,multi-planar reformatting(MPR) and VRT.Results Screw fixation through axis body and massa lateralis atlantis was performed in 10 cases and that through axis body and odontoid process in 11.VRT could clearly display full aperture of screw orbit,location of screw and angle of fixation and hence was superior to X-ray plain film and MPR.Multi-angle VRT displayed asymmetrical space of odontoid process and massa lateralis atlantis in four cases and medial deviation of 2~5 mm of half screw in screw fixation through axis body and massa lateralis atlantis in six.Conclusion VRT can eliminate false shadow of fixation screw,clearly display full aperture of screw orbit and hence supply improtant imaging evidence for post-operative evaluation of screw fixation of axis fractures.7 refs,1 fig,1 tab.展开更多
Aim To investigate the relationship between the positioning of the lower central incisor and physical morphology of the surrounding alveolar bone. Methodology Thirty-eight patients (18 males, 20 females), with mean ...Aim To investigate the relationship between the positioning of the lower central incisor and physical morphology of the surrounding alveolar bone. Methodology Thirty-eight patients (18 males, 20 females), with mean age of 13.4 years, were included in this study. As part of orthodontic treatment planning the patients were required to take dental Cone-beam CT (CBCT) covering the region of lower incisors, the sur- rounding alveolar bone and the mandibular symphysis. The cephalometric parameters were designed and measured to indicate the inclination of lower central incisor and physical morphology of the adjacent alveolar bone. Computer-aided descriptive statistical analysis was performed using SPSS 15.0 software package for Windows. A correlation analysis and a linear regression analysis between the incisor inclination and the alveolar bone morphology were performed. Results Significant positive correlations were found between the lower central incisor inclination and the morphological contour of the alveolar bone (P〈0.05). The lower central incisor root apex was closer to the lingual alveolar crest when it was buccally inclined. Conclusion The morphology of the alveolar bone may be affected by incisal inclination.展开更多
Because of the growing concern over the radiation dose delivered to patients, X-ray cone-beam CT(CBCT) imaging of low dose is of great interest. It is difficult for traditional reconstruction methods such as Feldkamp ...Because of the growing concern over the radiation dose delivered to patients, X-ray cone-beam CT(CBCT) imaging of low dose is of great interest. It is difficult for traditional reconstruction methods such as Feldkamp to reduce noise and keep resolution at low doses. A typical method to solve this problem is using optimizationbased methods with careful modeling of physics and additional constraints. However, it is computationally expensive and very time-consuming to reach an optimal solution. Recently, some pioneering work applying deep neural networks had some success in characterizing and removing artifacts from a low-dose data set. In this study,we incorporate imaging physics for a cone-beam CT into a residual convolutional neural network and propose a new end-to-end deep learning-based method for slice-wise reconstruction. By transferring 3D projection to a 2D problem with a noise reduction property, we can not only obtain reconstructions of high image quality, but also lower the computational complexity. The proposed network is composed of three serially connected sub-networks: a cone-to-fan transformation sub-network, a 2D analytical inversion sub-network, and an image refinement sub-network. This provides a comprehensive solution for end-to-end reconstruction for CBCT. The advantages of our method are that the network can simplify a 3D reconstruction problem to a 2D slice-wise reconstruction problem and can complete reconstruction in an end-to-end manner with the system matrix integrated into the network design. Furthermore, reconstruction can be less computationally expensive and easily parallelizable compared with iterative reconstruction methods.展开更多
基金Supported by the National High Technology Research and Development Program of China(No.2012AA011603)National Nature Science Foundation of China(No.61372172)
文摘In helical cone-beam computed tomography(CT), Feldkamp-Davis-Kress(FDK) based image reconstruction algorithms are by far the most popular. However, artifacts are commonly met in the presence of lateral projection truncation. The reason is that the ramp filter is global. To restrain the truncation artifacts, an approximate reconstruction formula is proposed based on the Derivative-Hilbert-Backprojection(DHB) framework. In the method, the first order derivative filter is followed by the Hilbert transform. Since the filtered projection values are almost zero by the first order derivative filter, the following Hilbert transform has little influence on the projection values, even though the projections are laterally truncated. The proposed method has two main advantages. First, it has comparable computational efficiency and image quality as well as the conventional helical FDK algorithm for non-truncated projections. The second advantage is that images can be reconstructed with acceptable quality and much lower computational cost in comparison to the Laplace operator based algorithm in cases with truncated projections. To point out the advantages of our method, simulations on the computer and real data experiments on our laboratory industrial cone-beam CT are conducted. The simulated and experimental results demonstrate that the method is feasible for image reconstruction in the case of projection truncation.
基金Digital Medical Equipment Research and Development Project,Ministry of Science and Technology,China:The development of Synchrotron-based proton therapy system(2016YFC0105400).
文摘Cone-beam computed tomography(CBCT) is mostly used for position verification during the treatment process. However,severe image artifacts in CBCT hinder its direct use in dose calculation and adaptive radiation therapy re-planning for proton therapy. In this study, an improved U-Net neural network named CBAM-U-Net was proposed for CBCT noise reduction in proton therapy, which is a CBCT denoised U-Net network with convolutional block attention modules. The datasets contained 20 groups of head and neck images. The CT images were registered to CBCT images as ground truth. The original CBCT denoised U-Net network, sCTU-Net, was trained for model performance comparison. The synthetic CT(SCT) images generated by CBAM-U-Net and the original sCTU-Net are called CBAM-SCT and U-Net-SCT images, respectively. The HU accuracies of the CT, CBCT, and SCT images were compared using four metrics: mean absolute error(MAE), root mean square error(RMSE), peak signal-to-noise ratio(PSNR), and structure similarity index measure(SSIM). The mean values of the MAE, RMSE, PSNR, and SSIM of CBAM-SCT images were 23.80 HU, 64.63 HU, 52.27 dB, and 0.9919, respectively,which were superior to those of the U-Net-SCT images. To evaluate dosimetric accuracy, the range accuracy was compared for a single-energy proton beam. The γ-index pass rates of a 4 cm × 4 cm scanned field and simple plan were calculated to compare the effects of the noise reduction capabilities of the original U-Net and CBAM-U-Net on the dose calculation results. CBAM-U-Net reduced noise more effectively than sCTU-Net, particularly in high-density tissues. We proposed a CBAM-U-Net model for CBCT noise reduction in proton therapy. Owing to the excellent noise reduction capabilities of CBAM-U-Net, the proposed model provided relatively explicit information regarding patient tissues. Moreover, it maybe be used in dose calculation and adaptive treatment planning in the future.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB707701)the National High Technology Research and Development Program of China (Grant No. 2009AA012200)the National Nature Science Foundation of China(Grant No. 30970722)
文摘In cone-beam computed tomography (CBCT), there are often cases where the size of the specimen is larger than the field of view (FOV) (referred to as over FOV-sized (OFS)). To acquire the complete projection data for OFS objects, some scan modes have been developed for long objects and short but over-wide objects. However, these modes still cannot meet the requirements for both longitudinally long and transversely wide objects. In this paper, we propose a multiple helical scan mode and a corresponding reconstruction algorithm for both longitudinally long and transversely wide objects. The simulation results show that our model can deal with the problem and that the results are acceptable, while the OFS object is twice as long compared with the FOV in the same latitude.
文摘Objective: To assess the value of helical CT in the di- agnosis of liver diseases. Methods: 59 patients with different liver diseases were examined by two-phase or multi-phase dynamic helical CT. Results: Small hepatocellular carcinoma showed a higher density in the arterial phase, and a lower den- sity in the portal vein phase. Large hepatic carcino- ma showed a mixed pattern of higher-density in the arterial phase, and a lower density in the portal vein phase. Metastasis carcinoma showed an 'oxeye sign' in the portal vein phase. Hemangioma was not obvi- ously enhanced in the early arterial phase, marginal- ly enhanced in the arterial phase, and equally-densed in the balanced phase. Conclusion: Two-phase helical CT is of value in im- proving the detection rate of or determining the fea- tures of hepatic diseases by two-phase helical dyna- mic scan (2.0-3.0 ml/s speed, and delay time 25- 30 s and 70-85 s).
文摘To explore the value of helical CT volume rendering technique (VRT) in post-operative evaluation of screw fixation of axis fractures.Methods There were 21 cases of screw fixation of axis fractures between February 2002 and May 2004 in the study including six cases with fractures on axis body,five on odontoid process and 10 on axis body and odontoid process.All cases received X-ray plain film,helical CT scanning,multi-planar reformatting(MPR) and VRT.Results Screw fixation through axis body and massa lateralis atlantis was performed in 10 cases and that through axis body and odontoid process in 11.VRT could clearly display full aperture of screw orbit,location of screw and angle of fixation and hence was superior to X-ray plain film and MPR.Multi-angle VRT displayed asymmetrical space of odontoid process and massa lateralis atlantis in four cases and medial deviation of 2~5 mm of half screw in screw fixation through axis body and massa lateralis atlantis in six.Conclusion VRT can eliminate false shadow of fixation screw,clearly display full aperture of screw orbit and hence supply improtant imaging evidence for post-operative evaluation of screw fixation of axis fractures.7 refs,1 fig,1 tab.
文摘Aim To investigate the relationship between the positioning of the lower central incisor and physical morphology of the surrounding alveolar bone. Methodology Thirty-eight patients (18 males, 20 females), with mean age of 13.4 years, were included in this study. As part of orthodontic treatment planning the patients were required to take dental Cone-beam CT (CBCT) covering the region of lower incisors, the sur- rounding alveolar bone and the mandibular symphysis. The cephalometric parameters were designed and measured to indicate the inclination of lower central incisor and physical morphology of the adjacent alveolar bone. Computer-aided descriptive statistical analysis was performed using SPSS 15.0 software package for Windows. A correlation analysis and a linear regression analysis between the incisor inclination and the alveolar bone morphology were performed. Results Significant positive correlations were found between the lower central incisor inclination and the morphological contour of the alveolar bone (P〈0.05). The lower central incisor root apex was closer to the lingual alveolar crest when it was buccally inclined. Conclusion The morphology of the alveolar bone may be affected by incisal inclination.
基金supported by the National Natural Science Foundation of China(Nos.61771279,11435007)the National Key Research and Development Program of China(No.2016YFF0101304)
文摘Because of the growing concern over the radiation dose delivered to patients, X-ray cone-beam CT(CBCT) imaging of low dose is of great interest. It is difficult for traditional reconstruction methods such as Feldkamp to reduce noise and keep resolution at low doses. A typical method to solve this problem is using optimizationbased methods with careful modeling of physics and additional constraints. However, it is computationally expensive and very time-consuming to reach an optimal solution. Recently, some pioneering work applying deep neural networks had some success in characterizing and removing artifacts from a low-dose data set. In this study,we incorporate imaging physics for a cone-beam CT into a residual convolutional neural network and propose a new end-to-end deep learning-based method for slice-wise reconstruction. By transferring 3D projection to a 2D problem with a noise reduction property, we can not only obtain reconstructions of high image quality, but also lower the computational complexity. The proposed network is composed of three serially connected sub-networks: a cone-to-fan transformation sub-network, a 2D analytical inversion sub-network, and an image refinement sub-network. This provides a comprehensive solution for end-to-end reconstruction for CBCT. The advantages of our method are that the network can simplify a 3D reconstruction problem to a 2D slice-wise reconstruction problem and can complete reconstruction in an end-to-end manner with the system matrix integrated into the network design. Furthermore, reconstruction can be less computationally expensive and easily parallelizable compared with iterative reconstruction methods.