Due to the strong electromagnetic interferences and human interference,traditional electromagnetic methods cannot obtain high quality resistivity data of mineral deposits in Chinese mines.The wide field electromagneti...Due to the strong electromagnetic interferences and human interference,traditional electromagnetic methods cannot obtain high quality resistivity data of mineral deposits in Chinese mines.The wide field electromagnetic method(WFEM),in which the pseudo-random signal is taken as the transmitter source,can extract high quality resistivity data in areas with sever interference by only measuring the electric field component.We use the WFEM to extract the resistivity information of the Dongguashan mine in southeast China.Compared with the audio magnetotelluric(AMT)method,and the controlled source audio-frequency magnetotelluric(CSAMT) method,the WFEM can obtain data with higher quality and simpler operations.The inversion results indicate that the WFEM can accurately identify the location of the main ore-body,which can be used for deep mine exploration in areas with strong interference.展开更多
The time-frequency domain electromagnetic(TFEM)sounding technique can directly detect oil and gas characteristics through anomalies in resistivity and polarizability.In recent years,it has made some breakthroughs in h...The time-frequency domain electromagnetic(TFEM)sounding technique can directly detect oil and gas characteristics through anomalies in resistivity and polarizability.In recent years,it has made some breakthroughs in hydrocarbon detection.TFEM was applied to predict the petroliferous property of the Ili Basin.In accordance with the geological structure characteristics of the study area,a two-dimensional layered medium model was constructed and forward modeling was performed.We used the forward-modeling results to guide fi eld construction and ensure the quality of the fi eld data collection.We used the model inversion results to identify and distinguish the resolution of the geoelectric information and provide a reliable basis for data processing.On the basis of our results,key technologies such as 2D resistivity tomography imaging inversion and polarimetric constrained inversion were developed,and we obtained abundant geological and geophysical information.The characteristics of the TFEM anomalies of the hydrocarbon reservoirs in the Ili Basin were summarized through an analysis of the electrical logging data in the study area.Moreover,the oil-gas properties of the Permian and Triassic layers were predicted,and the next favorable exploration targets were optimized.展开更多
Aiming at evaluating and predicting rapidly and accurately a high sensitivity receiver’s adaptability in complex electromagnetic environments,a novel testing and prediction method based on dual-channel multi-frequenc...Aiming at evaluating and predicting rapidly and accurately a high sensitivity receiver’s adaptability in complex electromagnetic environments,a novel testing and prediction method based on dual-channel multi-frequency is proposed to improve the traditional two-tone test.Firstly,two signal generators are used to generate signals at the radio frequency(RF)by frequency scanning,and then a rapid measurement at the intermediate frequency(IF)output port is carried out to obtain a huge amount of sample data for the subsequent analysis.Secondly,the IF output response data are modeled and analyzed to construct the linear and nonlinear response constraint equations in the frequency domain and prediction models in the power domain,which provide the theoretical criteria for interpreting and predicting electromagnetic susceptibility(EMS)of the receiver.An experiment performed on a radar receiver confirms the reliability of the method proposed in this paper.It shows that the interference of each harmonic frequency and each order to the receiver can be identified and predicted with the sensitivity model.Based on this,fast and comprehensive evaluation and prediction of the receiver’s EMS in complex environment can be efficiently realized.展开更多
A finite element method is developed for simulating frequency domain electromagnetic responses due to a dipole source in the 2-D conductive structures. Computing costs are considerably minimized by reducing the full t...A finite element method is developed for simulating frequency domain electromagnetic responses due to a dipole source in the 2-D conductive structures. Computing costs are considerably minimized by reducing the full three-dimensional problem to a series of two-dimensional problems. This is accomplished by transforming the problem into y-wave number (Ky) domain using Fourier transform and the y-axis is parallel to the structural strike. In the Ky domain, two coupled partial differential equations for magnetic field Hy and electric field Ey are derived. For a specific value of Ky, the coupled equations are solved by the finite element method with isoparametric elements in the x-z plane. Application of the inverse Fourier transform to the Ky, domain provides the electric and magnetic fields in real space. The equations derived can be applied to general complex two-dimensional structures containing either electric or magnetic dipole source in any direction. In the modeling of the electromagnetic measurement, we adopted a pseudo-delta function to distribute the dipole source current and circumvent the problem of singularity at the source point. Moreover, the suggested method used isoparametric finite elements to accommodate the complex subsurface formation. For the large scale linear system derived from the discretization of the Maxwell's equations, several iterative solvers were used and compared to select the optimal one. A quantitative test of accuracy was presented which compared the finite element results with analytic solutions for a dipole source in homogeneous space for different ranges and different wave numbers Ky. to validate the addressed the effects of the distribution range τ of the homogeneous medium. code and check its effectiveness. In addition, we pseudo-delta function on the numerical results in展开更多
Characteristic analysis of transient electromagnetic disturbance data is very important. In this paper, the time-domain and frequency-domain characteristics of transient electromagnetic disturbance caused by switching...Characteristic analysis of transient electromagnetic disturbance data is very important. In this paper, the time-domain and frequency-domain characteristics of transient electromagnetic disturbance caused by switching operations in substations are analyzed. Two methods are adopted in time-domain analysis. One method is histogram and the other one is normality test. An appropriate procedure for the normality test is proposed. Furthermore, the method used in frequency- domain analysis is to obtain overall envelope. These statistical characteristic analysis methods are showed to be of great value in analyses of the measured samples. The simulation results showed that these methods are effective.展开更多
In this paper, a class of electromagnetic field frequency domain reliability problem is first defined. The frequency domain reliability refers to the probability that an electromagnetic performance indicator can meet ...In this paper, a class of electromagnetic field frequency domain reliability problem is first defined. The frequency domain reliability refers to the probability that an electromagnetic performance indicator can meet the intended requirements within a specific frequency band, considering the uncertainty of structural parameters and frequency-variant electromagnetic parameters.And then a frequency domain reliability analysis method based on univariate dimension reduction method is proposed, which provides an effective calculation tool for electromagnetic frequency domain reliability. In electromagnetic problems, performance indicators usually vary with frequency. The method firstly discretizes the frequency-variant performance indicator function into a series of frequency points' functions, and then transforms the frequency domain reliability problem into a series system reliability problem of discrete frequency points' functions. Secondly, the univariate dimension reduction method is introduced to solve the probability distribution functions and correlation coefficients of discrete frequency points' functions in the system. Finally, according to the above calculation results, the series system reliability can be solved to obtain the frequency domain reliability, and the cumulative distribution function of the performance indicator can also be obtained. In this study,Monte Carlo simulation is adopted to demonstrate the validity of the frequency domain reliability analysis method. Three examples are investigated to demonstrate the accuracy and efficiency of the proposed method.展开更多
By analysing the propagation law of electromagnetic wave,the distribution pattern of the field and the theory of frequency electromagnetic sounding,the physical mechanisms that make the frequency electromagnetic sound...By analysing the propagation law of electromagnetic wave,the distribution pattern of the field and the theory of frequency electromagnetic sounding,the physical mechanisms that make the frequency electromagnetic sounding in near-field zone difficult are discussed.Based on the theory of near source field,a new method of dual-frequency electromagnetic sounding of combination wave in near-field zone is advanced.Meanwhile,the method of measurement of fields,the definition of apparent resistivity and the numerical algorithm are approached.展开更多
针对架空配电线路电弧接地故障点定位难题,该文研究架空配电线路故障电弧的电磁辐射特性,探索基于电磁辐射信号的电弧故障定位方法的可行性。通过10 k V配网真型故障模拟试验平台,分析接地电弧电磁辐射的时域与频域特性及传播衰减规律,...针对架空配电线路电弧接地故障点定位难题,该文研究架空配电线路故障电弧的电磁辐射特性,探索基于电磁辐射信号的电弧故障定位方法的可行性。通过10 k V配网真型故障模拟试验平台,分析接地电弧电磁辐射的时域与频域特性及传播衰减规律,结果表明:电弧电流的电磁辐射特征频段为20~30 MHz,该特征频段不会受到中性点接地方式、电弧接地介质与线路结构参数的显著影响,且特征频段内辐射信号在传播过程中衰减较慢。在此基础上,设计一种小型化三角形单极子–环形组合平面天线,工作频率为20~500 MHz。利用自制天线开展小型电弧故障定位实验,为后续配网电弧故障定位的应用研究提供基础。展开更多
基金Project(2018YFC0807802)supported by the National Key R&D Program of ChinaProject(41874081)supported by the National Natural Science Foundation of China
文摘Due to the strong electromagnetic interferences and human interference,traditional electromagnetic methods cannot obtain high quality resistivity data of mineral deposits in Chinese mines.The wide field electromagnetic method(WFEM),in which the pseudo-random signal is taken as the transmitter source,can extract high quality resistivity data in areas with sever interference by only measuring the electric field component.We use the WFEM to extract the resistivity information of the Dongguashan mine in southeast China.Compared with the audio magnetotelluric(AMT)method,and the controlled source audio-frequency magnetotelluric(CSAMT) method,the WFEM can obtain data with higher quality and simpler operations.The inversion results indicate that the WFEM can accurately identify the location of the main ore-body,which can be used for deep mine exploration in areas with strong interference.
基金This work was supported by the Geology and Mineral Resources Investigation and Evaluation Program(No.12120115006601 and No.DD20160181)the National key Research and Development projects(No.2016YFC060110204 and No.2016YFC060110305).
文摘The time-frequency domain electromagnetic(TFEM)sounding technique can directly detect oil and gas characteristics through anomalies in resistivity and polarizability.In recent years,it has made some breakthroughs in hydrocarbon detection.TFEM was applied to predict the petroliferous property of the Ili Basin.In accordance with the geological structure characteristics of the study area,a two-dimensional layered medium model was constructed and forward modeling was performed.We used the forward-modeling results to guide fi eld construction and ensure the quality of the fi eld data collection.We used the model inversion results to identify and distinguish the resolution of the geoelectric information and provide a reliable basis for data processing.On the basis of our results,key technologies such as 2D resistivity tomography imaging inversion and polarimetric constrained inversion were developed,and we obtained abundant geological and geophysical information.The characteristics of the TFEM anomalies of the hydrocarbon reservoirs in the Ili Basin were summarized through an analysis of the electrical logging data in the study area.Moreover,the oil-gas properties of the Permian and Triassic layers were predicted,and the next favorable exploration targets were optimized.
基金supported by the National Natural Science Foundation of China(62071473).
文摘Aiming at evaluating and predicting rapidly and accurately a high sensitivity receiver’s adaptability in complex electromagnetic environments,a novel testing and prediction method based on dual-channel multi-frequency is proposed to improve the traditional two-tone test.Firstly,two signal generators are used to generate signals at the radio frequency(RF)by frequency scanning,and then a rapid measurement at the intermediate frequency(IF)output port is carried out to obtain a huge amount of sample data for the subsequent analysis.Secondly,the IF output response data are modeled and analyzed to construct the linear and nonlinear response constraint equations in the frequency domain and prediction models in the power domain,which provide the theoretical criteria for interpreting and predicting electromagnetic susceptibility(EMS)of the receiver.An experiment performed on a radar receiver confirms the reliability of the method proposed in this paper.It shows that the interference of each harmonic frequency and each order to the receiver can be identified and predicted with the sensitivity model.Based on this,fast and comprehensive evaluation and prediction of the receiver’s EMS in complex environment can be efficiently realized.
文摘A finite element method is developed for simulating frequency domain electromagnetic responses due to a dipole source in the 2-D conductive structures. Computing costs are considerably minimized by reducing the full three-dimensional problem to a series of two-dimensional problems. This is accomplished by transforming the problem into y-wave number (Ky) domain using Fourier transform and the y-axis is parallel to the structural strike. In the Ky domain, two coupled partial differential equations for magnetic field Hy and electric field Ey are derived. For a specific value of Ky, the coupled equations are solved by the finite element method with isoparametric elements in the x-z plane. Application of the inverse Fourier transform to the Ky, domain provides the electric and magnetic fields in real space. The equations derived can be applied to general complex two-dimensional structures containing either electric or magnetic dipole source in any direction. In the modeling of the electromagnetic measurement, we adopted a pseudo-delta function to distribute the dipole source current and circumvent the problem of singularity at the source point. Moreover, the suggested method used isoparametric finite elements to accommodate the complex subsurface formation. For the large scale linear system derived from the discretization of the Maxwell's equations, several iterative solvers were used and compared to select the optimal one. A quantitative test of accuracy was presented which compared the finite element results with analytic solutions for a dipole source in homogeneous space for different ranges and different wave numbers Ky. to validate the addressed the effects of the distribution range τ of the homogeneous medium. code and check its effectiveness. In addition, we pseudo-delta function on the numerical results in
文摘Characteristic analysis of transient electromagnetic disturbance data is very important. In this paper, the time-domain and frequency-domain characteristics of transient electromagnetic disturbance caused by switching operations in substations are analyzed. Two methods are adopted in time-domain analysis. One method is histogram and the other one is normality test. An appropriate procedure for the normality test is proposed. Furthermore, the method used in frequency- domain analysis is to obtain overall envelope. These statistical characteristic analysis methods are showed to be of great value in analyses of the measured samples. The simulation results showed that these methods are effective.
基金supported by the National Natural Science Foundation of China(Grant No.51490662)the National Science Fund for Distinguished Young Scholars(Grant No.51725502)
文摘In this paper, a class of electromagnetic field frequency domain reliability problem is first defined. The frequency domain reliability refers to the probability that an electromagnetic performance indicator can meet the intended requirements within a specific frequency band, considering the uncertainty of structural parameters and frequency-variant electromagnetic parameters.And then a frequency domain reliability analysis method based on univariate dimension reduction method is proposed, which provides an effective calculation tool for electromagnetic frequency domain reliability. In electromagnetic problems, performance indicators usually vary with frequency. The method firstly discretizes the frequency-variant performance indicator function into a series of frequency points' functions, and then transforms the frequency domain reliability problem into a series system reliability problem of discrete frequency points' functions. Secondly, the univariate dimension reduction method is introduced to solve the probability distribution functions and correlation coefficients of discrete frequency points' functions in the system. Finally, according to the above calculation results, the series system reliability can be solved to obtain the frequency domain reliability, and the cumulative distribution function of the performance indicator can also be obtained. In this study,Monte Carlo simulation is adopted to demonstrate the validity of the frequency domain reliability analysis method. Three examples are investigated to demonstrate the accuracy and efficiency of the proposed method.
基金Project supported by the Post-Doctoral Science Foundation and the Doctoral Fund of Education Commission of China.
文摘By analysing the propagation law of electromagnetic wave,the distribution pattern of the field and the theory of frequency electromagnetic sounding,the physical mechanisms that make the frequency electromagnetic sounding in near-field zone difficult are discussed.Based on the theory of near source field,a new method of dual-frequency electromagnetic sounding of combination wave in near-field zone is advanced.Meanwhile,the method of measurement of fields,the definition of apparent resistivity and the numerical algorithm are approached.
文摘针对架空配电线路电弧接地故障点定位难题,该文研究架空配电线路故障电弧的电磁辐射特性,探索基于电磁辐射信号的电弧故障定位方法的可行性。通过10 k V配网真型故障模拟试验平台,分析接地电弧电磁辐射的时域与频域特性及传播衰减规律,结果表明:电弧电流的电磁辐射特征频段为20~30 MHz,该特征频段不会受到中性点接地方式、电弧接地介质与线路结构参数的显著影响,且特征频段内辐射信号在传播过程中衰减较慢。在此基础上,设计一种小型化三角形单极子–环形组合平面天线,工作频率为20~500 MHz。利用自制天线开展小型电弧故障定位实验,为后续配网电弧故障定位的应用研究提供基础。