期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Accumulation mechanism of mantle-derived helium resources in petroliferous basins, eastern China 被引量:2
1
作者 Xiaofeng WANG Quanyou LIU +3 位作者 Wenhui LIU Dongdong ZHANG Xiaofu LI Dong ZHAO 《Science China Earth Sciences》 SCIE EI CAS CSCD 2022年第12期2322-2334,共13页
A series of marginal-sea basins and fault-depression basins were formed in eastern China under the background of subduction of the West Pacific plate.Different types of helium-rich natural gas reservoirs(He>1000 pp... A series of marginal-sea basins and fault-depression basins were formed in eastern China under the background of subduction of the West Pacific plate.Different types of helium-rich natural gas reservoirs(He>1000 ppm,1 ppm=1μmol mol^(-1))have been found in these basins:helium-rich CO_(2)gas reservoirs,helium-rich N_(2)gas reservoirs,and helium-rich hydrocarbon gas reservoirs.Based on the analysis of gas geochemical data,the source and accumulation mechanism of helium in these heliumrich natural gas reservoirs were discussed.Helium-rich natural gas has relatively high 3He/4He ratios(0.88-4.91 Ra,average 2.82 Ra).The ^(3)He/^(4)He ratio characteristics of mantle xenoliths and mantle-derived CO_(2)gas reservoirs indicate that the helium in these helium-rich natural gas reservoirs is mainly mantle-derived(>70%).The original mantle volatile is mainly CO_(2)with a low helium concentration(He<200 ppm),and the enrichment of mantle-derived helium in the gas reservoir is mainly related to the dissolution and mineralization of CO_(2).During this process,the CO_(2)/3He ratio decreases from 2×10^(9)to approximately 2×10^(6).As CO_(2)dissolves and mineralizes,the concentration of conservative gases(He and N_(2))increases in the remaining CO_(2)gas proportionally to the loss of CO_(2).Large amounts of carbonate minerals,such as dawsonite,which are relatively enriched in 13C,are found in CO_(2)reservoirs in eastern China.The relative enrichment of^(12)C in residual CO_(2)gas is important evidence of the dissolution and mineralization of CO_(2).The relative abundance of mantle-derived helium and N_(2)gas increases thousands of times during the dissolution and mineralization of CO_(2),which is the main accumulation mechanism of mantle-derived helium-rich CO_(2)gas reservoirs and helium-rich N_(2)gas reservoirs.Helium-rich gas from the mantle is mixed with alkane gas generated by organic matter in the sedimentary basin to form helium-rich hydrocarbon gas reservoirs. 展开更多
关键词 Mantle-derived helium ^(3)He/4He ratio helium resources helium-rich natural gas Accumulation mechanism
原文传递
Distributions and accumulation mechanisms of helium in petroliferous basins
2
作者 Pengpeng LI Quanyou LIU +6 位作者 Dongya ZHU Di ZHU Zheng ZHOU Xiaoqi WU Qingqiang MENG Jiahao LV Yu GAO 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第10期3143-3168,共26页
Helium is an irreplaceable strategic mineral resource, and commercial helium-rich gas fields(He>0.1%) worldwide are typically discovered serendipitously during hydrocarbon exploration efforts. According to an analy... Helium is an irreplaceable strategic mineral resource, and commercial helium-rich gas fields(He>0.1%) worldwide are typically discovered serendipitously during hydrocarbon exploration efforts. According to an analysis of 75 helium-rich gas fields and 1048 natural gas samples worldwide, helium in natural gas generally exhibits “scarce”, “accompanying”, and“complex” properties, and helium-rich gas fields often occur at depths <4500 m. Helium concentrations in He-CH_(4) and He-CO_(2) gas fields are notably lower than those in He-N_(2)gas fields(He>1%). However, geological reserves in the former two types of gas fields are mainly in the range of 10^(7)–10^(11)m^(3), whereas in the latter, they are only in the range of 10^(5)–10^(7)m^(3). There are nevertheless notable disparities in the genesis and migration patterns between helium and gaseous hydrocarbons. Helium necessitates carriers(such as formation water, hydrocarbon fluids, N_(2), mantle-derived fluids, etc.) during both accumulation and long-distance migration processes, where migration conduits are not confined to sedimentary strata, and may extend to the basin's basement, lower crust, and even lithospheric mantle. However, the accumulation conditions of both helium and gaseous hydrocarbons are generally considered equivalent. The presence of gaseous hydrocarbons facilitates both the rapid exsolution of helium within helium-containing fluids and subsequent efficient aggregation in gaseous hydrocarbons, while both reduce helium diffusion and diminish escape flux. In terms of caprock, gypsum, salt, and thick shale as sealing layers contribute to the long-term preservation of helium over geological timescales. Large helium-rich gas fields, predominantly crust-derived gas fields, are primarily concentrated in uplifted zones of ancient cratonic basins and their peripheries. Based on a diagram of the He concentration versus He/N_(2) ratio, crust-derived helium fields can be categorized as basement, combined basement-sedimentary rock, and sedimentary rock helium supply types. Comprehensively given China's helium grade, helium resource endowment,natural gas industrialization process, and current helium purification processes, the foremost deployment zones for the commercial production of helium should be the helium-rich gas fields located in the Ordos, Tarim, Sichuan, and Qaidam Basins in western and central China. In addition, certain(extra) large helium-containing gas fields serve as important replacement zones. 展开更多
关键词 helium resource Geochemical characteristics helium source rock helium supply pattern Accumulation mechanism Determination of favorable zones
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部