Objective To determine if global warming has an impact on the evolution of hemagglutinins from influenza A viruses, because both global warming and influenza pandemics/epidemics threaten the world. Methods 4 706 hemag...Objective To determine if global warming has an impact on the evolution of hemagglutinins from influenza A viruses, because both global warming and influenza pandemics/epidemics threaten the world. Methods 4 706 hemagglutinins from influenza A viruses sampled from 1956 to 2009 were converted to a time‐series to show their evolutionary process and compared with the global, northern hemisphere and southern hemisphere temperatures, to determine if their trends run in similar or opposite directions. Point‐to‐point comparisons between temperature and quantified hemagglutinins were performed for all species and for the major prevailing species. Results The comparisons show that the trends for both hemagglutinin evolution and temperature change run in a similar direction. Conclusion Global warming has a consistent and progressive impact on the hemagglutinin evolution of influenza A viruses.展开更多
This study was trying to predict the mutations in H1 hemagglutinins of influenza A virus from North America including the predictions of mu-tation position, the predictions of would-be-mutated amino acids and the pred...This study was trying to predict the mutations in H1 hemagglutinins of influenza A virus from North America including the predictions of mu-tation position, the predictions of would-be-mutated amino acids and the predictions of time of occurrence of mutations. The results paved a possible way for accurate, precise and reliable prediction of mutation in proteins from influenza A virus.展开更多
Influenza A viruses have led several pandemics and epidemics in human history. H7 subtype influenza mainly infects avian but also humans occasionally. Since the outbreak of H7N9 subtype influenza occurred in China in ...Influenza A viruses have led several pandemics and epidemics in human history. H7 subtype influenza mainly infects avian but also humans occasionally. Since the outbreak of H7N9 subtype influenza occurred in China in 2013, this virus is still circulating in domestic poultry and leading several waves of influenza. To prevent influenza, vaccination is an important strategy. However, influenza virus evolves constantly, but unpredictably. If we would have a one-to-one cause-mutation relationship, the mutation prediction would be possible. However, many external causes, which led to the mutations in the past, might not leave any trace due to the change in environments, whereas the current virus might not be subject to the historically external causes because of evolution. Furthermore, the protein should have the internal causes, which might be quite unclear and difficult to quantify, to engineer mutations. Indeed, various forces twist proteins into 3-demensional structures, whereas any perturbation could lead to a mutation. Of various internal causes for mutation, randomness in protein primary structure should play an important role in mutation. Over years, we have developed three methods to quantify the randomness within a protein primary structure;thus we build a relationship between cause, which is randomness in primary structure, and mutations, which are occurrence and non-occurrence of mutation. In this way, the cause-mutation relationship becomes the problem of classification, which can be solved using logistic regression and neural network. In this study, we apply this model to predict 1) the mutation positions in H7 hemagglutinins from influenza A virus and 2) the would-be-mutated amino-acids at predicted positions with the amino-acid mutating probability. The results show suitability and predictability in such modelling, and pave the way for further development.展开更多
AIM: To explore the virulence and the potential pathogenicity of coccoid Helicobacter pylori (H. pylori) transformed from spiral form by exposure to antibiotic. METHODS: Three strains of H. pylori, isolated from gastr...AIM: To explore the virulence and the potential pathogenicity of coccoid Helicobacter pylori (H. pylori) transformed from spiral form by exposure to antibiotic. METHODS: Three strains of H. pylori, isolated from gastric biopsy specimens of confirmed peptic ulcer, were converted from spiral into coccoid from by exposure to metronidazole. Both spiral and coccoid form of H. pylori were tested for the urease activity, the adherence to Hep-2 cells and the vacuolating cytotoxicity to Hela cells, and the differences of the protein were analysed by SDS-PAGE and Western blot. The mutation of the genes including ureA, ureB,hpaA, vacA and cagA, related with virulence, was detected by means of PCR and PCR-SSCP. RESULTS: In the coccoid H. pylori,the urease activity, the adherence to Hep-2 cells and the vacuolating cytotoxicity to Hela cells all decreased. In strain F44, the rate and index of adherence reduced from 70.0% +/- 5.3% to 33% +/- 5.1% and from 2.6 +/- 0.4 to 0.96 +/- 0.3 (P 【 0.01), respectively. The invasion of coccoid H. pylori into Hep-2 cell could be seen under electronmicroscope. SDS-PAGE showed that the content of the protein with the molecular weight over Mr 74000 decreased, and the hybriditional signal in band M(r) 125000 weakened, while the band M(r)110000 and M(r)63000 strengthened in coccoid H.pylori as shown in Western blot. The results of PCR were all positive, and PCR-SSCP indicated that there may exist the point mutation in gene hpaA or vacA. CONCLUSION: The virulence and the proteins with molecular weight over M(r)74000 in coccoid H.pylori decrease, but no deletion exists in amplification fragments from ureA, ureB, hpaA, vacA and cagA genes, suggesting that coccoid H.pylori may have potential pathogenicity.展开更多
[Objective] The paper was to introduce the research progress of 2009 influenza A virus. [Method] 2009 influenza A virus was introduced from the aspects of classification and host, virology, molecular characteristics a...[Objective] The paper was to introduce the research progress of 2009 influenza A virus. [Method] 2009 influenza A virus was introduced from the aspects of classification and host, virology, molecular characteristics and vaccine. [Result] A novel influenza A/H1N1 virus emerged in early April 2009 quickly spread worldwide through human-to-human transmission. The virus contained a group of novel gene segments, the nearest known precursor was the virus found in swine. The virus appeared to retain the potential to infect swine again and thus continued reassort with swine viruses. All registered 2009 influenza A vaccines were tested for safety and immunogenicity in clinical trials on human volunteers, and all vaccines were found to be safe, single dose of vaccine could cause protective antibody responses. [Conclusion] The paper provided basis for further study on 2009 influenza A virus.展开更多
[ Objective] To determine the HA gene sequences of four H9N2 Avian influenza virus (AIV) strains and carry out comparative analysis so as to understand the difference and variation pattern of each strain from the an...[ Objective] To determine the HA gene sequences of four H9N2 Avian influenza virus (AIV) strains and carry out comparative analysis so as to understand the difference and variation pattern of each strain from the angle of molecular biology and to know the distribution and epidemic law of H9N2 AIV. [Method] One pair of primers was designed referring to HA gene sequences of H9N2 AIV. The HA genes of A/Chicken/Hebei/WD/98 (H9N2; WD98 for short), A/Chicken/Hebei/ZD/04 (H9N2; ZD04 for short)), A/Chicken/Beijing/MY/06 (H9N2; MY06 for short) ), and A/Chicken/Beijing/PG/08 (H9N2; PG08 for short)) were amplified, cloned and sequenced. Then the HA gene sequences of these strains were compared with that of 10 H9N2 AIV stains in GenBank. [Result] The ORF of HA genes of the four strains was 1 683 bp in size, encoding 516 amino acids. The HA gene sequences of the four strains, WD98, MY06, PG08, and ZD04, were 82.6% -95.1%, 83.0% -99.0%, 82.7% -95.5%, and 81.3% -95.7% homologous to that of the 10 H9N2 AIV stains, respectively. And the homology of amino acid was respectively 86.6% -96.3%, 86.6% -97.9%, 87.0% -97.1%, and 86.9% -97.3%. [ Conclusion] The HA gene has greatly high homology among different strains.展开更多
H9N2 avian influenza virus(AIV) infection is a major problem in poultry industry worldwide. In this study, molecular characterizations and phylogenetic relationships of hemagglutinin(HA) gene sequences of H9N2 AIV...H9N2 avian influenza virus(AIV) infection is a major problem in poultry industry worldwide. In this study, molecular characterizations and phylogenetic relationships of hemagglutinin(HA) gene sequences of H9N2 AIV of 5 Chinese isolates in 2014 recently available in Gen Bank, 3 widely used vaccine strains, and 52 novel isolates in China from 2013 to 2015 were analyzed. The homology analysis showed that the nucleotide sequences of HA gene of these recent Chinese H9N2 AIV isolates shared homologies from 94.1 to 99.9%. Phylogenetic analysis showed that all isolates belonged to AIV lineage h9.4.2.5. Fifty-six out of the 57 recent Chinese H9N2 AIV isolates had the motifs PSRSSR↓GLF at the cleavage sites within the HA protein, while one isolate PWH01 harbored LSRSSR↓GLF. Remarkably, all of the recent Chinese H9N2 AIV strains had the Q216 L substitution in the receptor binding site, which indicated that they had potential to infect humans. Most of recent Chinese H9N2 AIV isolates lost the potential N-linked glycosylation site at residues 200–202 compared with vaccine strains. This present study demonstrated that AIV lineage h9.4.2.5 was more predominant in China than other lineages as it harbored all the H9N2 AIV isolated between 2013 and 2015. Also we showed the importance of continuous surveillance of emerging H9N2 AIV in China and update of vaccine formulation accordingly in order to prevent and control H9N2 AIV.展开更多
The hemagglutinin (HA) of influenza viruses facilitates receptor binding and membrane fusion, which is the initial step of virus infection. Human influenza viruses preferentially bind to receptors with α2-6 lin- kage...The hemagglutinin (HA) of influenza viruses facilitates receptor binding and membrane fusion, which is the initial step of virus infection. Human influenza viruses preferentially bind to receptors with α2-6 lin- kages to galactose (SAα2,6Gal), whereas avian influenza viruses prefer receptors with α2-3 linkages to galactose (SAα2,3Gal). The current 2009 H1N1 pandemic is caused by a novel influenza A virus that has its genetic materials from birds, humans, and pigs. Its pandemic nature is characterized clearly by its dual binding to the α2-3 as well as α2-6 receptors, because the seasonal human H1N1 virus only binds to the α2-6 receptor. In a previous study, the informational spectrum method (ISM), a bioinformatics technique, was applied to uncover one highly conserved region in the HA protein associated with receptor binding preference in each of various influenza subtypes. In the present study, we extended the previous work by discovering multiple such domains in HA of 2009 H1N1 and avian H5N1 to expand our repertoire of known key regions in HA responsible for receptor binding affinity. Three such domains in HA of 2009 H1N1 were found at residue positions 106 to 130, 150 to 174, and 191 to 221, and another three domains in HA of avian H5N1 were located at residue positions 46 to 65, 136 to 153, and 269 to 286. These identified domains could be utilized as therapeutic and diagnostic targets for the prevention and treatment of influenza infection.展开更多
As the world is closely watching the current 2009 H1N1 pandemic unfold, there is a great interest and need in understanding its origin, genetic structures, virulence, and pathogenicity. The two surface proteins, hemag...As the world is closely watching the current 2009 H1N1 pandemic unfold, there is a great interest and need in understanding its origin, genetic structures, virulence, and pathogenicity. The two surface proteins, hemagglutinin (HA) and neuraminidase (NA), of the influenza virus have been the focus of most flu research due to their crucial biological functions. In our previous study on 2009 H1N1, three aspects of NA were investigated: the mutations and co-mutations, the stalk motifs, and the phylogenetic analysis. In this study, we turned our attention to HA and the interaction between HA and NA. The 118 mutations of 2009 H1N1 HA were found and mapped to the 3D homology model of H1, and the mutations on the five epitope regions on H1 were identified. This information is essential for developing new drugs and vaccine. The distinct response patterns of HA to the changes of NA stalk motifs were discovered, illustrating the functional dependence between HA and NA. With help from our previous results, two co-mutation networks were uncovered, one in HA and one in NA, where each mutation in one network co-mutates with the mutations in the other network across the two proteins HA and NA. These two networks residing in HA and NA separately may provide a functional linkage between the mutations that can impact the drug binding sites in NA and those that can affect the host immune response or vaccine efficacy in HA. Our findings demonstrated the value of conducting timely analysis on the 2009 H1N1 virus and of the integrated approach to studying both surface proteins HA and NA together to reveal their interdependence, which could not be accomplished by studying them individually.展开更多
N-Linked glycosylation of hemagglutinin(HA) has been demonstrated to regulate the virulence and receptor-binding specificity of avian influenza virus(AIV).In this study,we characterized the variation trend of naturall...N-Linked glycosylation of hemagglutinin(HA) has been demonstrated to regulate the virulence and receptor-binding specificity of avian influenza virus(AIV).In this study,we characterized the variation trend of naturally isolated H9 N2 viruses for the potential N-linked glycosylation sites in HA proteins,and explored any important role of some glycosylation sites.HA genes of 19 H9 N2 subtype AIV strains since 2001 were sequenced and analyzed for the potential glycosylation sites.The results showed that the viruses varied by losing one potential glycosylation site at residues 200 to 202,and having an additional one at residues 295 to 297 over the past few years.Further molecular and single mutation analysis revealed that the N200 Q mutation lost an N-linked glycosylation at positions 200 to 202 of the HA protein and affected the human-derived receptor affinity.We further found that this N-linked glycosylation increased viral productivity in the lung of the infected mice.These findings provide a novel insight on understanding the determinants of host adaption and virulence of H9 N2 viruses in mammals.展开更多
The hemagglutinin (HA) of influenza viruses in itiates virus infection by binding receptors on host cells. Human influenza viruses preferenti ally bind to receptors with α2,6 linkages to gala ctose, avian viruses pre...The hemagglutinin (HA) of influenza viruses in itiates virus infection by binding receptors on host cells. Human influenza viruses preferenti ally bind to receptors with α2,6 linkages to gala ctose, avian viruses prefer receptors with α2,3 linkages to galactose, and swine viruses favor both types of receptors. The pandemic H1N1 2009 remains a global health concern in 2010. The novel 2009 H1N1 influenza virus has its ge netic components from avian, human, and sw ine viruses. Its pandemic nature is characterized clearly by its dual binding to the α2,3 as well as α2,6 receptors, because the seasonal human H1N1 virus only binds to the α2,6 receptor. In pr evious studies, the informational spectrum me thod (ISM), a bioinformatics method, was appli ed to uncover highly conserved regions in the HA protein associated with the primary receptor binding preference in various subtypes. In the present study, we extended the previous work by discovering multiple domains in HA associa ted with the secondary receptor binding prefer ence in various subtypes, thus characterizing the distinct dual binding nature of these viruses. The domains discovered in the HA proteins were mapped to the 3D homology model of HA, which could be utilized as therapeutic and diag nostic targets for the prevention and treatment of influenza infection.展开更多
Pasteurella multocida, a Gram-negative nonmotile coccobacillus, is the causative agent of fowl cholera, bovine hemorrhagic septicemia, enzoonotic pneumonia and swine atropic rhinitis. Two filamentous hemagglutinin gen...Pasteurella multocida, a Gram-negative nonmotile coccobacillus, is the causative agent of fowl cholera, bovine hemorrhagic septicemia, enzoonotic pneumonia and swine atropic rhinitis. Two filamentous hemagglutinin genes, fhaB1 and JhaB2, are the potential virulence factors. In this study, an inactivationfhaB1 mutant ofP. multocida in avian strain C48-102 was constructed by a kanamycin-resistance cassette. The virulence of thefhaB1 mutant and the wild type strain was assessed in chickens by intranasal and intramuscular challenge. The inactivation offhaB1 resulted in a high degree of attenuation when the chickens were challenged intranasally and a lesser degree when challenged intramuscularly. ThefhaB1 mutant and the wild type strain were investigated their sensitivity to the antibody-dependent classical complement-mediated killing pathway in 90% convalescent chicken serum. ThefhaB1 mutant was serum sensitive as the viability has reduced between untreated serum and heat inactivated chicken serum (P〈0.007). These results confirmed that FhaB1 played the critical roles in the bacterial pathogenesis and further studies were needed to investigate the mechanism which caused reduced virulence of the fhaB1 mutant.展开更多
The DNA vaccine pCIHA5 encoding hemagglutinin can protect SPF chicken against lethal H5N1 avian influenza virus challenge. The more characters about its protection efficacity were studied. The protective rates in 10...The DNA vaccine pCIHA5 encoding hemagglutinin can protect SPF chicken against lethal H5N1 avian influenza virus challenge. The more characters about its protection efficacity were studied. The protective rates in 10, 40, 70, 100 and 150 μg groups immunized with pCIHA5 were 12.5 (1/8), 58.3 (7/12), 72.7 (8/11), 50.0 (6/12) and 66.7% (8/12), respectively. The protective rates in 5, 20, 35 and 50 μg groups were 145.5 (5/11), 58.3 (7/12), 58.3 (7/12) and 91.7% (11/12), respectively. The 70, 100 and 5 μg groups have virus shedding of 1/8, 2/6 and 1/5. Though the inactived oil-emulsion vaccine has high HI antibody titers and 100% protective rate, the AGP antibody could be detected after vaccination. Results show that the pCIHA5 is fit to boost by intramuscular injection. This would be useful to the study on gene engineering vaccine of avian influenza virus.展开更多
As we enter the year of 2011, the 2009 H1N1 pandemic influenza virus is in the news again. At least 20 people have died of this virus in China since the beginning of 2011 and it is now the predominant flu strain in th...As we enter the year of 2011, the 2009 H1N1 pandemic influenza virus is in the news again. At least 20 people have died of this virus in China since the beginning of 2011 and it is now the predominant flu strain in the country. Although this novel virus was quite stable during its run in the flu season of 2009-2010, a genetic variant of this virus was found in Singapore in early 2010, and then in Australia and New Zealand during their 2010 winter influenza season. Several critical mutations in the HA protein of this variant were uncovered in the strains collected from January 2010 to April 2010. Moreover, a structural homology model of HA from the A/Brisbane/10/2010(H1N1) strain was made based on the structure of A/California/04/2009 (H1N1). The purpose of this study was to investigate mutations in the HA protein of 2009 H1N1 from sequence data collected worldwide from May 2010 to February 2011. A fundamental problem in bioinformatics and biology is to find the similar gene sequences for a given gene sequence of interest. Here we proposed the inverse problem, i.e., finding the exemplars from a group of related gene sequences. With a clustering algorithm affinity propagation, six exemplars of the HA sequences were identified to represent six clusters. One of the clusters contained strain A/Brisbane/12/2010(H1N1) that only differed from A/Brisbane/10/2010 in the HA sequence at position 449. Based on the sequence identity of the six exemplars, nine mutations in HA were located that could be used to distinguish these six clusters. Finally, we discovered the change of correlation patterns for the HA and NA of 2009 H1N1 as a result of the HA receptor binding specificity switch, revealing the balanced interplay between these two surface proteins of the virus.展开更多
Recently, a genetic variant of 2009 H1N1 has become the predominant virus circulating in the southern hemisphere, particularly Australia and New Zealand, and in Singapore during the winter of 2010. It was associated w...Recently, a genetic variant of 2009 H1N1 has become the predominant virus circulating in the southern hemisphere, particularly Australia and New Zealand, and in Singapore during the winter of 2010. It was associated with several vaccine breakthroughs and fatal cases. We analyzed three reported mutations D94N, N125D, and V250A in the HA protein of this genetic variant. It appeared that the reason for D94N and V250A to occur in pairs was to maintain the HA binding to human type receptor, so the virus could replicate in humans efficiently. Guided by this interpretation, we discovered a new mutation V30A that could compensate for N125D as V250A did for D94N. We demonstrated that the presence of amino acids 30A and 125N in HA enhanced the binding to human type receptor, while 30V and 125D favored the receptors of avian type and of A/South Carolina/1/18 (H1N1). Furthermore, a combination of 94D, 125D, and 250V made the primary binding preference similar to that of A/South Carolina/1/18 (H1N1) and a combination of 94N, 125D, and 250A resulted in the primary binding affinity for avian type receptor, which clearly differed from that of A/California/07/2009 (H1N1), a strain used in the vaccine for 2009 H1N1. We also re-examined the origin of 2009 H1N1 to refine our knowledge of this important issue. Although the NP, PA, PB1, and PB2 of 2009 H1N1 were closest to North American swine H3N2 in sequence identity, their interaction patterns were closest to swine H1N1 in North America.展开更多
Low pathogenic Avian Influenza (AI) virus has the ability to evolve to high pathogenic viruses resulting in significant economic losses in the poultry sector. This study aims at assessing the impact of H9N2 viral pass...Low pathogenic Avian Influenza (AI) virus has the ability to evolve to high pathogenic viruses resulting in significant economic losses in the poultry sector. This study aims at assessing the impact of H9N2 viral passaging in broilers and its relatedness to pathogenicity and amino acid (a.a) sequences of the hemagglutinin (HA) cleavage site and neuraminidase (NA) stalk. The original H9N2 AI virus (P0) was used to challenge ten-21 days old broilers. Individual recovery of H9N2 virus from homogenates of trachea, lungs and airsacs was attempted in 9 days old chicken embryos, as a conclusion of the first passage (P1). Tracheal isolates of H9N2 were passaged for a second (P2) and a third (P3) time in broilers, followed by a similar embryonic recovery procedure. The a.a. sequence of a part of HA1 cleavage site and Neuraminidase stalk were compared among the differently passaged viruses;an assessement of the relatedness of the determined a.a. sequences to the pathogenicity in broilers, based on frequency of mortality, morbidity signs, gross and microscopic lesions at 3 days post challenge with the P1, P2, and P3-H9N2, is concluded. An increase in certain morbidity signs and specific lesions was observed in P2- and P3-H9N2 challenged broilers compared to birds challenged with P1-H9N2. A conserved R-S-S-R amino acid sequence at the HA1 cleavage site was observed in the differently passaged H9N2, associated with a variability in the NA stalk-a.a sequences. The passaging of the low pathogenic H9N2 virus in broilers leads to a trend of increase in pathogenicity, manifested in higher frequency of morbidity signs, and of specific gross and microscopic lesions of the examined organs. This passaging was associated with a conserved a.a. sequence of the hemaglutinin cleavage site and a variability in the sequence of the neuraminidase stalk. A detailed study of the potential of the detected variability in the neuraminidase stalk of H9N2 in induction of a higher pathogenicity in broilers will be the subject of future investigations.展开更多
Traditionally, the multibasic cleavage site (MBCS) of surface protein H5-hemagglutinin (HA) is converted to a monobasic one so as to weaken the virulence of recombinant H5N1 influenza viruses and to produce inacti...Traditionally, the multibasic cleavage site (MBCS) of surface protein H5-hemagglutinin (HA) is converted to a monobasic one so as to weaken the virulence of recombinant H5N1 influenza viruses and to produce inactivated and live attenuated vaccines. Whether such modification benefits new candidate vaccines has not been adequately investigated. We previously used retroviral vectors to generate wtH5N1 pseudotypes containing the wild-type HA (wtH5) from A/swine/Anhui/ca/2004 (H5N1) virus. Here, we generated mtH5N1 pseudotypes, which contained a mutant-type HA (mtH5) with a modified monobasic cleavage site. Groups of mice were subcutaneously injected with the two types of influenza pseudotypes. Compared to the group immunized with wtH5N1 pseudotypes, the inoculation of mtH5N1 pseudotypes induced significantly higher levels of HA specific IgG and IFN-y in immunized mice, and enhanced protection against the challenge of mouse-adapted avian influenza virus A/Chicken/Henardl2/2004 (H5N1). This study suggests modification of the H5-hemagglutinin MBCS in retroviral pseudotypes enhances protection efficacy in mice and this information may be helpful for development of vaccines from mammalian cells to fight against H5N 1 influenza viruses.展开更多
T rays is sensitive to covalently cross linked proteins and can be used to probe unique dynamic properties of water surrounding a protein.In this paper,we demonstrate the unique abeorption properties of the dynamic hy...T rays is sensitive to covalently cross linked proteins and can be used to probe unique dynamic properties of water surrounding a protein.In this paper,we demonstrate the unique abeorption properties of the dynamic hydnation shells deternined by hemagglutinin(HA)protein in ter-ahertz frequency.We study the changes arising fom diferent concentrations in detail and show that nonlinear absorption coefficient is induced by the dynamic hydration water.The binary and ternary component model were used to interpret the nonlinearity absorption behaviors and predict the thickness of the hydration shells around the HA protein in aquous phase.展开更多
Avian influenza (AI) virology surveillance is the most important method to monitor AI virus (AIV) in poultry so as to effectively prevent and control AI outbreaks. Monoclonal antibodies (MAb)-based assays are highly s...Avian influenza (AI) virology surveillance is the most important method to monitor AI virus (AIV) in poultry so as to effectively prevent and control AI outbreaks. Monoclonal antibodies (MAb)-based assays are highly sensitive and specific for AIV detection, and much practical and economic for test-in-field or onsite. Many such assays have been developed and are still in developing since the H5N1 highly pathogenic AI (HPAI) outbreaks occurred in South East Asia in 2003. A MAb-based dot-enzyme-linked immunosorbent assay (ELISA) has been developed in our lab during late 1990s and early 2000s. Meanwhile, AIV H7 and H5 subtype specific-MAbs have been successfully developed in our laboratory to enhance the Dot-ELISA and other MAb-based assays for AIV detection. Production and purification of the H7 and H5 MAbs were made to provide essential reagents for Dot-ELISA and other immunoassays, and the current development of a novel Biosensor technique for rapid detection of AIV from clinical and field specimens.展开更多
基金supported in part by Guangxi Science Foundation (No. 08115011 and 0991080)
文摘Objective To determine if global warming has an impact on the evolution of hemagglutinins from influenza A viruses, because both global warming and influenza pandemics/epidemics threaten the world. Methods 4 706 hemagglutinins from influenza A viruses sampled from 1956 to 2009 were converted to a time‐series to show their evolutionary process and compared with the global, northern hemisphere and southern hemisphere temperatures, to determine if their trends run in similar or opposite directions. Point‐to‐point comparisons between temperature and quantified hemagglutinins were performed for all species and for the major prevailing species. Results The comparisons show that the trends for both hemagglutinin evolution and temperature change run in a similar direction. Conclusion Global warming has a consistent and progressive impact on the hemagglutinin evolution of influenza A viruses.
文摘This study was trying to predict the mutations in H1 hemagglutinins of influenza A virus from North America including the predictions of mu-tation position, the predictions of would-be-mutated amino acids and the predictions of time of occurrence of mutations. The results paved a possible way for accurate, precise and reliable prediction of mutation in proteins from influenza A virus.
文摘Influenza A viruses have led several pandemics and epidemics in human history. H7 subtype influenza mainly infects avian but also humans occasionally. Since the outbreak of H7N9 subtype influenza occurred in China in 2013, this virus is still circulating in domestic poultry and leading several waves of influenza. To prevent influenza, vaccination is an important strategy. However, influenza virus evolves constantly, but unpredictably. If we would have a one-to-one cause-mutation relationship, the mutation prediction would be possible. However, many external causes, which led to the mutations in the past, might not leave any trace due to the change in environments, whereas the current virus might not be subject to the historically external causes because of evolution. Furthermore, the protein should have the internal causes, which might be quite unclear and difficult to quantify, to engineer mutations. Indeed, various forces twist proteins into 3-demensional structures, whereas any perturbation could lead to a mutation. Of various internal causes for mutation, randomness in protein primary structure should play an important role in mutation. Over years, we have developed three methods to quantify the randomness within a protein primary structure;thus we build a relationship between cause, which is randomness in primary structure, and mutations, which are occurrence and non-occurrence of mutation. In this way, the cause-mutation relationship becomes the problem of classification, which can be solved using logistic regression and neural network. In this study, we apply this model to predict 1) the mutation positions in H7 hemagglutinins from influenza A virus and 2) the would-be-mutated amino-acids at predicted positions with the amino-acid mutating probability. The results show suitability and predictability in such modelling, and pave the way for further development.
基金Supported by the Natural Science Foundation of Fujian Province,China,No.95A003
文摘AIM: To explore the virulence and the potential pathogenicity of coccoid Helicobacter pylori (H. pylori) transformed from spiral form by exposure to antibiotic. METHODS: Three strains of H. pylori, isolated from gastric biopsy specimens of confirmed peptic ulcer, were converted from spiral into coccoid from by exposure to metronidazole. Both spiral and coccoid form of H. pylori were tested for the urease activity, the adherence to Hep-2 cells and the vacuolating cytotoxicity to Hela cells, and the differences of the protein were analysed by SDS-PAGE and Western blot. The mutation of the genes including ureA, ureB,hpaA, vacA and cagA, related with virulence, was detected by means of PCR and PCR-SSCP. RESULTS: In the coccoid H. pylori,the urease activity, the adherence to Hep-2 cells and the vacuolating cytotoxicity to Hela cells all decreased. In strain F44, the rate and index of adherence reduced from 70.0% +/- 5.3% to 33% +/- 5.1% and from 2.6 +/- 0.4 to 0.96 +/- 0.3 (P 【 0.01), respectively. The invasion of coccoid H. pylori into Hep-2 cell could be seen under electronmicroscope. SDS-PAGE showed that the content of the protein with the molecular weight over Mr 74000 decreased, and the hybriditional signal in band M(r) 125000 weakened, while the band M(r)110000 and M(r)63000 strengthened in coccoid H.pylori as shown in Western blot. The results of PCR were all positive, and PCR-SSCP indicated that there may exist the point mutation in gene hpaA or vacA. CONCLUSION: The virulence and the proteins with molecular weight over M(r)74000 in coccoid H.pylori decrease, but no deletion exists in amplification fragments from ureA, ureB, hpaA, vacA and cagA genes, suggesting that coccoid H.pylori may have potential pathogenicity.
基金Supported by National Natural Science Foundation of China(31070619)~~
文摘[Objective] The paper was to introduce the research progress of 2009 influenza A virus. [Method] 2009 influenza A virus was introduced from the aspects of classification and host, virology, molecular characteristics and vaccine. [Result] A novel influenza A/H1N1 virus emerged in early April 2009 quickly spread worldwide through human-to-human transmission. The virus contained a group of novel gene segments, the nearest known precursor was the virus found in swine. The virus appeared to retain the potential to infect swine again and thus continued reassort with swine viruses. All registered 2009 influenza A vaccines were tested for safety and immunogenicity in clinical trials on human volunteers, and all vaccines were found to be safe, single dose of vaccine could cause protective antibody responses. [Conclusion] The paper provided basis for further study on 2009 influenza A virus.
基金Supported by subproject of Major State Basic Research Development Program of China (2005CB523001)~~
文摘[ Objective] To determine the HA gene sequences of four H9N2 Avian influenza virus (AIV) strains and carry out comparative analysis so as to understand the difference and variation pattern of each strain from the angle of molecular biology and to know the distribution and epidemic law of H9N2 AIV. [Method] One pair of primers was designed referring to HA gene sequences of H9N2 AIV. The HA genes of A/Chicken/Hebei/WD/98 (H9N2; WD98 for short), A/Chicken/Hebei/ZD/04 (H9N2; ZD04 for short)), A/Chicken/Beijing/MY/06 (H9N2; MY06 for short) ), and A/Chicken/Beijing/PG/08 (H9N2; PG08 for short)) were amplified, cloned and sequenced. Then the HA gene sequences of these strains were compared with that of 10 H9N2 AIV stains in GenBank. [Result] The ORF of HA genes of the four strains was 1 683 bp in size, encoding 516 amino acids. The HA gene sequences of the four strains, WD98, MY06, PG08, and ZD04, were 82.6% -95.1%, 83.0% -99.0%, 82.7% -95.5%, and 81.3% -95.7% homologous to that of the 10 H9N2 AIV stains, respectively. And the homology of amino acid was respectively 86.6% -96.3%, 86.6% -97.9%, 87.0% -97.1%, and 86.9% -97.3%. [ Conclusion] The HA gene has greatly high homology among different strains.
基金supported by the National Modern Agricultural Industry Technology System Project of China(CARS-41)the Science and Technology Plan Project of Guangdong Province,China(2012B020306002 and 2012B091100078)
文摘H9N2 avian influenza virus(AIV) infection is a major problem in poultry industry worldwide. In this study, molecular characterizations and phylogenetic relationships of hemagglutinin(HA) gene sequences of H9N2 AIV of 5 Chinese isolates in 2014 recently available in Gen Bank, 3 widely used vaccine strains, and 52 novel isolates in China from 2013 to 2015 were analyzed. The homology analysis showed that the nucleotide sequences of HA gene of these recent Chinese H9N2 AIV isolates shared homologies from 94.1 to 99.9%. Phylogenetic analysis showed that all isolates belonged to AIV lineage h9.4.2.5. Fifty-six out of the 57 recent Chinese H9N2 AIV isolates had the motifs PSRSSR↓GLF at the cleavage sites within the HA protein, while one isolate PWH01 harbored LSRSSR↓GLF. Remarkably, all of the recent Chinese H9N2 AIV strains had the Q216 L substitution in the receptor binding site, which indicated that they had potential to infect humans. Most of recent Chinese H9N2 AIV isolates lost the potential N-linked glycosylation site at residues 200–202 compared with vaccine strains. This present study demonstrated that AIV lineage h9.4.2.5 was more predominant in China than other lineages as it harbored all the H9N2 AIV isolated between 2013 and 2015. Also we showed the importance of continuous surveillance of emerging H9N2 AIV in China and update of vaccine formulation accordingly in order to prevent and control H9N2 AIV.
文摘The hemagglutinin (HA) of influenza viruses facilitates receptor binding and membrane fusion, which is the initial step of virus infection. Human influenza viruses preferentially bind to receptors with α2-6 lin- kages to galactose (SAα2,6Gal), whereas avian influenza viruses prefer receptors with α2-3 linkages to galactose (SAα2,3Gal). The current 2009 H1N1 pandemic is caused by a novel influenza A virus that has its genetic materials from birds, humans, and pigs. Its pandemic nature is characterized clearly by its dual binding to the α2-3 as well as α2-6 receptors, because the seasonal human H1N1 virus only binds to the α2-6 receptor. In a previous study, the informational spectrum method (ISM), a bioinformatics technique, was applied to uncover one highly conserved region in the HA protein associated with receptor binding preference in each of various influenza subtypes. In the present study, we extended the previous work by discovering multiple such domains in HA of 2009 H1N1 and avian H5N1 to expand our repertoire of known key regions in HA responsible for receptor binding affinity. Three such domains in HA of 2009 H1N1 were found at residue positions 106 to 130, 150 to 174, and 191 to 221, and another three domains in HA of avian H5N1 were located at residue positions 46 to 65, 136 to 153, and 269 to 286. These identified domains could be utilized as therapeutic and diagnostic targets for the prevention and treatment of influenza infection.
文摘As the world is closely watching the current 2009 H1N1 pandemic unfold, there is a great interest and need in understanding its origin, genetic structures, virulence, and pathogenicity. The two surface proteins, hemagglutinin (HA) and neuraminidase (NA), of the influenza virus have been the focus of most flu research due to their crucial biological functions. In our previous study on 2009 H1N1, three aspects of NA were investigated: the mutations and co-mutations, the stalk motifs, and the phylogenetic analysis. In this study, we turned our attention to HA and the interaction between HA and NA. The 118 mutations of 2009 H1N1 HA were found and mapped to the 3D homology model of H1, and the mutations on the five epitope regions on H1 were identified. This information is essential for developing new drugs and vaccine. The distinct response patterns of HA to the changes of NA stalk motifs were discovered, illustrating the functional dependence between HA and NA. With help from our previous results, two co-mutation networks were uncovered, one in HA and one in NA, where each mutation in one network co-mutates with the mutations in the other network across the two proteins HA and NA. These two networks residing in HA and NA separately may provide a functional linkage between the mutations that can impact the drug binding sites in NA and those that can affect the host immune response or vaccine efficacy in HA. Our findings demonstrated the value of conducting timely analysis on the 2009 H1N1 virus and of the integrated approach to studying both surface proteins HA and NA together to reveal their interdependence, which could not be accomplished by studying them individually.
基金supported by the National Key R&D Program of China(2016YFD0500201)the Natural Science Foundation of Shandong Province,China(ZR2017BC094)+1 种基金the earmarked fund for China Agriculture Research System(CARS-41-Z10)the High-Level Talents and Innovative Team Recruitment Program of the Shandong Academy of Agricultural Sciences,China
文摘N-Linked glycosylation of hemagglutinin(HA) has been demonstrated to regulate the virulence and receptor-binding specificity of avian influenza virus(AIV).In this study,we characterized the variation trend of naturally isolated H9 N2 viruses for the potential N-linked glycosylation sites in HA proteins,and explored any important role of some glycosylation sites.HA genes of 19 H9 N2 subtype AIV strains since 2001 were sequenced and analyzed for the potential glycosylation sites.The results showed that the viruses varied by losing one potential glycosylation site at residues 200 to 202,and having an additional one at residues 295 to 297 over the past few years.Further molecular and single mutation analysis revealed that the N200 Q mutation lost an N-linked glycosylation at positions 200 to 202 of the HA protein and affected the human-derived receptor affinity.We further found that this N-linked glycosylation increased viral productivity in the lung of the infected mice.These findings provide a novel insight on understanding the determinants of host adaption and virulence of H9 N2 viruses in mammals.
文摘The hemagglutinin (HA) of influenza viruses in itiates virus infection by binding receptors on host cells. Human influenza viruses preferenti ally bind to receptors with α2,6 linkages to gala ctose, avian viruses prefer receptors with α2,3 linkages to galactose, and swine viruses favor both types of receptors. The pandemic H1N1 2009 remains a global health concern in 2010. The novel 2009 H1N1 influenza virus has its ge netic components from avian, human, and sw ine viruses. Its pandemic nature is characterized clearly by its dual binding to the α2,3 as well as α2,6 receptors, because the seasonal human H1N1 virus only binds to the α2,6 receptor. In pr evious studies, the informational spectrum me thod (ISM), a bioinformatics method, was appli ed to uncover highly conserved regions in the HA protein associated with the primary receptor binding preference in various subtypes. In the present study, we extended the previous work by discovering multiple domains in HA associa ted with the secondary receptor binding prefer ence in various subtypes, thus characterizing the distinct dual binding nature of these viruses. The domains discovered in the HA proteins were mapped to the 3D homology model of HA, which could be utilized as therapeutic and diag nostic targets for the prevention and treatment of influenza infection.
基金supported by the National Natural Science Foundation of China(31302109)
文摘Pasteurella multocida, a Gram-negative nonmotile coccobacillus, is the causative agent of fowl cholera, bovine hemorrhagic septicemia, enzoonotic pneumonia and swine atropic rhinitis. Two filamentous hemagglutinin genes, fhaB1 and JhaB2, are the potential virulence factors. In this study, an inactivationfhaB1 mutant ofP. multocida in avian strain C48-102 was constructed by a kanamycin-resistance cassette. The virulence of thefhaB1 mutant and the wild type strain was assessed in chickens by intranasal and intramuscular challenge. The inactivation offhaB1 resulted in a high degree of attenuation when the chickens were challenged intranasally and a lesser degree when challenged intramuscularly. ThefhaB1 mutant and the wild type strain were investigated their sensitivity to the antibody-dependent classical complement-mediated killing pathway in 90% convalescent chicken serum. ThefhaB1 mutant was serum sensitive as the viability has reduced between untreated serum and heat inactivated chicken serum (P〈0.007). These results confirmed that FhaB1 played the critical roles in the bacterial pathogenesis and further studies were needed to investigate the mechanism which caused reduced virulence of the fhaB1 mutant.
文摘The DNA vaccine pCIHA5 encoding hemagglutinin can protect SPF chicken against lethal H5N1 avian influenza virus challenge. The more characters about its protection efficacity were studied. The protective rates in 10, 40, 70, 100 and 150 μg groups immunized with pCIHA5 were 12.5 (1/8), 58.3 (7/12), 72.7 (8/11), 50.0 (6/12) and 66.7% (8/12), respectively. The protective rates in 5, 20, 35 and 50 μg groups were 145.5 (5/11), 58.3 (7/12), 58.3 (7/12) and 91.7% (11/12), respectively. The 70, 100 and 5 μg groups have virus shedding of 1/8, 2/6 and 1/5. Though the inactived oil-emulsion vaccine has high HI antibody titers and 100% protective rate, the AGP antibody could be detected after vaccination. Results show that the pCIHA5 is fit to boost by intramuscular injection. This would be useful to the study on gene engineering vaccine of avian influenza virus.
文摘As we enter the year of 2011, the 2009 H1N1 pandemic influenza virus is in the news again. At least 20 people have died of this virus in China since the beginning of 2011 and it is now the predominant flu strain in the country. Although this novel virus was quite stable during its run in the flu season of 2009-2010, a genetic variant of this virus was found in Singapore in early 2010, and then in Australia and New Zealand during their 2010 winter influenza season. Several critical mutations in the HA protein of this variant were uncovered in the strains collected from January 2010 to April 2010. Moreover, a structural homology model of HA from the A/Brisbane/10/2010(H1N1) strain was made based on the structure of A/California/04/2009 (H1N1). The purpose of this study was to investigate mutations in the HA protein of 2009 H1N1 from sequence data collected worldwide from May 2010 to February 2011. A fundamental problem in bioinformatics and biology is to find the similar gene sequences for a given gene sequence of interest. Here we proposed the inverse problem, i.e., finding the exemplars from a group of related gene sequences. With a clustering algorithm affinity propagation, six exemplars of the HA sequences were identified to represent six clusters. One of the clusters contained strain A/Brisbane/12/2010(H1N1) that only differed from A/Brisbane/10/2010 in the HA sequence at position 449. Based on the sequence identity of the six exemplars, nine mutations in HA were located that could be used to distinguish these six clusters. Finally, we discovered the change of correlation patterns for the HA and NA of 2009 H1N1 as a result of the HA receptor binding specificity switch, revealing the balanced interplay between these two surface proteins of the virus.
文摘Recently, a genetic variant of 2009 H1N1 has become the predominant virus circulating in the southern hemisphere, particularly Australia and New Zealand, and in Singapore during the winter of 2010. It was associated with several vaccine breakthroughs and fatal cases. We analyzed three reported mutations D94N, N125D, and V250A in the HA protein of this genetic variant. It appeared that the reason for D94N and V250A to occur in pairs was to maintain the HA binding to human type receptor, so the virus could replicate in humans efficiently. Guided by this interpretation, we discovered a new mutation V30A that could compensate for N125D as V250A did for D94N. We demonstrated that the presence of amino acids 30A and 125N in HA enhanced the binding to human type receptor, while 30V and 125D favored the receptors of avian type and of A/South Carolina/1/18 (H1N1). Furthermore, a combination of 94D, 125D, and 250V made the primary binding preference similar to that of A/South Carolina/1/18 (H1N1) and a combination of 94N, 125D, and 250A resulted in the primary binding affinity for avian type receptor, which clearly differed from that of A/California/07/2009 (H1N1), a strain used in the vaccine for 2009 H1N1. We also re-examined the origin of 2009 H1N1 to refine our knowledge of this important issue. Although the NP, PA, PB1, and PB2 of 2009 H1N1 were closest to North American swine H3N2 in sequence identity, their interaction patterns were closest to swine H1N1 in North America.
文摘Low pathogenic Avian Influenza (AI) virus has the ability to evolve to high pathogenic viruses resulting in significant economic losses in the poultry sector. This study aims at assessing the impact of H9N2 viral passaging in broilers and its relatedness to pathogenicity and amino acid (a.a) sequences of the hemagglutinin (HA) cleavage site and neuraminidase (NA) stalk. The original H9N2 AI virus (P0) was used to challenge ten-21 days old broilers. Individual recovery of H9N2 virus from homogenates of trachea, lungs and airsacs was attempted in 9 days old chicken embryos, as a conclusion of the first passage (P1). Tracheal isolates of H9N2 were passaged for a second (P2) and a third (P3) time in broilers, followed by a similar embryonic recovery procedure. The a.a. sequence of a part of HA1 cleavage site and Neuraminidase stalk were compared among the differently passaged viruses;an assessement of the relatedness of the determined a.a. sequences to the pathogenicity in broilers, based on frequency of mortality, morbidity signs, gross and microscopic lesions at 3 days post challenge with the P1, P2, and P3-H9N2, is concluded. An increase in certain morbidity signs and specific lesions was observed in P2- and P3-H9N2 challenged broilers compared to birds challenged with P1-H9N2. A conserved R-S-S-R amino acid sequence at the HA1 cleavage site was observed in the differently passaged H9N2, associated with a variability in the NA stalk-a.a sequences. The passaging of the low pathogenic H9N2 virus in broilers leads to a trend of increase in pathogenicity, manifested in higher frequency of morbidity signs, and of specific gross and microscopic lesions of the examined organs. This passaging was associated with a conserved a.a. sequence of the hemaglutinin cleavage site and a variability in the sequence of the neuraminidase stalk. A detailed study of the potential of the detected variability in the neuraminidase stalk of H9N2 in induction of a higher pathogenicity in broilers will be the subject of future investigations.
基金supported by the National Basic Research Program of China (973: 2012CB518904) from the Ministry of Science and Technology of Chinathe National Natural Science Foundation of China(81201298)
文摘Traditionally, the multibasic cleavage site (MBCS) of surface protein H5-hemagglutinin (HA) is converted to a monobasic one so as to weaken the virulence of recombinant H5N1 influenza viruses and to produce inactivated and live attenuated vaccines. Whether such modification benefits new candidate vaccines has not been adequately investigated. We previously used retroviral vectors to generate wtH5N1 pseudotypes containing the wild-type HA (wtH5) from A/swine/Anhui/ca/2004 (H5N1) virus. Here, we generated mtH5N1 pseudotypes, which contained a mutant-type HA (mtH5) with a modified monobasic cleavage site. Groups of mice were subcutaneously injected with the two types of influenza pseudotypes. Compared to the group immunized with wtH5N1 pseudotypes, the inoculation of mtH5N1 pseudotypes induced significantly higher levels of HA specific IgG and IFN-y in immunized mice, and enhanced protection against the challenge of mouse-adapted avian influenza virus A/Chicken/Henardl2/2004 (H5N1). This study suggests modification of the H5-hemagglutinin MBCS in retroviral pseudotypes enhances protection efficacy in mice and this information may be helpful for development of vaccines from mammalian cells to fight against H5N 1 influenza viruses.
基金We gratefully acknowledge partial financial support for this work from the National Natural Science Foundation of China(No.61205092)Guangdong Natural Science Foundation(No.S2012040007668)+1 种基金Foundation for Distinguished Young Talents in Higher Education of Guangdong,China(No.2012LYM_0116)Special Foundation of New Industries Development,Shenzhen(ZDSY20120612094855904).
文摘T rays is sensitive to covalently cross linked proteins and can be used to probe unique dynamic properties of water surrounding a protein.In this paper,we demonstrate the unique abeorption properties of the dynamic hydnation shells deternined by hemagglutinin(HA)protein in ter-ahertz frequency.We study the changes arising fom diferent concentrations in detail and show that nonlinear absorption coefficient is induced by the dynamic hydration water.The binary and ternary component model were used to interpret the nonlinearity absorption behaviors and predict the thickness of the hydration shells around the HA protein in aquous phase.
文摘Avian influenza (AI) virology surveillance is the most important method to monitor AI virus (AIV) in poultry so as to effectively prevent and control AI outbreaks. Monoclonal antibodies (MAb)-based assays are highly sensitive and specific for AIV detection, and much practical and economic for test-in-field or onsite. Many such assays have been developed and are still in developing since the H5N1 highly pathogenic AI (HPAI) outbreaks occurred in South East Asia in 2003. A MAb-based dot-enzyme-linked immunosorbent assay (ELISA) has been developed in our lab during late 1990s and early 2000s. Meanwhile, AIV H7 and H5 subtype specific-MAbs have been successfully developed in our laboratory to enhance the Dot-ELISA and other MAb-based assays for AIV detection. Production and purification of the H7 and H5 MAbs were made to provide essential reagents for Dot-ELISA and other immunoassays, and the current development of a novel Biosensor technique for rapid detection of AIV from clinical and field specimens.