As a highly aggressive tumor,the pathophysiological mechanism of primary liver cancer has attracted much attention.In recent years,factors such as ferroptosis regulation,lipid peroxidation and metabolic abnormalities ...As a highly aggressive tumor,the pathophysiological mechanism of primary liver cancer has attracted much attention.In recent years,factors such as ferroptosis regulation,lipid peroxidation and metabolic abnormalities have emerged in the study of liver cancer,providing a new perspective for understanding the development of liver cancer.Ferroptosis regulation,lipid peroxidation and metabolic abnormalities play important roles in the occurrence and development of liver cancer.The regulation of ferroptosis is involved in apoptosis and necrosis,affecting cell survival and death.Lipid peroxidation promotes oxidative damage and promotes the invasion of liver cancer cells.Metabolic abnormalities,especially the disorders of glucose and lipid metabolism,directly affect the proliferation and growth of liver cancer cells.Studies of ferroptosis regulation and lipid peroxidation may help to discover new therapeutic targets and improve therapeutic outcomes.The understanding of metabolic abnormalities can provide new ideas for the prevention of liver cancer,and reduce the risk of disease by adjusting the metabolic process.This review focuses on the key roles of ferroptosis regulation,lipid peroxidation and metabolic abnormalities in this process.展开更多
Ferroptosis is a novel form of cell death driven by iron-dependent lipid peroxidation and it is implicated in various diseases,such as liver disease,acute kidney injury,cardiovascular disease,neurodegenerative disease...Ferroptosis is a novel form of cell death driven by iron-dependent lipid peroxidation and it is implicated in various diseases,such as liver disease,acute kidney injury,cardiovascular disease,neurodegenerative disease and cancer.Lipid-based reactive oxygen species(ROS),particularly lipid hydroperoxides in the cellular membrane can lead to membrane disruption and cell death mediated by ferroptosis.There are three necessary stages involving in the process of lipid peroxidation regulation in ferroptosis,including the synthesis of membrane phospholipids,initiation of lipid peroxidation and clearance of lipid peroxides.In this review,we summarized the molecular modulation mechanisms of lipid peroxidation in ferroptosis from the above three stages,as well as various ferroptosis modulators targeting lipid peroxidation,including commonly used products,natural bioactive compounds and selenocompounds.Collectively,these findings suggest the vital role of lipid peroxidation in ferroptosis,and targeting lipid peroxidation in ferroptosis is potential to treat ferroptosis-associated diseases.展开更多
Correction to“Research progress of ferroptosis regulating lipid peroxidation and metabolism in occurrence and development of primary liver cancer”in World J Gastrointest Oncol 2024;16:2335-2349,published by Shu YJ,L...Correction to“Research progress of ferroptosis regulating lipid peroxidation and metabolism in occurrence and development of primary liver cancer”in World J Gastrointest Oncol 2024;16:2335-2349,published by Shu YJ,Lao B,and Qiu YY.In this article,we added the correct citations of images.展开更多
BACKGROUND Gastric cancer is one of the most common malignant tumors in the world,and its occurrence and development involve complex biological processes.Iron death,as a new cell death mode,has attracted wide attentio...BACKGROUND Gastric cancer is one of the most common malignant tumors in the world,and its occurrence and development involve complex biological processes.Iron death,as a new cell death mode,has attracted wide attention in recent years.However,the regulatory mechanism of iron death in gastric cancer and its effect on lipid peroxidation metabolism remain unclear.AIM To explore the role of iron death in the development of gastric cancer,reveal its relationship with lipid peroxidation,and provide a new theoretical basis for revealing the molecular mechanism of the occurrence and development of gastric cancer.METHODS The process of iron death in gastric cancer cells was simulated by cell culture model,and the occurrence of iron death was detected by fluorescence microscopy and flow cytometry.The changes of gene expression related to iron death and lipid peroxidation metabolism were analyzed by high-throughput sequencing technology.In addition,a mouse model of gastric cancer was established,and the role of iron death in vivo was studied by histology and immunohistochemistry,and the level of lipid peroxidation was detected.These methods comprehensively and deeply reveal the regulatory mechanism of iron death on lipid peroxidation metabolism in the occurrence and development of gastric cancer.RESULTS Iron death was significantly activated in gastric cancer cells,and at the same time,associated lipid peroxidation levels increased significantly.Through high-throughput sequencing analysis,it was found that iron death regulated the expression of several genes related to lipid metabolism.In vivo experiments demonstrated that increased iron death in gastric cancer mice was accompanied by a significant increase in lipid peroxidation.CONCLUSION This study confirmed the important role of iron death in regulating lipid peroxidation metabolism in the occurrence and development of gastric cancer.The activation of iron death significantly increased lipid peroxidation levels,revealing its regulatory mechanism inside the cell.展开更多
Lipid peroxidation and iron accumulation are closely associated with neurodegenerative diseases,such as Alzheimer’s,Parkinson’s,and Huntington’s diseases,or neurodegeneration with brain iron accumulation disorders....Lipid peroxidation and iron accumulation are closely associated with neurodegenerative diseases,such as Alzheimer’s,Parkinson’s,and Huntington’s diseases,or neurodegeneration with brain iron accumulation disorders.Mitochondrial dysfunction,lipofuscin accumulation,autophagy disruption,and ferroptosis have been implicated as the critical pathomechanisms of lipid peroxidation and iron accumulation in these disorders.Currently,the connection between lipid peroxidation and iron accumulation and the initial cause or consequence in neurodegeneration processes is unclear.In this review,we have compiled the known mechanisms by which lipid peroxidation triggers iron accumulation and lipofuscin formation,and the effect of iron overload on lipid peroxidation and cellular function.The vicious cycle established between both pathological alterations may lead to the development of neurodegeneration.Therefore,the investigation of these mechanisms is essential for exploring therapeutic strategies to restrict neurodegeneration.In addition,we discuss the interplay between lipid peroxidation and iron accumulation in neurodegeneration,particularly in PLA2G6-associated neurodegeneration,a rare neurodegenerative disease with autosomal recessive inheritance,which belongs to the group of neurodegeneration with brain iron accumulation disorders.展开更多
This study aimed to analyze the effect of lipid peroxidation on the allergenicity and functional properties of soybeanβ-conglycinin(7 S)and glycinin(11 S).Oxidation complexes were determined using the lipid peroxidat...This study aimed to analyze the effect of lipid peroxidation on the allergenicity and functional properties of soybeanβ-conglycinin(7 S)and glycinin(11 S).Oxidation complexes were determined using the lipid peroxidation method.Functional properties were analyzed based on emulsifying and foaming properties.The potential allergenicity was evaluated by in vitro and in vivo methods.The results found that oxidation altered structures of the proteins and resulted in the formation of cross-linked protein polymers.The emulsion and foaming properties of the proteins were improved after oxidation.The IgE-binding capacity of 7 S and11 S reduced after oxidation.KU812 cell assays showed that both histamine and IL-4 release decreased after oxidation treatment.A mouse model showed that oxidation reduced the IgE,IgG,and IgG1 levels,as well as reduced histamine and mMCP-1 release in serum,which might suppress the allergic reaction.In conclusion,the lipid peroxidation treatment likely causes changes to the functional properties of soybean,decreasing the potential allergenicity of 7 S and 11 S.展开更多
[ Objective] The aim was to provide strategies for development of rare earth and control of environmental pollution. [ Method] Responses of membrane lipid peroxidation and endogenous hormones of soybean seedlings to U...[ Objective] The aim was to provide strategies for development of rare earth and control of environmental pollution. [ Method] Responses of membrane lipid peroxidation and endogenous hormones of soybean seedlings to UV-B radiation and rare earth were studied through hydroponics in laboratory. [ Result] The results showed that under irradiation of UV-B( T1-0.15 W/m^2 and T2-0.45 W/m^2), chlorophyll and indole-3-acetic acid(IAA) contents firstly decreased during the stress phase (1 -5 d) and then increased during the restoration phase (6 -9 d) while contents of malonadialdehyde(MDA) and abscisic acid(ABA) gradually increased during the imposition of UV-B radiation (1 -5 d) and subsequently decreased during recovery from UV-B stress (6 -9 d) . With adding of La (III) with the concentration of 20 mg · L^-1 , the decline/dse trend of chlorophyll, IAA, MDA and ABA contents was slowed down during the stress period while the rise/decline speed was accelerated during the recovery period. [ Conclusion] It suggests that the regulation of La ( III ) on membrane lipid peroxidation and endogenous hormones could increase chlorophyll and IAA contents, improve the metabolism of reactive oxygen species ( ROS), inhibit membrane lipid peroxidation, decrease the accumulation amount of ABA and alleviate injury of UV-B radiation to soybean seedlings. Further, the protective potential of La ( III ) was better under low UV-B radiation than under high one.展开更多
Heavy metals have harmful effects on human health,and exposure to these metals has been increased by industrial and anthropogenic activities and modern industrialization.Heavy metals content of the liver tissues was d...Heavy metals have harmful effects on human health,and exposure to these metals has been increased by industrial and anthropogenic activities and modern industrialization.Heavy metals content of the liver tissues was determine d using Atomic Absorption Spectrophotometer method,while lipid peroxidation was carried out.Heavy metals analyzed include;lead(Pb),cadmium(Cd),zinc(Zn),Arsenic(As),and Mercury(Hg).The findings revealed that the heavy metal Zinc(Zn)has high concentrations in the muscles of the fish species,the concentration of this heavy metal Zinc is high in River Gindin Dorowa th a n in River Ibi and River Donga shows less concentration of this heavy metal though it’s above WHO permissible limits.Results revealed that only Zn and Cd were present in the muscle from the three rivers.Pb was found only in the liver from Gindin-Dorowa at the concentration of 0.017 mg/kg,which is not significant(P<0.05)when compared with other locations,while Hg and As were absent in all the muscle samples.The highest concentration of Zn was found in the muscle sample from Gindin-Dorowa(7.450 mg/kg)followed by Ibi(6.16 mg/kg)and the least being Donga(4.365 mg/kg)which are significantly(P<0.05)different from one another.However,there was no significant(P<0.05)difference among the Cd composition of muscle from Gindin-Dorowa(0.025 mg/kg),Donga(0.024 mg/kg)and Ibi(0.015 mg/kg),respectively.The TBA was found in the hepatic tissue sample from Gidin-Dorowa,which has the highest Zn,Cd and no Pb content,followed by Ibi and then the Donga sample.This suggests that there is a positive relationship between heavy metals and the effect of TBA on the hepatic tissues,justifying the fact that heavy metals affect the hepatic tissues of fish,while on the cerebral tissue.In conclusion,it revealed that there is a negative relation between heavy metals and the effect of TBA on the cerebral tissues to protect or save aquatic habitat s of fish quality and aquatic life.展开更多
Relationships between fluorescence parameters and membrane lipid peroxidation in leaves of indica and japonica rice (Oryza sativa L.) during later growth stage were studied under chilling temperature and strong light ...Relationships between fluorescence parameters and membrane lipid peroxidation in leaves of indica and japonica rice (Oryza sativa L.) during later growth stage were studied under chilling temperature and strong light stress conditions. Results showed that D1 protein contents of PSⅡ in photosynthetic apparatus dropped, the generation of antheraxanthin (A) and zeaxanthin (Z) of xanthophyll cycle were inhibited partly, PSⅡ photochemical efficiency (F v/F m)and non-photochemical quenching (q N) were also decreased obviously. In addition, endogenous active oxygen scavenger—superoxide dismutase (SOD) reduced, superoxide anion radical (O -· 2) and malondialdehyde (MDA) accumulated, as a result, photooxidation of leaves occurred under chilling temperature and strong light stress conditions. Obvious differences in the changes of the above mentioned physiological parameters between indica and japonica rice were observed. Experiments in leaves treated with inhibitors under chilling temperature and strong light conditions showed that indica rice was more sensitive to chilling temperature with strong light and subjected to photooxidation more than japonica rice. Notable positive correlation between D1 protein contents and F v/F m or (A+Z)/(A+Z+V), and a marked negative correlation between F v/F m and MDA contents were obtained by regression analysis in indica and japonica rice during chilling temperature and strong light conditions. According to the facts mentioned above, it was inferred that PSⅡ photochemical efficiency(F v/F m) was the key index to forecast for the prediction of photooxidation under stress circumstances and the physiological basis were the synthetic capacity of D1 protein and the protection of xanthophyll cycle.展开更多
[Objective] Effects of different concentrations of nitric oxide on membrane lipid peroxidation of wheat induced by enhanced UV-B radiation were researched,sodium nitroprusside (SNP) was selected as an exogenous nitr...[Objective] Effects of different concentrations of nitric oxide on membrane lipid peroxidation of wheat induced by enhanced UV-B radiation were researched,sodium nitroprusside (SNP) was selected as an exogenous nitric oxide(NO)donor.[Method] There are 3 groups including CK,UV treatment group (B),B+SNP treatment group,0,1,2,3,4 d sampling after treatment respectively,and physiological and biochemical indexes of MDA content and CAT,POD,SOD and so on were determined,repeated 3 times,and statistical analyzed.[Result] The results showed that,after the enhanced UV-B radiation,activity of the catalase (CAT),superoxide dismutase (SOD) and of the guaiacol peroxidase (POD) all reduced apparently,and the concentration of malondialdehyde (MDA) increased obviously,leading to oxidative damage in wheat seedlings.Impose different concentrations of SNP after UV-B radiation,may mitigate oxidative damage of wheat seedling from different degrees,which was in agreement with the effect of making the concentration of MDA decrease and the activity of the CAT,SOD and POD all increased.The mitigation role of 0.01 mol/L SNP was more obvious for roots' oxidative damage,while 0.1 mmol/L SNP is more effective for oxidative damage of leaves.[Conclusion] Exogenous NO donor SNP had obvious relieve effects on oxidative damage of wheat seedlings caused by UV-B radiation,which can enhance adaptive capacity of plants to adversity stress.展开更多
With indica ( Oryza sativa L.) hybrid Shanyou 63 as control, the hybrid rice varieties including Peiai 64S/E32, Peiai 64S/9311, X07S/Zihui 100, Guangyou 881 and japonica 9516 were used to study changes of chlorophyll ...With indica ( Oryza sativa L.) hybrid Shanyou 63 as control, the hybrid rice varieties including Peiai 64S/E32, Peiai 64S/9311, X07S/Zihui 100, Guangyou 881 and japonica 9516 were used to study changes of chlorophyll content, photosynthetic response to light intensity and temperature, chlorophyll fluorescence characteristics and membrane lipid peroxidation in their flag leaves at the late stage of development under natural conditions in Nanjing. The results were as follows:. primary photochemical efficiency of PS II ( F-v / F-m), quantum yield of linear electron transport of PS II (phi(PSII)), electron transfer rate (ETR) in these rice varieties decreased with their decrease of chlorophyll content during this period. This kind of impediment to energy conversion induced the transfer of excessive energy to the reducing side of PS I, hence the accumulation of O-2(radical anion) and peroxidation of membrane lipid, and resulting in the accumulation of malondialdehyde (MDA), that is the destroys of photosynthetic pigments and membranes and the consequent, premature senescence. This phenomenon is variable conspicuously in different rice varieties. Under natural condition in Nanjing, F-v/F-m, phi(PSII), ETR and quenching coefficient ( qP) in japonica 9516 tolerant to photooxidation decreased less and the conversion capacity of light energy was stable, premature senescence was unlikely, and consequently the seed-setting rate was higher. While F-v/F-m, phi(PSII), ETR and photochemical qP in Shanyou 63 sensitive to photooxidation decreased more and therefore premature senescence was easy to happen, thus the seed-setting rate and yield were all reduced. The tolerance to photooxidation and premature senescence in other hybrids derived from typical two line or three line crossing laid in the middle. From the rice breeding for super-high-yield, on the basis of the good plant-type of current rice, considering both hybrid vigor and the prevention premature senescence, it would be a notable strategy to use japonica maternal line or maternal. lines with some japonica genotype as the sterile lines in rice breeding.展开更多
To investigate and compare the inhibitory properties of free and bound phenolic extracts of clove bud against carbohydrate hydrolyzing enzymes (alpha-amylase & alpha-glucosidase) and Fe2+-induced lipid peroxidatio...To investigate and compare the inhibitory properties of free and bound phenolic extracts of clove bud against carbohydrate hydrolyzing enzymes (alpha-amylase & alpha-glucosidase) and Fe2+-induced lipid peroxidation in rat pancreas in vitro. Methods: The free phenolics were extracted with 80% (v/v) acetone, while bound phenolics were extracted from the alkaline and acid hydrolyzed residue with ethyl acetate. Then, the interaction of the extracts with alpha-amylase and alpha-glucosidase was subsequently assessed. Thereafter, the total phenolic contents and antioxidant activities of the extracts were determined. Results: The result revealed that both extracts inhibited alpha-amylase and alpha-glucosidase in a dose-dependent manner. However, the alpha-glucosidase inhibitory activity of the extracts were significantly (P<0.05) higher than their alpha-amylase inhibitory activity. The free phenolics (31.67 mg/g) and flavonoid (17.28 mg/g) contents were significantly (P<0.05) higher than bound phenolic (23.52 mg/g) and flavonoid (13.70 mg/g) contents. Both extracts also exhibited high antioxidant activities as typified by their high reducing power, 1,1 diphenyl-2- picrylhydrazyl (DPPH) and 2, 2-azinobis-3-ethylbenzo-thiazoline-6-sulfonate (ABTS) radical scavenging abilities, as well as inhibition of Fe2+-induced lipid peroxidation in rat pancreas in vitro. Conclusions: This study provides a biochemical rationale by which clove elicits therapeutic effect on type 2 diabetes.展开更多
[ Objective] The aim of this study was to discuss the effect of antioxidants and lipid peroxidation from pea crops of plateau. [ Method] SOD enzyme liquid from pea crops of plateau was extracted by means of protein co...[ Objective] The aim of this study was to discuss the effect of antioxidants and lipid peroxidation from pea crops of plateau. [ Method] SOD enzyme liquid from pea crops of plateau was extracted by means of protein concentration assay, enzyme activity assay and antioxidant activity determination by DPPH method, peroxide activity inhibition of in vitro tissues from mice by homogenate MDA colorimetry method and lipid peroxidation assay of in vitro tissues. [ Result ] IC50 of the crude enzyme liquid extracted from pea on DPPH was 55.16 mg/L, while the scavenging rate of the crude enzyme liquid was lower than that of ascorbic acid, tea polyphenol and citric acid with the same concentration. The synergistic effect was found in ascorbic acid and crude enzyme liquid, but the synergism of ascorbic acid was better than that of citric acid. IC50 of SOD enzyme liquid extracted from pea on DPPH was 11.1 mg/L, which was better than that of tea polyphenol and closely similar to that of ascorbic acid. SOD enzyme liquid extracted from pea had an inhibitory effect on MDA production from in vitro tissues such as liver, kidney and heart, especially for a significantly inhibitory effect on MDA from liver in vitro. When the concentration was 0.25 mg/ml, the inhibition rate reached 78.3%, and then the inhibition rate increased little with the concentration incresas, while its effect on heart and kidney were inferior. [ Conclusion] SOD crude enzyme liquid and SOD enzyme liquid extracted from pea all have certain DPPH scavenging capacity, while SOD enzyme liquid extracted from pea has an inhibitory effect on lipid peroxidation.展开更多
Leymus chinensis seedlings were treated with 0.05--10 mmol/L vitamin E under osmotic stress in the presence of polyethylene glycol(PEG) as the stress reagent. The effects of the different concentrations of exogenous...Leymus chinensis seedlings were treated with 0.05--10 mmol/L vitamin E under osmotic stress in the presence of polyethylene glycol(PEG) as the stress reagent. The effects of the different concentrations of exogenous vitamin E on the activities of SOD, POD and free proline, and the MDA contents under drought stress were examined so as to ascertain the mechanism of Leymus chinensis resistance to drought stress and explore the possible preventive measures. The results indicate that the activities of SOD and POD decreased but the free proline and MDA contents increased as drought stress was accentuated, showing an enhancement of oxidative stress that may cause a decline in membrane stabilization. However, the activities of SOD and POD and the free proline content increased, whereas the MDA content reduced in Leymus chinensis pretreated with vitamin E in comparison with that of the control. This indicates that exogenous vitamin E enhanced the antioxidation of Leymus chinensis seedlings. It suggests that cytomembrane can be protected from damage by increasing the free proline content and the activities of SOD and POD that result in enhancing the drought resistance of Leymus chinensis seedlings.展开更多
Sprague-Dawley neonatal rats within 7 days after birth were used in this study. The left common carotid artery was occluded and rats were housed in an 8% O2 environment for 2 hours to establish a hypoxic-ischemic brai...Sprague-Dawley neonatal rats within 7 days after birth were used in this study. The left common carotid artery was occluded and rats were housed in an 8% O2 environment for 2 hours to establish a hypoxic-ischemic brain damage model. 17β-estradiol (1 × 10-5 M) was injected into the rat abdominal cavity after the model was successfully established. The left hemisphere was obtained at 12, 24, 48, 72 hours after operation. Results showed that malondialdehyde content in the left brain of neonatal rats gradually increased as modeling time prolonged, while malondialdehyde content of 17β-estrodial-treated rats significantly declined by 24 hours, reached lowest levels at 48 hours, and then peaked at 72 hours after injury. Nicotinamide-adenine dinucleotide phosphate histochemical staining showed the nitric oxide synthase-positive cells and fibers dyed blue/violet and were mainly distributed in the cortex, hippocampus and medial septal nuclei. The number of nitric oxide synthase-positive cells peaked at 48 hours and significantly decreased after 17β-estrodial treatment. Our experimental findings indicate that estrogen plays a protective role following hypoxic-ischemic brain damage by alleviating lipid peroxidation through reducing the expression of nitric oxide synthase and the content of malondialdehyde.展开更多
The main purpose of this study was to investigate the protective actions of captopril and cicaprost on changes of membrane fluidity of cultured neonatal rat myocardial cells exposed to anoxia and sugar deprivation.Lip...The main purpose of this study was to investigate the protective actions of captopril and cicaprost on changes of membrane fluidity of cultured neonatal rat myocardial cells exposed to anoxia and sugar deprivation.Lipid peroxidation level estimated by determining the thiobarbituric acid reactive substance(TBARS)content and lactate dehydrogenase(LDH)released in culture medium was also observed in order to examine other membrane-related changes due to anoxia.Membrane fluidity was monitored by measuring changes in the steady state fluorescence anisotropy(r_s)by fluorescence spectroscopy.The r_s value,TBARS level and LDH release were significantly increased after 3 h anoxia.Captopril(180 μmol/L),cicaprost(30 nmol/L)and indomethacin(1μmol/L)did not alter r_s, TBARS level and LDH activity of normal cultured neonatal rat myocardial cells.However,both captopril and cicaprost significantly prevented the increases of r_s,TBARS content and LDH release in those cells exposed to anoxia and sugar deprivation.lndomethacin abolished the actions of captopril on TBARS production and LDH release,but maintained its membrane fluidity protection.These results indicate that captopril and cicaprost protect membrane fluidity and lipid peroxidation changes in anoxia- injured myocardial cells.The action mechanism of captopril may be due,in part,to stimulation of prostacyclin synthesis and/or release.展开更多
Membrane lipid peroxidation and protective enzyme activity in leaves of low-phosphorus-tolerant rice cultivars Dalidao and Liantangzao 3, and low-phosphorus-sensitive cultivars Huzhanqi and Xinsanbaili were studied un...Membrane lipid peroxidation and protective enzyme activity in leaves of low-phosphorus-tolerant rice cultivars Dalidao and Liantangzao 3, and low-phosphorus-sensitive cultivars Huzhanqi and Xinsanbaili were studied under low phosphorus stress with sandy culture. Results indicated that low-phosphorus stress aggravated the membrane lipid peroxidation in rice leaves, and it was more severe in low-phosphorus-sensitive cultivars than that in low-phosphorus-tolerant eultivars. During the period of low-phosphorus stress, the activities of SOD, CAT and POD maintained relatively stable in low-phosphorustolerant cultivars, whereas those increased obviously at early stage and subsequently decreased rapidly in the low-phosphorus-sensitive cultivars, suggesting that the absolute activities of protective enzymes had no relation with the low-phosphorus stress, while the changing trend was reverse.展开更多
Objective:To identify the alleralinn of the membrane polenlial and llie effect of carolenoid extracts from Chlorococcum hnmicola(C.humicola) on membrane hound ATPases and lipid peroxidation.Methods:The lolal carotenoi...Objective:To identify the alleralinn of the membrane polenlial and llie effect of carolenoid extracts from Chlorococcum hnmicola(C.humicola) on membrane hound ATPases and lipid peroxidation.Methods:The lolal carotenoids were extracted from C.humicola.Four groups of Swiss albino mice were treated as control,Benzo(a)pyrene[B(a)P],total carotenoids,B(a)P+ total caralenoids respectively for a period of 60 days.Membrane lipid peroxidation and ATPases(Total ATPases,Ca^(2+)-ATPases.Mg^(2+)-ATPases.Na^+K^+- ATPasei were determined in lung,liver and erythrocyte samples.Results:The activity of lolal ATPase was found to be significantly increased in the B(a)P treated liver and lung tissue.Erythrocyte membrane also showed higher ATPase activity which was significantly reverted on total carolenoid treatment.Conclusions: It can be concluded that the changes in membrane potential favour the functional deterioration of physiological system.The overall findings demonstrates that the animals post treated with carolenoid extract from C.humicola may maintains the alterations in membrane bound ATPase and lipid peroxidation in tissues against the carcinogenic chemical and hence aid in establishing the membrane potential action.Then-fore C.humicola can be further extended to exploits its possible application for various health benefits as neulraceulicals and food additives.展开更多
Objective:To investigate the ability of the methanolic extract of pineapple peel to modulate alcohol-induced lipid peroxidation,changes in catalase activities and hepatic biochemical marker levels in blood plasma.Meth...Objective:To investigate the ability of the methanolic extract of pineapple peel to modulate alcohol-induced lipid peroxidation,changes in catalase activities and hepatic biochemical marker levels in blood plasma.Methods:Oxidative stress was induced by oral administration of ethanol(20%w/v) at a dosage of 5 niL/kg bw in rats.After 28 days of treatment,the rats were fasted overnight and sacrificed by cervical dislocation.Blood was collected with a 2 mL syringe by cardiac puncture and was centrifuged at 3000 rpm for 10 min.The plasma was analyzed to evaluate malondialdehyde(MDA),catalase activity,aspartate aminotransferase(AST),alkaline phosphatase(ALP) and alanine aminotransferase(ALT) concentrations.Results:Administration of alcohol caused a drastic increase(87.74%) in MDA level compared with the control.Pineapple peel extract significantly reduced the MDA level by 60.16%at 2.S mL/kg bw.Rats fed alcohol only had the highest catalase activity,treatment with pineapple peel extract at 2.5 mL/kg bw however, reduced the activity.Increased AST,ALP and ALT activities were observed in rats fed alcohol only respectively,treatment with pineapple peel extract drastically reduced their activities. Conclusions:The positive modulation of lipid peroxidation,catalase activities as well as hepatic biomarker levels of blood plasma by the methanolic extract of pineapple peels under alcoholinduced oxidative stress is an indication of its protective ability in the management of alcoholinduced toxicity.展开更多
Aim: To examine the effects of melatonin treatment on lipid peroxidation (LPO) and the activities of antioxidant enzymes in the testicular tissue of streptozotocin (STZ)-induced diabetic rats. Methods: Twenty-si...Aim: To examine the effects of melatonin treatment on lipid peroxidation (LPO) and the activities of antioxidant enzymes in the testicular tissue of streptozotocin (STZ)-induced diabetic rats. Methods: Twenty-six male rats were randomly divided into three groups as follows: group Ⅰ, control, non-diabetic rats (n = 9); group Ⅱ, STZ-induced, untreated diabetic rats (n = 8); group Ⅲ, STZ-induced, melatonin-treated (dose of 10 mg/kg·day) diabetic rats (n = 9). Following 8-week melatonin treatment, all rats were anaesthetized and then were killed to remove testes from the scrotum. Results: As compared to group Ⅰ, in rat testicular tissues of grouap Ⅱ, increased levels of malondialdehyde (MDA) (P 〈 0.01) and superoxide dismutase (SOD) (P 〈 0.01) as well as, decreased levels of catalase (CAT) (P 〈 0.01) and glutathione peroxidase (GSH-Px) (P 〉 0.05) were found. In contrast, as compared to group Ⅱ, in rat testicular tissues of group Ⅲ, levels of MDA decreased (but this decrease was not significant, P 〉 0.05) and SOD (P 〈 0.01) as well as CAT (P 〈 0.05) increased. GSH-Px was not influenced by any of the treatment. Melatonin did not significantly affect the elevated glucose concentration of diabetic group. At the end of the study, there was no significant difference between the melatonin-treated group and the untreated group by means of body and testicular weight. Conclusion: Diabetes mellitus increases oxidative stress and melatonin inhibits lipid peroxidation and might regulate the activities of antioxidant enzymes of diabetic rat testes.展开更多
文摘As a highly aggressive tumor,the pathophysiological mechanism of primary liver cancer has attracted much attention.In recent years,factors such as ferroptosis regulation,lipid peroxidation and metabolic abnormalities have emerged in the study of liver cancer,providing a new perspective for understanding the development of liver cancer.Ferroptosis regulation,lipid peroxidation and metabolic abnormalities play important roles in the occurrence and development of liver cancer.The regulation of ferroptosis is involved in apoptosis and necrosis,affecting cell survival and death.Lipid peroxidation promotes oxidative damage and promotes the invasion of liver cancer cells.Metabolic abnormalities,especially the disorders of glucose and lipid metabolism,directly affect the proliferation and growth of liver cancer cells.Studies of ferroptosis regulation and lipid peroxidation may help to discover new therapeutic targets and improve therapeutic outcomes.The understanding of metabolic abnormalities can provide new ideas for the prevention of liver cancer,and reduce the risk of disease by adjusting the metabolic process.This review focuses on the key roles of ferroptosis regulation,lipid peroxidation and metabolic abnormalities in this process.
基金supported by Jiangxi Provincial Natural Science Foundation(20224BAB216091,20224ACB205014)Jiangxi Provincial Department of Education Science and Technology Plan Project(GJJ2200420).
文摘Ferroptosis is a novel form of cell death driven by iron-dependent lipid peroxidation and it is implicated in various diseases,such as liver disease,acute kidney injury,cardiovascular disease,neurodegenerative disease and cancer.Lipid-based reactive oxygen species(ROS),particularly lipid hydroperoxides in the cellular membrane can lead to membrane disruption and cell death mediated by ferroptosis.There are three necessary stages involving in the process of lipid peroxidation regulation in ferroptosis,including the synthesis of membrane phospholipids,initiation of lipid peroxidation and clearance of lipid peroxides.In this review,we summarized the molecular modulation mechanisms of lipid peroxidation in ferroptosis from the above three stages,as well as various ferroptosis modulators targeting lipid peroxidation,including commonly used products,natural bioactive compounds and selenocompounds.Collectively,these findings suggest the vital role of lipid peroxidation in ferroptosis,and targeting lipid peroxidation in ferroptosis is potential to treat ferroptosis-associated diseases.
文摘Correction to“Research progress of ferroptosis regulating lipid peroxidation and metabolism in occurrence and development of primary liver cancer”in World J Gastrointest Oncol 2024;16:2335-2349,published by Shu YJ,Lao B,and Qiu YY.In this article,we added the correct citations of images.
文摘BACKGROUND Gastric cancer is one of the most common malignant tumors in the world,and its occurrence and development involve complex biological processes.Iron death,as a new cell death mode,has attracted wide attention in recent years.However,the regulatory mechanism of iron death in gastric cancer and its effect on lipid peroxidation metabolism remain unclear.AIM To explore the role of iron death in the development of gastric cancer,reveal its relationship with lipid peroxidation,and provide a new theoretical basis for revealing the molecular mechanism of the occurrence and development of gastric cancer.METHODS The process of iron death in gastric cancer cells was simulated by cell culture model,and the occurrence of iron death was detected by fluorescence microscopy and flow cytometry.The changes of gene expression related to iron death and lipid peroxidation metabolism were analyzed by high-throughput sequencing technology.In addition,a mouse model of gastric cancer was established,and the role of iron death in vivo was studied by histology and immunohistochemistry,and the level of lipid peroxidation was detected.These methods comprehensively and deeply reveal the regulatory mechanism of iron death on lipid peroxidation metabolism in the occurrence and development of gastric cancer.RESULTS Iron death was significantly activated in gastric cancer cells,and at the same time,associated lipid peroxidation levels increased significantly.Through high-throughput sequencing analysis,it was found that iron death regulated the expression of several genes related to lipid metabolism.In vivo experiments demonstrated that increased iron death in gastric cancer mice was accompanied by a significant increase in lipid peroxidation.CONCLUSION This study confirmed the important role of iron death in regulating lipid peroxidation metabolism in the occurrence and development of gastric cancer.The activation of iron death significantly increased lipid peroxidation levels,revealing its regulatory mechanism inside the cell.
基金supported by FIS PI16/00786(2016)and FIS PI19/00377(2019)grantsthe Ministerio de Sanidad,Spain and the Fondo Europeo de Desarrollo Regional(FEDER Unión Europea)Spanish Ministry of Education,Culture and Sport.This activity has been co-financed by the European Regional Development Fund(ERDF)and by the Regional Ministry of Economic Transformation,Industry,Knowledge and Universities of the Junta de Andalucía,within the framework of the ERDF Andalusia operational program 2014-2020 Thematic objective“01-Reinforcement of research,technological development and innovation”through the reference research project CTS-5725 and PY18-850(to JASA).
文摘Lipid peroxidation and iron accumulation are closely associated with neurodegenerative diseases,such as Alzheimer’s,Parkinson’s,and Huntington’s diseases,or neurodegeneration with brain iron accumulation disorders.Mitochondrial dysfunction,lipofuscin accumulation,autophagy disruption,and ferroptosis have been implicated as the critical pathomechanisms of lipid peroxidation and iron accumulation in these disorders.Currently,the connection between lipid peroxidation and iron accumulation and the initial cause or consequence in neurodegeneration processes is unclear.In this review,we have compiled the known mechanisms by which lipid peroxidation triggers iron accumulation and lipofuscin formation,and the effect of iron overload on lipid peroxidation and cellular function.The vicious cycle established between both pathological alterations may lead to the development of neurodegeneration.Therefore,the investigation of these mechanisms is essential for exploring therapeutic strategies to restrict neurodegeneration.In addition,we discuss the interplay between lipid peroxidation and iron accumulation in neurodegeneration,particularly in PLA2G6-associated neurodegeneration,a rare neurodegenerative disease with autosomal recessive inheritance,which belongs to the group of neurodegeneration with brain iron accumulation disorders.
基金supported in part by the National Natural Science Foundation of China(32172311)Key-Area Research and Development Program of Guangdong Province(2019B020213001)+1 种基金Guangdong Basic and Applied Basic Research Foundation(2021A1515012413)the support from the Instrumental Analysis Center of Shenzhen University(Xili Campus)。
文摘This study aimed to analyze the effect of lipid peroxidation on the allergenicity and functional properties of soybeanβ-conglycinin(7 S)and glycinin(11 S).Oxidation complexes were determined using the lipid peroxidation method.Functional properties were analyzed based on emulsifying and foaming properties.The potential allergenicity was evaluated by in vitro and in vivo methods.The results found that oxidation altered structures of the proteins and resulted in the formation of cross-linked protein polymers.The emulsion and foaming properties of the proteins were improved after oxidation.The IgE-binding capacity of 7 S and11 S reduced after oxidation.KU812 cell assays showed that both histamine and IL-4 release decreased after oxidation treatment.A mouse model showed that oxidation reduced the IgE,IgG,and IgG1 levels,as well as reduced histamine and mMCP-1 release in serum,which might suppress the allergic reaction.In conclusion,the lipid peroxidation treatment likely causes changes to the functional properties of soybean,decreasing the potential allergenicity of 7 S and 11 S.
基金Supported by the Foundation of State Developing and ReformingCommittee(No.IFZ20051210)the National Natural Science Foundationof China(No.30570323,No.20471030)the Programsin Science and Technology of Nantong(No.DE2009006,No.S2009019)~~
文摘[ Objective] The aim was to provide strategies for development of rare earth and control of environmental pollution. [ Method] Responses of membrane lipid peroxidation and endogenous hormones of soybean seedlings to UV-B radiation and rare earth were studied through hydroponics in laboratory. [ Result] The results showed that under irradiation of UV-B( T1-0.15 W/m^2 and T2-0.45 W/m^2), chlorophyll and indole-3-acetic acid(IAA) contents firstly decreased during the stress phase (1 -5 d) and then increased during the restoration phase (6 -9 d) while contents of malonadialdehyde(MDA) and abscisic acid(ABA) gradually increased during the imposition of UV-B radiation (1 -5 d) and subsequently decreased during recovery from UV-B stress (6 -9 d) . With adding of La (III) with the concentration of 20 mg · L^-1 , the decline/dse trend of chlorophyll, IAA, MDA and ABA contents was slowed down during the stress period while the rise/decline speed was accelerated during the recovery period. [ Conclusion] It suggests that the regulation of La ( III ) on membrane lipid peroxidation and endogenous hormones could increase chlorophyll and IAA contents, improve the metabolism of reactive oxygen species ( ROS), inhibit membrane lipid peroxidation, decrease the accumulation amount of ABA and alleviate injury of UV-B radiation to soybean seedlings. Further, the protective potential of La ( III ) was better under low UV-B radiation than under high one.
文摘Heavy metals have harmful effects on human health,and exposure to these metals has been increased by industrial and anthropogenic activities and modern industrialization.Heavy metals content of the liver tissues was determine d using Atomic Absorption Spectrophotometer method,while lipid peroxidation was carried out.Heavy metals analyzed include;lead(Pb),cadmium(Cd),zinc(Zn),Arsenic(As),and Mercury(Hg).The findings revealed that the heavy metal Zinc(Zn)has high concentrations in the muscles of the fish species,the concentration of this heavy metal Zinc is high in River Gindin Dorowa th a n in River Ibi and River Donga shows less concentration of this heavy metal though it’s above WHO permissible limits.Results revealed that only Zn and Cd were present in the muscle from the three rivers.Pb was found only in the liver from Gindin-Dorowa at the concentration of 0.017 mg/kg,which is not significant(P<0.05)when compared with other locations,while Hg and As were absent in all the muscle samples.The highest concentration of Zn was found in the muscle sample from Gindin-Dorowa(7.450 mg/kg)followed by Ibi(6.16 mg/kg)and the least being Donga(4.365 mg/kg)which are significantly(P<0.05)different from one another.However,there was no significant(P<0.05)difference among the Cd composition of muscle from Gindin-Dorowa(0.025 mg/kg),Donga(0.024 mg/kg)and Ibi(0.015 mg/kg),respectively.The TBA was found in the hepatic tissue sample from Gidin-Dorowa,which has the highest Zn,Cd and no Pb content,followed by Ibi and then the Donga sample.This suggests that there is a positive relationship between heavy metals and the effect of TBA on the hepatic tissues,justifying the fact that heavy metals affect the hepatic tissues of fish,while on the cerebral tissue.In conclusion,it revealed that there is a negative relation between heavy metals and the effect of TBA on the cerebral tissues to protect or save aquatic habitat s of fish quality and aquatic life.
文摘Relationships between fluorescence parameters and membrane lipid peroxidation in leaves of indica and japonica rice (Oryza sativa L.) during later growth stage were studied under chilling temperature and strong light stress conditions. Results showed that D1 protein contents of PSⅡ in photosynthetic apparatus dropped, the generation of antheraxanthin (A) and zeaxanthin (Z) of xanthophyll cycle were inhibited partly, PSⅡ photochemical efficiency (F v/F m)and non-photochemical quenching (q N) were also decreased obviously. In addition, endogenous active oxygen scavenger—superoxide dismutase (SOD) reduced, superoxide anion radical (O -· 2) and malondialdehyde (MDA) accumulated, as a result, photooxidation of leaves occurred under chilling temperature and strong light stress conditions. Obvious differences in the changes of the above mentioned physiological parameters between indica and japonica rice were observed. Experiments in leaves treated with inhibitors under chilling temperature and strong light conditions showed that indica rice was more sensitive to chilling temperature with strong light and subjected to photooxidation more than japonica rice. Notable positive correlation between D1 protein contents and F v/F m or (A+Z)/(A+Z+V), and a marked negative correlation between F v/F m and MDA contents were obtained by regression analysis in indica and japonica rice during chilling temperature and strong light conditions. According to the facts mentioned above, it was inferred that PSⅡ photochemical efficiency(F v/F m) was the key index to forecast for the prediction of photooxidation under stress circumstances and the physiological basis were the synthetic capacity of D1 protein and the protection of xanthophyll cycle.
基金Supported by National Natural Science Foundation of China(No.30671061)Natural Science Foundation of Shanxi Province(No.2008011059-1 and No.20041101)~~
文摘[Objective] Effects of different concentrations of nitric oxide on membrane lipid peroxidation of wheat induced by enhanced UV-B radiation were researched,sodium nitroprusside (SNP) was selected as an exogenous nitric oxide(NO)donor.[Method] There are 3 groups including CK,UV treatment group (B),B+SNP treatment group,0,1,2,3,4 d sampling after treatment respectively,and physiological and biochemical indexes of MDA content and CAT,POD,SOD and so on were determined,repeated 3 times,and statistical analyzed.[Result] The results showed that,after the enhanced UV-B radiation,activity of the catalase (CAT),superoxide dismutase (SOD) and of the guaiacol peroxidase (POD) all reduced apparently,and the concentration of malondialdehyde (MDA) increased obviously,leading to oxidative damage in wheat seedlings.Impose different concentrations of SNP after UV-B radiation,may mitigate oxidative damage of wheat seedling from different degrees,which was in agreement with the effect of making the concentration of MDA decrease and the activity of the CAT,SOD and POD all increased.The mitigation role of 0.01 mol/L SNP was more obvious for roots' oxidative damage,while 0.1 mmol/L SNP is more effective for oxidative damage of leaves.[Conclusion] Exogenous NO donor SNP had obvious relieve effects on oxidative damage of wheat seedlings caused by UV-B radiation,which can enhance adaptive capacity of plants to adversity stress.
文摘With indica ( Oryza sativa L.) hybrid Shanyou 63 as control, the hybrid rice varieties including Peiai 64S/E32, Peiai 64S/9311, X07S/Zihui 100, Guangyou 881 and japonica 9516 were used to study changes of chlorophyll content, photosynthetic response to light intensity and temperature, chlorophyll fluorescence characteristics and membrane lipid peroxidation in their flag leaves at the late stage of development under natural conditions in Nanjing. The results were as follows:. primary photochemical efficiency of PS II ( F-v / F-m), quantum yield of linear electron transport of PS II (phi(PSII)), electron transfer rate (ETR) in these rice varieties decreased with their decrease of chlorophyll content during this period. This kind of impediment to energy conversion induced the transfer of excessive energy to the reducing side of PS I, hence the accumulation of O-2(radical anion) and peroxidation of membrane lipid, and resulting in the accumulation of malondialdehyde (MDA), that is the destroys of photosynthetic pigments and membranes and the consequent, premature senescence. This phenomenon is variable conspicuously in different rice varieties. Under natural condition in Nanjing, F-v/F-m, phi(PSII), ETR and quenching coefficient ( qP) in japonica 9516 tolerant to photooxidation decreased less and the conversion capacity of light energy was stable, premature senescence was unlikely, and consequently the seed-setting rate was higher. While F-v/F-m, phi(PSII), ETR and photochemical qP in Shanyou 63 sensitive to photooxidation decreased more and therefore premature senescence was easy to happen, thus the seed-setting rate and yield were all reduced. The tolerance to photooxidation and premature senescence in other hybrids derived from typical two line or three line crossing laid in the middle. From the rice breeding for super-high-yield, on the basis of the good plant-type of current rice, considering both hybrid vigor and the prevention premature senescence, it would be a notable strategy to use japonica maternal line or maternal. lines with some japonica genotype as the sterile lines in rice breeding.
文摘To investigate and compare the inhibitory properties of free and bound phenolic extracts of clove bud against carbohydrate hydrolyzing enzymes (alpha-amylase & alpha-glucosidase) and Fe2+-induced lipid peroxidation in rat pancreas in vitro. Methods: The free phenolics were extracted with 80% (v/v) acetone, while bound phenolics were extracted from the alkaline and acid hydrolyzed residue with ethyl acetate. Then, the interaction of the extracts with alpha-amylase and alpha-glucosidase was subsequently assessed. Thereafter, the total phenolic contents and antioxidant activities of the extracts were determined. Results: The result revealed that both extracts inhibited alpha-amylase and alpha-glucosidase in a dose-dependent manner. However, the alpha-glucosidase inhibitory activity of the extracts were significantly (P<0.05) higher than their alpha-amylase inhibitory activity. The free phenolics (31.67 mg/g) and flavonoid (17.28 mg/g) contents were significantly (P<0.05) higher than bound phenolic (23.52 mg/g) and flavonoid (13.70 mg/g) contents. Both extracts also exhibited high antioxidant activities as typified by their high reducing power, 1,1 diphenyl-2- picrylhydrazyl (DPPH) and 2, 2-azinobis-3-ethylbenzo-thiazoline-6-sulfonate (ABTS) radical scavenging abilities, as well as inhibition of Fe2+-induced lipid peroxidation in rat pancreas in vitro. Conclusions: This study provides a biochemical rationale by which clove elicits therapeutic effect on type 2 diabetes.
文摘[ Objective] The aim of this study was to discuss the effect of antioxidants and lipid peroxidation from pea crops of plateau. [ Method] SOD enzyme liquid from pea crops of plateau was extracted by means of protein concentration assay, enzyme activity assay and antioxidant activity determination by DPPH method, peroxide activity inhibition of in vitro tissues from mice by homogenate MDA colorimetry method and lipid peroxidation assay of in vitro tissues. [ Result ] IC50 of the crude enzyme liquid extracted from pea on DPPH was 55.16 mg/L, while the scavenging rate of the crude enzyme liquid was lower than that of ascorbic acid, tea polyphenol and citric acid with the same concentration. The synergistic effect was found in ascorbic acid and crude enzyme liquid, but the synergism of ascorbic acid was better than that of citric acid. IC50 of SOD enzyme liquid extracted from pea on DPPH was 11.1 mg/L, which was better than that of tea polyphenol and closely similar to that of ascorbic acid. SOD enzyme liquid extracted from pea had an inhibitory effect on MDA production from in vitro tissues such as liver, kidney and heart, especially for a significantly inhibitory effect on MDA from liver in vitro. When the concentration was 0.25 mg/ml, the inhibition rate reached 78.3%, and then the inhibition rate increased little with the concentration incresas, while its effect on heart and kidney were inferior. [ Conclusion] SOD crude enzyme liquid and SOD enzyme liquid extracted from pea all have certain DPPH scavenging capacity, while SOD enzyme liquid extracted from pea has an inhibitory effect on lipid peroxidation.
文摘Leymus chinensis seedlings were treated with 0.05--10 mmol/L vitamin E under osmotic stress in the presence of polyethylene glycol(PEG) as the stress reagent. The effects of the different concentrations of exogenous vitamin E on the activities of SOD, POD and free proline, and the MDA contents under drought stress were examined so as to ascertain the mechanism of Leymus chinensis resistance to drought stress and explore the possible preventive measures. The results indicate that the activities of SOD and POD decreased but the free proline and MDA contents increased as drought stress was accentuated, showing an enhancement of oxidative stress that may cause a decline in membrane stabilization. However, the activities of SOD and POD and the free proline content increased, whereas the MDA content reduced in Leymus chinensis pretreated with vitamin E in comparison with that of the control. This indicates that exogenous vitamin E enhanced the antioxidation of Leymus chinensis seedlings. It suggests that cytomembrane can be protected from damage by increasing the free proline content and the activities of SOD and POD that result in enhancing the drought resistance of Leymus chinensis seedlings.
基金supported by the Project of Nantong Application Plan,No.BK2011055the Project of Nantong University,No.09Z032
文摘Sprague-Dawley neonatal rats within 7 days after birth were used in this study. The left common carotid artery was occluded and rats were housed in an 8% O2 environment for 2 hours to establish a hypoxic-ischemic brain damage model. 17β-estradiol (1 × 10-5 M) was injected into the rat abdominal cavity after the model was successfully established. The left hemisphere was obtained at 12, 24, 48, 72 hours after operation. Results showed that malondialdehyde content in the left brain of neonatal rats gradually increased as modeling time prolonged, while malondialdehyde content of 17β-estrodial-treated rats significantly declined by 24 hours, reached lowest levels at 48 hours, and then peaked at 72 hours after injury. Nicotinamide-adenine dinucleotide phosphate histochemical staining showed the nitric oxide synthase-positive cells and fibers dyed blue/violet and were mainly distributed in the cortex, hippocampus and medial septal nuclei. The number of nitric oxide synthase-positive cells peaked at 48 hours and significantly decreased after 17β-estrodial treatment. Our experimental findings indicate that estrogen plays a protective role following hypoxic-ischemic brain damage by alleviating lipid peroxidation through reducing the expression of nitric oxide synthase and the content of malondialdehyde.
基金Supported by a grant for young researcher from Ministry of Public Health of P.R.C.
文摘The main purpose of this study was to investigate the protective actions of captopril and cicaprost on changes of membrane fluidity of cultured neonatal rat myocardial cells exposed to anoxia and sugar deprivation.Lipid peroxidation level estimated by determining the thiobarbituric acid reactive substance(TBARS)content and lactate dehydrogenase(LDH)released in culture medium was also observed in order to examine other membrane-related changes due to anoxia.Membrane fluidity was monitored by measuring changes in the steady state fluorescence anisotropy(r_s)by fluorescence spectroscopy.The r_s value,TBARS level and LDH release were significantly increased after 3 h anoxia.Captopril(180 μmol/L),cicaprost(30 nmol/L)and indomethacin(1μmol/L)did not alter r_s, TBARS level and LDH activity of normal cultured neonatal rat myocardial cells.However,both captopril and cicaprost significantly prevented the increases of r_s,TBARS content and LDH release in those cells exposed to anoxia and sugar deprivation.lndomethacin abolished the actions of captopril on TBARS production and LDH release,but maintained its membrane fluidity protection.These results indicate that captopril and cicaprost protect membrane fluidity and lipid peroxidation changes in anoxia- injured myocardial cells.The action mechanism of captopril may be due,in part,to stimulation of prostacyclin synthesis and/or release.
文摘Membrane lipid peroxidation and protective enzyme activity in leaves of low-phosphorus-tolerant rice cultivars Dalidao and Liantangzao 3, and low-phosphorus-sensitive cultivars Huzhanqi and Xinsanbaili were studied under low phosphorus stress with sandy culture. Results indicated that low-phosphorus stress aggravated the membrane lipid peroxidation in rice leaves, and it was more severe in low-phosphorus-sensitive cultivars than that in low-phosphorus-tolerant eultivars. During the period of low-phosphorus stress, the activities of SOD, CAT and POD maintained relatively stable in low-phosphorustolerant cultivars, whereas those increased obviously at early stage and subsequently decreased rapidly in the low-phosphorus-sensitive cultivars, suggesting that the absolute activities of protective enzymes had no relation with the low-phosphorus stress, while the changing trend was reverse.
基金Supported by Bharathiar university.coimbatore,Tamilnadu India
文摘Objective:To identify the alleralinn of the membrane polenlial and llie effect of carolenoid extracts from Chlorococcum hnmicola(C.humicola) on membrane hound ATPases and lipid peroxidation.Methods:The lolal carotenoids were extracted from C.humicola.Four groups of Swiss albino mice were treated as control,Benzo(a)pyrene[B(a)P],total carotenoids,B(a)P+ total caralenoids respectively for a period of 60 days.Membrane lipid peroxidation and ATPases(Total ATPases,Ca^(2+)-ATPases.Mg^(2+)-ATPases.Na^+K^+- ATPasei were determined in lung,liver and erythrocyte samples.Results:The activity of lolal ATPase was found to be significantly increased in the B(a)P treated liver and lung tissue.Erythrocyte membrane also showed higher ATPase activity which was significantly reverted on total carolenoid treatment.Conclusions: It can be concluded that the changes in membrane potential favour the functional deterioration of physiological system.The overall findings demonstrates that the animals post treated with carolenoid extract from C.humicola may maintains the alterations in membrane bound ATPase and lipid peroxidation in tissues against the carcinogenic chemical and hence aid in establishing the membrane potential action.Then-fore C.humicola can be further extended to exploits its possible application for various health benefits as neulraceulicals and food additives.
文摘Objective:To investigate the ability of the methanolic extract of pineapple peel to modulate alcohol-induced lipid peroxidation,changes in catalase activities and hepatic biochemical marker levels in blood plasma.Methods:Oxidative stress was induced by oral administration of ethanol(20%w/v) at a dosage of 5 niL/kg bw in rats.After 28 days of treatment,the rats were fasted overnight and sacrificed by cervical dislocation.Blood was collected with a 2 mL syringe by cardiac puncture and was centrifuged at 3000 rpm for 10 min.The plasma was analyzed to evaluate malondialdehyde(MDA),catalase activity,aspartate aminotransferase(AST),alkaline phosphatase(ALP) and alanine aminotransferase(ALT) concentrations.Results:Administration of alcohol caused a drastic increase(87.74%) in MDA level compared with the control.Pineapple peel extract significantly reduced the MDA level by 60.16%at 2.S mL/kg bw.Rats fed alcohol only had the highest catalase activity,treatment with pineapple peel extract at 2.5 mL/kg bw however, reduced the activity.Increased AST,ALP and ALT activities were observed in rats fed alcohol only respectively,treatment with pineapple peel extract drastically reduced their activities. Conclusions:The positive modulation of lipid peroxidation,catalase activities as well as hepatic biomarker levels of blood plasma by the methanolic extract of pineapple peels under alcoholinduced oxidative stress is an indication of its protective ability in the management of alcoholinduced toxicity.
文摘Aim: To examine the effects of melatonin treatment on lipid peroxidation (LPO) and the activities of antioxidant enzymes in the testicular tissue of streptozotocin (STZ)-induced diabetic rats. Methods: Twenty-six male rats were randomly divided into three groups as follows: group Ⅰ, control, non-diabetic rats (n = 9); group Ⅱ, STZ-induced, untreated diabetic rats (n = 8); group Ⅲ, STZ-induced, melatonin-treated (dose of 10 mg/kg·day) diabetic rats (n = 9). Following 8-week melatonin treatment, all rats were anaesthetized and then were killed to remove testes from the scrotum. Results: As compared to group Ⅰ, in rat testicular tissues of grouap Ⅱ, increased levels of malondialdehyde (MDA) (P 〈 0.01) and superoxide dismutase (SOD) (P 〈 0.01) as well as, decreased levels of catalase (CAT) (P 〈 0.01) and glutathione peroxidase (GSH-Px) (P 〉 0.05) were found. In contrast, as compared to group Ⅱ, in rat testicular tissues of group Ⅲ, levels of MDA decreased (but this decrease was not significant, P 〉 0.05) and SOD (P 〈 0.01) as well as CAT (P 〈 0.05) increased. GSH-Px was not influenced by any of the treatment. Melatonin did not significantly affect the elevated glucose concentration of diabetic group. At the end of the study, there was no significant difference between the melatonin-treated group and the untreated group by means of body and testicular weight. Conclusion: Diabetes mellitus increases oxidative stress and melatonin inhibits lipid peroxidation and might regulate the activities of antioxidant enzymes of diabetic rat testes.