Background:Polydatin,a glucoside of resveratrol,has shown protective effects against various diseases.However,little is known about its effect on hepatic ischemia-reperfusion(I/R)injury.This study aimed to elucidate w...Background:Polydatin,a glucoside of resveratrol,has shown protective effects against various diseases.However,little is known about its effect on hepatic ischemia-reperfusion(I/R)injury.This study aimed to elucidate whether polydatin protects liver against I/R-induced injury and to explore the underlying mechanism.Methods:After gavage feeding polydatin once daily for a week,mice underwent a partial hepatic I/R procedure.Serum alanine aminotransferase(ALT)/aspartate aminotransferase(AST),hematoxylin-eosin(H&E)and TdT-mediated dUTP nick-end labeling(TUNEL)staining were used to evaluate liver injury.The severity related to the inflammatory response and reactive oxygen species(ROS)production was also investigated.Furthermore,immunofluorescence and Western blotting were used to detect macrophage polarization and the NF-κB signaling pathway in macrophages.Results:Compared with the I/R group,polydatin pretreatment significantly attenuated I/R-induced liver damage and apoptosis.The oxidative stress marker(dihydroethidium fluorescence,malondialdehyde,superoxide dismutase and glutathione peroxidase)and I/R related inflammatory cytokines(interleukin1β,interleukin-10 and tumor necrosis factor-α)were significantly suppressed after polydatin treatment.In addition,the result of immunofluorescence indicated that polydatin reduced the polarization of macrophages toward M1 macrophages both in vivo and in vitro.Western blotting showed that polydatin inhibited the pro-inflammatory function of RAW264.7 via down-regulating the NF-κB signaling pathway.Conclusions:Polydatin protects the liver from I/R injury by remodeling macrophage polarization via NFκB signaling.展开更多
Background:Hepatic ischemia-reperfusion injury(HIRI)is a common complication of liver surgeries,such as hepatectomy and liver transplantation.In recent years,several non-coding RNAs(nc RNAs)including long non-coding R...Background:Hepatic ischemia-reperfusion injury(HIRI)is a common complication of liver surgeries,such as hepatectomy and liver transplantation.In recent years,several non-coding RNAs(nc RNAs)including long non-coding RNAs(lnc RNAs)and micro RNAs(mi RNAs)have been identified as factors involved in the pathological progression of HIRI.In this review,we summarized the latest research on lnc RNAs,mi RNAs and the lnc RNA-mi RNA regulatory networks in HIRI.Data sources:The Pub Med and Web of Science databases were searched for articles published up to December 2021 using the following keywords:“hepatic ischemia-reperfusion injury”,“lnc RNA”,“long noncoding RNA”,“mi RNA”and“micro RNA”.The bibliography of the selected articles was manually screened to identify additional studies.Results:The mechanism of HIRI is complex,and involves multiple lnc RNAs and mi RNAs.The roles of lnc RNAs such as AK139328,CCAT1,MALAT1,TUG1 and NEAT1 have been established in HIRI.In addition,numerous mi RNAs are associated with apoptosis,autophagy,oxidative stress and cellular inflammation that accompany HIRI pathogenesis.Based on the literature,we conclude that four lnc RNA-mi RNA regulatory networks mediate the pathological progression of HIRI.Furthermore,the expression levels of some lnc RNAs and mi RNAs undergo significant changes during the progression of HIRI,and thus are potential prognostic markers and therapeutic targets.Conclusions:Complex lnc RNA-mi RNA-m RNA networks regulate HIRI progression through mutual activation and antagonism.It is necessary to screen for more HIRI-associated lnc RNAs and mi RNAs in order to identify novel therapeutic targets.展开更多
Hepatic ischemia-reperfusion injury(HIRI)is the major complication of liver surgery and liver transplantation,that may increase the postoperative morbidity,mortality,tumor progression,and metastasis.The underlying mec...Hepatic ischemia-reperfusion injury(HIRI)is the major complication of liver surgery and liver transplantation,that may increase the postoperative morbidity,mortality,tumor progression,and metastasis.The underlying mechanisms have been extensively investigated in recent years.Among these,oxidative stress,inflammatory responses,immunoreactions,and cell death are the most studied.Non-coding RNAs(ncRNAs)are defined as the RNAs that do not encode proteins,but can regulate gene expressions.In recent years,ncRNAs have emerged as research hotspots for various diseases.During the progression of HIRI,ncRNAs are differentially expressed,while these dysregulations of ncRNAs,in turn,have been verified to be related to the above pathological processes involved in HIRI.ncRNAs mainly contain microRNAs,long ncRNAs,and circular RNAs,some of which have been reported as biomarkers for early diagnosis or assessment of liver damage severity,and as therapeutic targets to attenuate HIRI.Here,we briefly summarize the common pathophysiology of HIRI,describe the current knowledge of ncRNAs involved in HIRI in animal and human studies,and discuss the potential of ncRNA-targeted therapeutic strategies.Given the scarcity of clinical trials,there is still a long way to go from pre-clinical to clinical application,and further studies are needed to uncover their potential as therapeutic targets.展开更多
Hepatic ischemia-reperfusion syndrome has been the subject of intensive study and experimentation in recent decades since it is responsible for the outcome of several clinical entities,such as major hepatic resections...Hepatic ischemia-reperfusion syndrome has been the subject of intensive study and experimentation in recent decades since it is responsible for the outcome of several clinical entities,such as major hepatic resections and liver transplantation.In addition to the organ’s post reperfusion injury,this syndrome appears to play a central role in the dysfunction of distant tissues and systems.Thus,continuous research should be directed toward finding effective therapeutic options to improve the outcome and reduce the postoperative morbidity and mortality rates.Treprostinil is a synthetic analog of prostaglandin I2,and its experimental administration has shown encouraging results.It has already been approved by the Food and Drug Administration in the United States for pulmonary arterial hypertension and has been used in liver transplantation,where preliminary encouraging results showed its safety and feasibility by using continuous intravenous administration at a dose of 5 ng/kg/min.Treprostinil improves renal and hepatic function,diminishes hepatic oxidative stress and lipid peroxidation,reduces hepatictoll-like receptor 9 and inflammation,inhibits hepatic apoptosis and restores hepatic adenosine triphosphate(ATP)levels and ATP synthases,which is necessary for functional maintenance of mitochondria.Treprostinil exhibits vasodilatory properties and antiplatelet activity and regulates proinflam-matory cytokines;therefore,it can potentially minimize ischemia-reperfusion injury.Additionally,it may have beneficial effects on cardiovascular parameters,and much current research interest is concentrated on this compound.展开更多
Background: Hepatic ischemia-reperfusion(I/R) injury(IRI) represents a crucial challenge in liver transplantation. Fisetin has anti-inflammatory, anti-aging and anti-oxidative properties. This study aimed to examine w...Background: Hepatic ischemia-reperfusion(I/R) injury(IRI) represents a crucial challenge in liver transplantation. Fisetin has anti-inflammatory, anti-aging and anti-oxidative properties. This study aimed to examine whether fisetin mitigates hepatic IRI and examine its underlying mechanisms. Methods: Sham or warm hepatic I/R operated mice were pretreated with fisetin(5, 10 or 20 mg/kg). Hepatic histological assessments, TUNEL assays and serum aminotransferase measurements were performed. An in vitro hypoxia/reoxygenation(H/R) model using RAW264.7 macrophages pretreated with fisetin(2.5, 5 or 10 μmol/L) was also used. Serum and cell supernatant concentrations of interleukin-1 β(IL-1 β), IL-18 and tumor necrosis factor-α(TNF-α) were determined by enzyme-linked immunosorbent assay(ELISA). Protein levels of p-GSK3 β, p-AMPK and NLR family pyrin domain-containing 3(NLRP3)-associated proteins were detected by Western blotting. Results: Compared with the I/R group, fisetin pretreatment reduced pathological liver damage, serum aminotransferase levels, serum concentrations of IL-1 β, IL-18 and TNF-α in the murine IRI model. Fisetin also reduced the expression of NLRP3 inflammasome-associated proteins(NLRP3, cleaved caspase-1, IL-1 β and IL-18) in I/R-operated liver. The experiments in vitro showed that fisetin decreased the release of IL-1 β, IL-18 and TNF-α, and reduced the expression of NLRP3 inflammasome-associated proteins in H/R-treated RAW264.7 cells. Moreover, fisetin increased the expressions of p-GSK3 β and p-AMPK in both models, indicating that its anti-inflammatory effects were dependent on GSK3 β/AMPK signaling. The antiinflammatory effects of fisetin were partially inhibited by the AMPK specific inhibitor compound C. Conclusions: Fisetin showed protective effects against hepatic IRI, countering inflammatory responses through mediating the GSK3 β/AMPK/NLRP3 inflammasome pathway.展开更多
AIM:To further investigate the important role of store-operated calcium channels (SOCs) in rat hepatocytes and to explore the effects of SOC blockers on hepatic ischemia-reperfusion injury (HIRI).METHODS:Using freshly...AIM:To further investigate the important role of store-operated calcium channels (SOCs) in rat hepatocytes and to explore the effects of SOC blockers on hepatic ischemia-reperfusion injury (HIRI).METHODS:Using freshly isolated hepatocytes from a rat model of HIRI (and controls),we measured cyto-solic free Ca 2+ concentration (by calcium imaging),net Ca 2+ fluxes (by a non-invasive micro-test technique),the SOC current (I SOC ;by whole-cell patch-clamp record-ing),and taurocholate secretion [by high-performance liquid chromatography and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays].RESULTS:Ca 2+ oscillations and net Ca 2+ fluxes medi-ated by Ca 2+ entry via SOCs were observed in rat he-patocytes.I SOC was significantly higher in HIRI groups than in controls (57.0 ± 7.5 pA vs 31.6 ± 2.7 pA,P <0.05) and was inhibited by La 3+.Taurocholate secretion by hepatocytes into culture supernatant was distinctly lower in HIRI hepatocytes than in controls,an effect reversed by SOC blockers.CONCLUSION:SOCs are pivotal in HIRI.SOC blockers protected against HIRI and assisted the recovery of se-cretory function in hepatocytes.Thus,they are likely to become a novel class of effective drugs for prevention or therapy of HIRI patients in the future.展开更多
BACKGROUND Ischemia-reperfusion injury(IRI) is a major risk associated with liver surgery and transplantation,and its pathological mechanism is complex.Interleukin-1 receptor antagonist(IL-1ra) can protect the liver f...BACKGROUND Ischemia-reperfusion injury(IRI) is a major risk associated with liver surgery and transplantation,and its pathological mechanism is complex.Interleukin-1 receptor antagonist(IL-1ra) can protect the liver from IRI.However,the regulatory mechanism of IL-1ra expression is still unclear.AIM To identify the mechanism that could protect the liver in the early stage of IRI.METHODS To screen the key genes in hepatic IRI,we performed RNA sequencing and gene enrichment analysis on liver tissue from mice with hepatic IRI.Subsequently,we verified the expression and effect of IL-1ra in hepatic IRI.We also used promoter mutagenesis and chromatin immunoprecipitation assay to search for the transcriptional regulatory sites of hypoxia-inducible factor(HIF)-1α.Finally,to explore the protective mechanism of ischemic preconditioning(IP),we examined the expression of HIF-1α and IL-1ra after IP.RESULTS We identified IL-1ra as a key regulator in hepatic IRI.The expression of IL-1ra was significantly upregulated after hepatic IRI both in vivo and in vitro.Furthermore,we found that HIF-1αregulated Il-1ra transcription in response to hypoxia.Increased HIF-1α accumulation promoted IL-1ra expression,whereas inhibition of HIF-1α exhibited the opposite effect.We also confirmed a predominant role for hypoxia response element in the regulation of Il1ra transcription by HIF-1αactivation.Of note,we demonstrated that IP protects against hepatic IRI by inducing IL-1ra expression,which is mediated through HIF-1α.CONCLUSION We demonstrated that ischemia or hypoxia leads to increased expression of IL-1ra through HIF-1α.Importantly,IP protects the liver from IRI via the HIF-1α–IL-1ra pathway.展开更多
Hepatic ischemia-reperfusion injury(HIRI)is a major clinical cause of morbidity and mortality in liver surgery and transplantation.Many studies have found that nitric oxide(NO)plays an important role in the HIRI and i...Hepatic ischemia-reperfusion injury(HIRI)is a major clinical cause of morbidity and mortality in liver surgery and transplantation.Many studies have found that nitric oxide(NO)plays an important role in the HIRI and its increase or decrease can affect the progression and outcome of HIRI.However,the role of NO in HIRI is controversial and complicated.NO derived by endothelial NO synthase(eNOS)shows a protective role in HIRI,while excessive NO derived by inducible NO synthase(iNOS)accelerates inflammation and increases oxidative stress,further aggravating HIRI.Nevertheless,the overexpression of eNOS may exacerbate HIRI and iNOS-derived NO in some cases reduces HIRI.Here we review the new progress in the understanding of the roles of NO during HIRI:(1)NO possesses different roles in HIRI by increasing NO bioavailability,down-regulating leukotriene C4 synthase,inhibiting the activation of the nuclear factorκB(NFκB)pathway,enhancing cell autophagy,and reducing inflammatory cytokines and reactive oxygen species(ROS).And NO has both protective and deleterious effects by regulating apoptotic factors;(2)eNOS promotes NO production and suppresses its own overexpression,exerting a hepatoprotective effect reversely.Its activation is regulated by the PI3K/Akt and KLF2/AMPK pathways;and(3)iNOS derived NO mainly has deteriorating effects on HIRI,while it may have a protective function under some conditions.Their expression should reach a balance to reduce the adverse side and make NO protective in the treatment of HIRI.Thus,it can be inferred that NO modulating drugs may be a new direction in the treatment of HIRI or may be used as an adjunct to mitigate HIRI for the purpose of protecting the liver.展开更多
Objective:In order to determine Shenqi Fuzheng injection’s clinical effects and explore the impact on the SOD、MDA and liver function of patients,who underwent Hepatic ischemiareperfusion injury during the surgical o...Objective:In order to determine Shenqi Fuzheng injection’s clinical effects and explore the impact on the SOD、MDA and liver function of patients,who underwent Hepatic ischemiareperfusion injury during the surgical operation.Methods:Forty patients were collected who were treated in Oncology Surgery of Bayi Hospital from January 2019 to August 2019.These patients were divided into control group and therapy group(Shenqi Fuzheng Injection)randomly,with 20 cases in each group.In the control group,one was switched to RF treatment during operation,one was only partially blocked during operation,and the remaining 38 cases completed the study.These remained patients were all operated with Pringle maneuver,then were treated with anti-infection,liver protection,acid suppression,fluid replacement,intravenous nutrition support and other symptomatic treatment after surgery.In addition,for the patients in the therapy group,the treatment of Shenqi Fuzheng injection were added once a day,which lasted 5 days.During the perioperative period,we would record their general conditions,SOD and MDA levels;liver function(ALT、AST、LDH).These data were analyzed statistically by SPSS 21.0 statistical software.Results:There was no statistically significant difference in general indicators related to the perioperative period between the two groups of patients(P>0.05).There was no significant difference in SOD and MDA levels between the two groups(P>0.05).,but at 1d,3d,and 5d after operation,the SOD level in the observation group was significantly higher than that in the control group(both P<0.05)and The MDA level in the observation group was significantly lower than the control group.The differences were statistically significant(all P<0.05).There was no significant difference in ALT and AST levels between the two groups before and after surgery(P>0.05),while the LDH levels in the two groups were not statistically different before surgery,on the first day after surgery,and on the third day after surgery(P>0.05),while there were statistical differences on the fifth day after surgery(P<0.05).Conclusions:For the pathients who received hepatectomy with Pringle maneuver,using Shenqi Fuzheng injection could improve the activity of antioxidant enzymes in the body,reduce the production of lipid peroxides,inhibit the oxidative stress response in the process of HIRI,thus it played a role in protecting the liver and accelerated the recovery.展开更多
Objective:Using network pharmacology to predict the main active ingredients,targets and signaling pathways of Xuebijing injection in the treatment of hepatic ischemia-reperfusion injury and explore its potential mecha...Objective:Using network pharmacology to predict the main active ingredients,targets and signaling pathways of Xuebijing injection in the treatment of hepatic ischemia-reperfusion injury and explore its potential mechanism of action.Methods:Screen the active ingredients and their targets of Danshen,Honghua,Chishao,Chuanxiong,and Danggui in Xuebijing injection through Traditional Chinese Medicine Systems Pharmacology(TCMSP)database and the Hepatic ischemia-reperfusion injury related targets through Online Mendelian Inheritance in Man(OMIM)and GeneCards Suite(The Human Gene Database)database.And acquire drug-disease intersection targets at the same time.The STRING database was used to construct a protein-protein interaction(PPI)network and topologically screen the central targets.Use the R language online search Bioconductor platform to perform GO function enrichment on the target;Database for Annotation,Visualization and Integrated Discovery(DAVID)database was used to perform KEGG channel enrichment analysis on the target.Use Cytoscape 3.7.2 to construct a"ingredient-target-pathway"network diagram and perform a topology analysis.Results:A total of 115 active ingredients were selected from Xuebijing injection,including Quercetin,Luteolin,Kaempferol,Beta-carotene,and Tanshinone IIa,etc.It corresponds to 217 targets.There are 1057 disease-related targets,and 114 drug-disease common targets.PPI topologically screened out 17 target proteins.Topological analysis of the network graph obtained 15 target genes.Thire intersection contains key targets such as JUN,PPARG,PTGS2,AKT1 and MAPK1.A total of 137 related signaling pathways were obtained by GO enrichment analysis.A total of 8 signaling pathways were obtained through KEGG enrichment(P<0.05,FDR<0.05),among which signaling pathways such as Toll-like receptors,T cell receptors,NOD-like receptors,VEGF,and ErbB played an important role in immune regulation,anti-apoptosis,anti-inflammatory,anti-oxidation,and promoting angiogenesis in the treatment.Conclusion:Xuebijing injection can treat hepatic ischemia-reperfusion injury through multiple components,multiple targets and multiple pathways.展开更多
Hepatic ischemia-reperfusion injury(IRI) is a patho-physiological event post liver surgery or transplantation and significantly influences the prognosis of liver func-tion. The mechanisms of IRI remain unclear, and ef...Hepatic ischemia-reperfusion injury(IRI) is a patho-physiological event post liver surgery or transplantation and significantly influences the prognosis of liver func-tion. The mechanisms of IRI remain unclear, and effec-tive methods are lacking for the prevention and therapy of IRI. Several factors/pathways have been implicated in the hepatic IRI process, including anaerobic metabo-lism, mitochondria, oxidative stress, intracellular cal-cium overload, liver Kupffer cells and neutrophils, and cytokines and chemokines. The role of nitric oxide(NO)in protecting against liver IRI has recently been report-ed. NO has been found to attenuate liver IRI through various mechanisms including reducing hepatocellular apoptosis, decreasing oxidative stress and leukocyte adhesion, increasing microcirculatory flow, and enhanc-ing mitochondrial function. The purpose of this review is to provide insights into the mechanisms of liver IRI, indicating the potential protective factors/pathways that may help to improve therapeutic regimens for control-ling hepatic IRI during liver surgery, and the potential therapeutic role of NO in liver IRI.展开更多
Hepatic ischemia-reperfusion injury (IRI) occurs upon restoration of hepatic blood flow after a period of ischemia. Decreased endogenous nitric oxide (NO) production resulting in capillary luminal narrowing is central...Hepatic ischemia-reperfusion injury (IRI) occurs upon restoration of hepatic blood flow after a period of ischemia. Decreased endogenous nitric oxide (NO) production resulting in capillary luminal narrowing is central in the pathogenesis of IRI. Exogenous NO has emerged as a potential therapy for IRI based on its role in decreasing oxidative stress,cytokine release,leukocyte endothelial-adhesion and hepatic apoptosis. This review will highlight the influence of endogenous NO on hepatic IRI,role of inhaled NO in ameliorating IRI,modes of delivery,donor drugs and potential side effects of exogenous NO.展开更多
Hepatic ischemia-reperfusion injury (IRI) limits access to transplantation. Heme oxygenase-1 (HO-1) is a powerful antioxidant enzyme which degrades free heme into biliverdin,free iron and carbon monoxide. HO-1 and its...Hepatic ischemia-reperfusion injury (IRI) limits access to transplantation. Heme oxygenase-1 (HO-1) is a powerful antioxidant enzyme which degrades free heme into biliverdin,free iron and carbon monoxide. HO-1 and its metabolites have the ability to modulate a wide variety of inflammatory disorders including hepatic IRI. Mechanisms of this protective effect include reduction of oxygen free radicals,alteration of macrophage and T cell phenotype. Further work is required to understand the physiological importance of the many actions of HO-1 identified experimentally,and to harness the protective effect of HO-1 for therapeutic potential.展开更多
BACKGROUND: Toll-like receptor 2 and 4 (TLR2/4) may play important roles in ischemia-reperfusion (I/R) injury, and N-acetylcysteine (NAC) can prevent the generation of reactive oxygen species (ROS) induced by I/R inju...BACKGROUND: Toll-like receptor 2 and 4 (TLR2/4) may play important roles in ischemia-reperfusion (I/R) injury, and N-acetylcysteine (NAC) can prevent the generation of reactive oxygen species (ROS) induced by I/R injury. This study aimed to investigate the changes in TLR2/4 gene expression in the liver and lung after I/R injury with or without NAC pretreatment. METHODS: BALB/c mice were used in a model of partial hepatic I/R injury and randomly assigned to a sham-operated control group (SH), a hepatic ischemia/reperfusion group (I/R) or a NAC pretreated, hepatic I/R group (I/R-NAC). The levels of TNF-alpha in the portal vein and plasma alanine aminotransferase (ALT) were measured at 1 and 3 hours after reperfusion. The lung wet-to-dry ratio was measured, and the expression of TLR2/4 mRNA and protein in the liver and lung were assessed with RT-PCR and Western blotting at the same time points. RESULTS: Compared with the I/R group, the expression of TLR2/4 mRNA and protein in the liver and lung in the I/R-NAC group was decreased at the same time point (P<0.05). The levels of portal vein TNF-a and plasma ALT increased continuously in the l/R group at I and 3 hours of reperfusion compared with the SH group; however, they declined significantly in the group pretreated with NAC (P<0.05). The extent of lung edema was relieved in the I/R-NAC group compared with the I/R group (P<0.05). CONCLUSIONS: TLR2/4 was activated in the liver and lung in the process of partial hepatic I/R injury. NAC inhibited the activation of TLR2/4 and the induction of TNF-alpha resulting from I/R injury via modulating the redox state, thus it may mitigate liver and lung injury following partial hepatic I/R in mice.展开更多
Objective To investigate the possible protection provided by oral quercetin pretreatment against hepatic ischemia-reperfusion injury in rats. Methods The quercetin (0.13 mmol/kg) was orally administrated in 50 min p...Objective To investigate the possible protection provided by oral quercetin pretreatment against hepatic ischemia-reperfusion injury in rats. Methods The quercetin (0.13 mmol/kg) was orally administrated in 50 min prior to hepatic ischemia-reperfusion injury. Ascorbic acid was also similarly administered. The hepatic content of quercetin was assayed by high performance liquid chromatography (HPLC). Plasma glutamic pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT) activities and malondialdehyde (MDA) concentration were measured as markers of hepatic ischemia-reperfusion injury. Meanwhile, hepatic content of glutathione (GSH), activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and xanthine oxidase (XO), total antioxidant capacity (TAOC), contents of reactive oxygen species (ROS) and MDA, DNA fragmentation were also determined. Results Hepatic content of quercetin after intragastric administration of quercetin was increased significantly. The increases in plasma GPT展开更多
BACKGROUND: Urinary trypsin inhibitor (UTI) inhibits the inflammatory response and protects against ischemia-reperfusion (I/R) injury. The inflammatory response is mediated by nuclear factor-kappa B (NF-kappa B) and i...BACKGROUND: Urinary trypsin inhibitor (UTI) inhibits the inflammatory response and protects against ischemia-reperfusion (I/R) injury. The inflammatory response is mediated by nuclear factor-kappa B (NF-kappa B) and its related target genes and products such as vascular endothelial cell adhesion molecule and CXC chemokines. We aimed to assess the roles of those mediators in a UTI-treated mouse model of hepatic I/R injury. METHODS: Treatment group 1 (UTI given 5 minutes prior to liver ischemia), treatment group 2 (UTI given 5 minutes after the anhepatic phase) and a control group were investigated. Blood and liver samples were obtained and compared at 1, 3, 6 and 24 hours after reperfusion. RESULTS: Attenuation of pathological hepatocellular damage was greater in the treatment groups than in the control group (P < 0.05). Compared with the control group, the UTI treatment groups showed significantly lower serum alanine aminotransferase and aspartate aminotransferase levels, decreased myeloperoxidase activity, and reduced NF-kappa B activation. Also downregulated was the expression of tumor necrosis factor-alpha, cytokine-induced neutrophil chemoattractant, and macrophage inflammatory protein-2 at the mRNA level. P-selectin protein and intercellular adhesion molecule-1 protein expression were also downregulated. In addition, the treatment group I showed a better protective effect against I/R injury than the treatment group 2. CONCLUSIONS: UTI reduces NF-kappa B activation and downregulates the expression of its related mediators, followed by the inhibition of neutrophil aggregation and infiltration in hepatic I/R injury. The protective role of UTI is more effective in prevention than in treatment.展开更多
BACKGROUND: With the development of hepatic surgery, especially liver transplantation, the pathophysiological processes of hepatic ischemia-reperfusion (I/R) injury have gained special attention. Controlling I/R injur...BACKGROUND: With the development of hepatic surgery, especially liver transplantation, the pathophysiological processes of hepatic ischemia-reperfusion (I/R) injury have gained special attention. Controlling I/R injury has become one of the most important factors for successful liver transplantation. This study aimed to investigate the effects of tumor necrosis factor-alpha (TNF-alpha) in rats with hepatic I/R injury and promote the recognition of I/R injury in the liver. METHODS: Thirty-two Sprague-Dawley rats were randomly divided into 2 groups. Rats in the sham-operated (SO) group served as controls. Rats in the hepatic ischemia-reperfusion (I/R) group underwent reperfusion after 30 minutes of liver ischemia. Rats were sacrificed at 1, 6 and 12 hours. The expression of TNF-alpha mRNA in the liver was measured by RT-PCR. Histological changes in the liver were assessed. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum were measured. RESULTS: The expression of TNF-alpha mRNA in the SO group was decreased compared with that in the I/R group (P<0.05). TNF-a mRNA expression progressively increased in the I/R group. The serum levels of ALT and AST in the I/R group were higher than those in the SO group (P<0.01). The histological changes were in accord with hepatic I/R injury. CONCLUSION: ALT and AST in serum are closely related to hepatic I/R injury and inflammatory reaction. TNF-alpha production in the liver triggers hepatic I/R injury through a cascade.展开更多
BACKGROUND: Ischemia-reperfusion injury occurs when ischemic tissues or organs suffer from further functional and structural damage when their blood supply recovers. This study aimed to contrast the protective effects...BACKGROUND: Ischemia-reperfusion injury occurs when ischemic tissues or organs suffer from further functional and structural damage when their blood supply recovers. This study aimed to contrast the protective effects of ischemic preconditioning and ischemic postconditioning in hepatic ischemia-reperfusion injury in rats. METHODS: Thirty-two healthy male Wistar rats were randomly divided into four groups: sham-operated (SO), ischemia-reperfusion (IR), ischemic preconditioning (I-pre), and ischemic postconditioning (I-post). Blood samples and hepatic tissue were taken from all groups after the experiments. RESULTS: There were significant differences between the IR, I-pre and I-post groups in alanine aminotransferase and aspartate aminotransferase levels, NF-kappa B p65 expression, apoptosis index and superoxide dismutase activity in hepatic tissue. There were no significant differences between the I-pre and I-post groups. CONCLUSIONS: Ischemic postconditioning and ischemic preconditioning reduce hepatic ischemia-reperfusion injury, but in clinical practice the former is a more appropriate choice.展开更多
BACKGROUND: During hepatectomy, a period of ischemia and restoration of the blood supply can result in hepatic ischemia-reperfusion injury (IRI). Current research indicates that erythropoietin (EPO) has a protective e...BACKGROUND: During hepatectomy, a period of ischemia and restoration of the blood supply can result in hepatic ischemia-reperfusion injury (IRI). Current research indicates that erythropoietin (EPO) has a protective effect in animal models of cerebral ischemia, myocardial infarction, and renal IRI. However there is lack of research into the role of EPO in hepatic IRI. This study aimed to explore the role of EPO in hepatic IRI and its possible mechanism of action. METHODS: Thirty male Sprague-Dawley rats were divided into three groups: (1) ten rats in the experimental group were given 1000 IU/kg EPO one day before the operation; (2) ten rats in a control group were given normal saline preoperatively as a placebo; and (3) ten rats served as a sham-operated group. Hepatic IRI was induced by occluding the hepatic arteries of the three cephalad hepatic segments and the portal vein for about 45 minutes, while in the sham-operated group only laparotomy was performed. The levels of ALT and AST were tested 24 hours pre- and post-operation. All rats were sacrificed 24 hours after the operation to assess the pathologic changes in the liver and measure the expression of heme oxygenase-1 (HO-1) through Western blotting and RT-PCR. RESULTS: Hepatic IRI was markedly mitigated in the experimental group as compared with the control group. Moreover, the expression of HO-1 at the level of both transcription and protein increased prominently (P<0.05) in the experimental group. CONCLUSION: These results demonstrate that EPO can up-regulate HO-1 in liver tissues and accordingly decrease hepatic injury through its anti-inflammatory property. (Hepatobiliary Pancreat Dis Int 2009; 8: 294-299)展开更多
OBJECTIVE: To investigate whether hepatocyte apoptosis in hepatic ischemia-reperfusion (I/R) injury is mediated by Fas pathway. METHODS: Fas-mRNA expression detected by in situ hybridization assay, caspase-3 activity ...OBJECTIVE: To investigate whether hepatocyte apoptosis in hepatic ischemia-reperfusion (I/R) injury is mediated by Fas pathway. METHODS: Fas-mRNA expression detected by in situ hybridization assay, caspase-3 activity measured by fluorescence spectrophotometer, and hepatocyte apoptosis detected by TUNEL assay were compared in different L/R conditions between cirrhotic and normal rats. The relationship was analyzed between hepatocyte apoptosis, Fas-mRNA expression, and caspase-3 activity. RESULTS: In cirrhotic rats, Fas-mRNA expression and caspase-3 activity were significantly increased when the ischemic time prolonged, and subsequently, hepatocyte apoptosis was increased (P<0.O1). Under the same I/R condition, the Fas-mRNA expression, caspase-3 activity and hepatocyte apoptosis in cirrhotic liver were significantly higher than those in normal liver (P<0.O1). CONCLUSIONS: Hepatocyte apoptosis in hepatic I/R injury might be mediated by Fas pathway. The possible underlying mechanism that cirrhotic liver is more sensitive to ischemic injury than normal liver is alteration of Fas expression level.展开更多
基金This study was supported by grants from the National Natural Science Foundation of China(No.81970563)the Medical Health Science and Technology Project of Health Commission of Zhejiang Province(2019RC055).
文摘Background:Polydatin,a glucoside of resveratrol,has shown protective effects against various diseases.However,little is known about its effect on hepatic ischemia-reperfusion(I/R)injury.This study aimed to elucidate whether polydatin protects liver against I/R-induced injury and to explore the underlying mechanism.Methods:After gavage feeding polydatin once daily for a week,mice underwent a partial hepatic I/R procedure.Serum alanine aminotransferase(ALT)/aspartate aminotransferase(AST),hematoxylin-eosin(H&E)and TdT-mediated dUTP nick-end labeling(TUNEL)staining were used to evaluate liver injury.The severity related to the inflammatory response and reactive oxygen species(ROS)production was also investigated.Furthermore,immunofluorescence and Western blotting were used to detect macrophage polarization and the NF-κB signaling pathway in macrophages.Results:Compared with the I/R group,polydatin pretreatment significantly attenuated I/R-induced liver damage and apoptosis.The oxidative stress marker(dihydroethidium fluorescence,malondialdehyde,superoxide dismutase and glutathione peroxidase)and I/R related inflammatory cytokines(interleukin1β,interleukin-10 and tumor necrosis factor-α)were significantly suppressed after polydatin treatment.In addition,the result of immunofluorescence indicated that polydatin reduced the polarization of macrophages toward M1 macrophages both in vivo and in vitro.Western blotting showed that polydatin inhibited the pro-inflammatory function of RAW264.7 via down-regulating the NF-κB signaling pathway.Conclusions:Polydatin protects the liver from I/R injury by remodeling macrophage polarization via NFκB signaling.
基金supported by grants from the National Natural Sciences Foundation of China(81974442)Guangzhou Health Science and technology project(20202A011010)。
文摘Background:Hepatic ischemia-reperfusion injury(HIRI)is a common complication of liver surgeries,such as hepatectomy and liver transplantation.In recent years,several non-coding RNAs(nc RNAs)including long non-coding RNAs(lnc RNAs)and micro RNAs(mi RNAs)have been identified as factors involved in the pathological progression of HIRI.In this review,we summarized the latest research on lnc RNAs,mi RNAs and the lnc RNA-mi RNA regulatory networks in HIRI.Data sources:The Pub Med and Web of Science databases were searched for articles published up to December 2021 using the following keywords:“hepatic ischemia-reperfusion injury”,“lnc RNA”,“long noncoding RNA”,“mi RNA”and“micro RNA”.The bibliography of the selected articles was manually screened to identify additional studies.Results:The mechanism of HIRI is complex,and involves multiple lnc RNAs and mi RNAs.The roles of lnc RNAs such as AK139328,CCAT1,MALAT1,TUG1 and NEAT1 have been established in HIRI.In addition,numerous mi RNAs are associated with apoptosis,autophagy,oxidative stress and cellular inflammation that accompany HIRI pathogenesis.Based on the literature,we conclude that four lnc RNA-mi RNA regulatory networks mediate the pathological progression of HIRI.Furthermore,the expression levels of some lnc RNAs and mi RNAs undergo significant changes during the progression of HIRI,and thus are potential prognostic markers and therapeutic targets.Conclusions:Complex lnc RNA-mi RNA-m RNA networks regulate HIRI progression through mutual activation and antagonism.It is necessary to screen for more HIRI-associated lnc RNAs and mi RNAs in order to identify novel therapeutic targets.
基金the National Natural Science Foundation of China,No.82070648the Science and Technology Innovation Program of Hunan Province,No.2021SK4014.
文摘Hepatic ischemia-reperfusion injury(HIRI)is the major complication of liver surgery and liver transplantation,that may increase the postoperative morbidity,mortality,tumor progression,and metastasis.The underlying mechanisms have been extensively investigated in recent years.Among these,oxidative stress,inflammatory responses,immunoreactions,and cell death are the most studied.Non-coding RNAs(ncRNAs)are defined as the RNAs that do not encode proteins,but can regulate gene expressions.In recent years,ncRNAs have emerged as research hotspots for various diseases.During the progression of HIRI,ncRNAs are differentially expressed,while these dysregulations of ncRNAs,in turn,have been verified to be related to the above pathological processes involved in HIRI.ncRNAs mainly contain microRNAs,long ncRNAs,and circular RNAs,some of which have been reported as biomarkers for early diagnosis or assessment of liver damage severity,and as therapeutic targets to attenuate HIRI.Here,we briefly summarize the common pathophysiology of HIRI,describe the current knowledge of ncRNAs involved in HIRI in animal and human studies,and discuss the potential of ncRNA-targeted therapeutic strategies.Given the scarcity of clinical trials,there is still a long way to go from pre-clinical to clinical application,and further studies are needed to uncover their potential as therapeutic targets.
文摘Hepatic ischemia-reperfusion syndrome has been the subject of intensive study and experimentation in recent decades since it is responsible for the outcome of several clinical entities,such as major hepatic resections and liver transplantation.In addition to the organ’s post reperfusion injury,this syndrome appears to play a central role in the dysfunction of distant tissues and systems.Thus,continuous research should be directed toward finding effective therapeutic options to improve the outcome and reduce the postoperative morbidity and mortality rates.Treprostinil is a synthetic analog of prostaglandin I2,and its experimental administration has shown encouraging results.It has already been approved by the Food and Drug Administration in the United States for pulmonary arterial hypertension and has been used in liver transplantation,where preliminary encouraging results showed its safety and feasibility by using continuous intravenous administration at a dose of 5 ng/kg/min.Treprostinil improves renal and hepatic function,diminishes hepatic oxidative stress and lipid peroxidation,reduces hepatictoll-like receptor 9 and inflammation,inhibits hepatic apoptosis and restores hepatic adenosine triphosphate(ATP)levels and ATP synthases,which is necessary for functional maintenance of mitochondria.Treprostinil exhibits vasodilatory properties and antiplatelet activity and regulates proinflam-matory cytokines;therefore,it can potentially minimize ischemia-reperfusion injury.Additionally,it may have beneficial effects on cardiovascular parameters,and much current research interest is concentrated on this compound.
基金This study was supported by grants from the National Natural Science Foundation of China(81672959,81873592 and 81703063)the Science and Technology Commission Foundation of Chongqing,China(cstc2019jscx-gksb X0005)+1 种基金the Natural Science Foundation of Chongqing,China(cstc2018jscx-msyb X0133)the graduate tu-tor team construction project of Chongqing Municipal Education Commission Foundation,China(dstd201801).
文摘Background: Hepatic ischemia-reperfusion(I/R) injury(IRI) represents a crucial challenge in liver transplantation. Fisetin has anti-inflammatory, anti-aging and anti-oxidative properties. This study aimed to examine whether fisetin mitigates hepatic IRI and examine its underlying mechanisms. Methods: Sham or warm hepatic I/R operated mice were pretreated with fisetin(5, 10 or 20 mg/kg). Hepatic histological assessments, TUNEL assays and serum aminotransferase measurements were performed. An in vitro hypoxia/reoxygenation(H/R) model using RAW264.7 macrophages pretreated with fisetin(2.5, 5 or 10 μmol/L) was also used. Serum and cell supernatant concentrations of interleukin-1 β(IL-1 β), IL-18 and tumor necrosis factor-α(TNF-α) were determined by enzyme-linked immunosorbent assay(ELISA). Protein levels of p-GSK3 β, p-AMPK and NLR family pyrin domain-containing 3(NLRP3)-associated proteins were detected by Western blotting. Results: Compared with the I/R group, fisetin pretreatment reduced pathological liver damage, serum aminotransferase levels, serum concentrations of IL-1 β, IL-18 and TNF-α in the murine IRI model. Fisetin also reduced the expression of NLRP3 inflammasome-associated proteins(NLRP3, cleaved caspase-1, IL-1 β and IL-18) in I/R-operated liver. The experiments in vitro showed that fisetin decreased the release of IL-1 β, IL-18 and TNF-α, and reduced the expression of NLRP3 inflammasome-associated proteins in H/R-treated RAW264.7 cells. Moreover, fisetin increased the expressions of p-GSK3 β and p-AMPK in both models, indicating that its anti-inflammatory effects were dependent on GSK3 β/AMPK signaling. The antiinflammatory effects of fisetin were partially inhibited by the AMPK specific inhibitor compound C. Conclusions: Fisetin showed protective effects against hepatic IRI, countering inflammatory responses through mediating the GSK3 β/AMPK/NLRP3 inflammasome pathway.
基金Supported by The National Natural Science Foundation ofChina,No.30670744and81071996Tsinghua-Yue-Yuen Medical Science Foundation,No.20240000531and20240000547
文摘AIM:To further investigate the important role of store-operated calcium channels (SOCs) in rat hepatocytes and to explore the effects of SOC blockers on hepatic ischemia-reperfusion injury (HIRI).METHODS:Using freshly isolated hepatocytes from a rat model of HIRI (and controls),we measured cyto-solic free Ca 2+ concentration (by calcium imaging),net Ca 2+ fluxes (by a non-invasive micro-test technique),the SOC current (I SOC ;by whole-cell patch-clamp record-ing),and taurocholate secretion [by high-performance liquid chromatography and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays].RESULTS:Ca 2+ oscillations and net Ca 2+ fluxes medi-ated by Ca 2+ entry via SOCs were observed in rat he-patocytes.I SOC was significantly higher in HIRI groups than in controls (57.0 ± 7.5 pA vs 31.6 ± 2.7 pA,P <0.05) and was inhibited by La 3+.Taurocholate secretion by hepatocytes into culture supernatant was distinctly lower in HIRI hepatocytes than in controls,an effect reversed by SOC blockers.CONCLUSION:SOCs are pivotal in HIRI.SOC blockers protected against HIRI and assisted the recovery of se-cretory function in hepatocytes.Thus,they are likely to become a novel class of effective drugs for prevention or therapy of HIRI patients in the future.
基金the National Natural Science Foundation of China,No.81670600.
文摘BACKGROUND Ischemia-reperfusion injury(IRI) is a major risk associated with liver surgery and transplantation,and its pathological mechanism is complex.Interleukin-1 receptor antagonist(IL-1ra) can protect the liver from IRI.However,the regulatory mechanism of IL-1ra expression is still unclear.AIM To identify the mechanism that could protect the liver in the early stage of IRI.METHODS To screen the key genes in hepatic IRI,we performed RNA sequencing and gene enrichment analysis on liver tissue from mice with hepatic IRI.Subsequently,we verified the expression and effect of IL-1ra in hepatic IRI.We also used promoter mutagenesis and chromatin immunoprecipitation assay to search for the transcriptional regulatory sites of hypoxia-inducible factor(HIF)-1α.Finally,to explore the protective mechanism of ischemic preconditioning(IP),we examined the expression of HIF-1α and IL-1ra after IP.RESULTS We identified IL-1ra as a key regulator in hepatic IRI.The expression of IL-1ra was significantly upregulated after hepatic IRI both in vivo and in vitro.Furthermore,we found that HIF-1αregulated Il-1ra transcription in response to hypoxia.Increased HIF-1α accumulation promoted IL-1ra expression,whereas inhibition of HIF-1α exhibited the opposite effect.We also confirmed a predominant role for hypoxia response element in the regulation of Il1ra transcription by HIF-1αactivation.Of note,we demonstrated that IP protects against hepatic IRI by inducing IL-1ra expression,which is mediated through HIF-1α.CONCLUSION We demonstrated that ischemia or hypoxia leads to increased expression of IL-1ra through HIF-1α.Importantly,IP protects the liver from IRI via the HIF-1α–IL-1ra pathway.
文摘Hepatic ischemia-reperfusion injury(HIRI)is a major clinical cause of morbidity and mortality in liver surgery and transplantation.Many studies have found that nitric oxide(NO)plays an important role in the HIRI and its increase or decrease can affect the progression and outcome of HIRI.However,the role of NO in HIRI is controversial and complicated.NO derived by endothelial NO synthase(eNOS)shows a protective role in HIRI,while excessive NO derived by inducible NO synthase(iNOS)accelerates inflammation and increases oxidative stress,further aggravating HIRI.Nevertheless,the overexpression of eNOS may exacerbate HIRI and iNOS-derived NO in some cases reduces HIRI.Here we review the new progress in the understanding of the roles of NO during HIRI:(1)NO possesses different roles in HIRI by increasing NO bioavailability,down-regulating leukotriene C4 synthase,inhibiting the activation of the nuclear factorκB(NFκB)pathway,enhancing cell autophagy,and reducing inflammatory cytokines and reactive oxygen species(ROS).And NO has both protective and deleterious effects by regulating apoptotic factors;(2)eNOS promotes NO production and suppresses its own overexpression,exerting a hepatoprotective effect reversely.Its activation is regulated by the PI3K/Akt and KLF2/AMPK pathways;and(3)iNOS derived NO mainly has deteriorating effects on HIRI,while it may have a protective function under some conditions.Their expression should reach a balance to reduce the adverse side and make NO protective in the treatment of HIRI.Thus,it can be inferred that NO modulating drugs may be a new direction in the treatment of HIRI or may be used as an adjunct to mitigate HIRI for the purpose of protecting the liver.
基金Medical science and technology innovation project of Nanjing military region(No.14ZX07)。
文摘Objective:In order to determine Shenqi Fuzheng injection’s clinical effects and explore the impact on the SOD、MDA and liver function of patients,who underwent Hepatic ischemiareperfusion injury during the surgical operation.Methods:Forty patients were collected who were treated in Oncology Surgery of Bayi Hospital from January 2019 to August 2019.These patients were divided into control group and therapy group(Shenqi Fuzheng Injection)randomly,with 20 cases in each group.In the control group,one was switched to RF treatment during operation,one was only partially blocked during operation,and the remaining 38 cases completed the study.These remained patients were all operated with Pringle maneuver,then were treated with anti-infection,liver protection,acid suppression,fluid replacement,intravenous nutrition support and other symptomatic treatment after surgery.In addition,for the patients in the therapy group,the treatment of Shenqi Fuzheng injection were added once a day,which lasted 5 days.During the perioperative period,we would record their general conditions,SOD and MDA levels;liver function(ALT、AST、LDH).These data were analyzed statistically by SPSS 21.0 statistical software.Results:There was no statistically significant difference in general indicators related to the perioperative period between the two groups of patients(P>0.05).There was no significant difference in SOD and MDA levels between the two groups(P>0.05).,but at 1d,3d,and 5d after operation,the SOD level in the observation group was significantly higher than that in the control group(both P<0.05)and The MDA level in the observation group was significantly lower than the control group.The differences were statistically significant(all P<0.05).There was no significant difference in ALT and AST levels between the two groups before and after surgery(P>0.05),while the LDH levels in the two groups were not statistically different before surgery,on the first day after surgery,and on the third day after surgery(P>0.05),while there were statistical differences on the fifth day after surgery(P<0.05).Conclusions:For the pathients who received hepatectomy with Pringle maneuver,using Shenqi Fuzheng injection could improve the activity of antioxidant enzymes in the body,reduce the production of lipid peroxides,inhibit the oxidative stress response in the process of HIRI,thus it played a role in protecting the liver and accelerated the recovery.
基金Nanjing military region medical science and technology innovation project(No.14ZX07)。
文摘Objective:Using network pharmacology to predict the main active ingredients,targets and signaling pathways of Xuebijing injection in the treatment of hepatic ischemia-reperfusion injury and explore its potential mechanism of action.Methods:Screen the active ingredients and their targets of Danshen,Honghua,Chishao,Chuanxiong,and Danggui in Xuebijing injection through Traditional Chinese Medicine Systems Pharmacology(TCMSP)database and the Hepatic ischemia-reperfusion injury related targets through Online Mendelian Inheritance in Man(OMIM)and GeneCards Suite(The Human Gene Database)database.And acquire drug-disease intersection targets at the same time.The STRING database was used to construct a protein-protein interaction(PPI)network and topologically screen the central targets.Use the R language online search Bioconductor platform to perform GO function enrichment on the target;Database for Annotation,Visualization and Integrated Discovery(DAVID)database was used to perform KEGG channel enrichment analysis on the target.Use Cytoscape 3.7.2 to construct a"ingredient-target-pathway"network diagram and perform a topology analysis.Results:A total of 115 active ingredients were selected from Xuebijing injection,including Quercetin,Luteolin,Kaempferol,Beta-carotene,and Tanshinone IIa,etc.It corresponds to 217 targets.There are 1057 disease-related targets,and 114 drug-disease common targets.PPI topologically screened out 17 target proteins.Topological analysis of the network graph obtained 15 target genes.Thire intersection contains key targets such as JUN,PPARG,PTGS2,AKT1 and MAPK1.A total of 137 related signaling pathways were obtained by GO enrichment analysis.A total of 8 signaling pathways were obtained through KEGG enrichment(P<0.05,FDR<0.05),among which signaling pathways such as Toll-like receptors,T cell receptors,NOD-like receptors,VEGF,and ErbB played an important role in immune regulation,anti-apoptosis,anti-inflammatory,anti-oxidation,and promoting angiogenesis in the treatment.Conclusion:Xuebijing injection can treat hepatic ischemia-reperfusion injury through multiple components,multiple targets and multiple pathways.
基金Supported by National Natural Science Foundation of China,No.81170416 and No.81273264Doctoral Fund of Ministry of Education of China,No.20100061110069+2 种基金Jilin Province Science and Technology Bureau International Cooperation Fund,No.2011742Techpool Research Fund,No.01201046Jilin Province Nature Science Foundation,No.201015178
文摘Hepatic ischemia-reperfusion injury(IRI) is a patho-physiological event post liver surgery or transplantation and significantly influences the prognosis of liver func-tion. The mechanisms of IRI remain unclear, and effec-tive methods are lacking for the prevention and therapy of IRI. Several factors/pathways have been implicated in the hepatic IRI process, including anaerobic metabo-lism, mitochondria, oxidative stress, intracellular cal-cium overload, liver Kupffer cells and neutrophils, and cytokines and chemokines. The role of nitric oxide(NO)in protecting against liver IRI has recently been report-ed. NO has been found to attenuate liver IRI through various mechanisms including reducing hepatocellular apoptosis, decreasing oxidative stress and leukocyte adhesion, increasing microcirculatory flow, and enhanc-ing mitochondrial function. The purpose of this review is to provide insights into the mechanisms of liver IRI, indicating the potential protective factors/pathways that may help to improve therapeutic regimens for control-ling hepatic IRI during liver surgery, and the potential therapeutic role of NO in liver IRI.
文摘Hepatic ischemia-reperfusion injury (IRI) occurs upon restoration of hepatic blood flow after a period of ischemia. Decreased endogenous nitric oxide (NO) production resulting in capillary luminal narrowing is central in the pathogenesis of IRI. Exogenous NO has emerged as a potential therapy for IRI based on its role in decreasing oxidative stress,cytokine release,leukocyte endothelial-adhesion and hepatic apoptosis. This review will highlight the influence of endogenous NO on hepatic IRI,role of inhaled NO in ameliorating IRI,modes of delivery,donor drugs and potential side effects of exogenous NO.
基金Supported by The Maurice Wohl Fellowship from the Royal College of Surgeons of Edinburgh and a Research Training Fel-lowship from The Wellcome Trust (to Richards JA)Tenovus Scotland and The Peel Medical Research Trust to support his cur-rent work (to Richards JA)A Clinician Scientist Fellowship from the Academy of Medical Sciences and the Health Foundation (to Devey LR)
文摘Hepatic ischemia-reperfusion injury (IRI) limits access to transplantation. Heme oxygenase-1 (HO-1) is a powerful antioxidant enzyme which degrades free heme into biliverdin,free iron and carbon monoxide. HO-1 and its metabolites have the ability to modulate a wide variety of inflammatory disorders including hepatic IRI. Mechanisms of this protective effect include reduction of oxygen free radicals,alteration of macrophage and T cell phenotype. Further work is required to understand the physiological importance of the many actions of HO-1 identified experimentally,and to harness the protective effect of HO-1 for therapeutic potential.
基金This work was supported by a grant from theNational Natural Science Foundation of China(No.30200272).
文摘BACKGROUND: Toll-like receptor 2 and 4 (TLR2/4) may play important roles in ischemia-reperfusion (I/R) injury, and N-acetylcysteine (NAC) can prevent the generation of reactive oxygen species (ROS) induced by I/R injury. This study aimed to investigate the changes in TLR2/4 gene expression in the liver and lung after I/R injury with or without NAC pretreatment. METHODS: BALB/c mice were used in a model of partial hepatic I/R injury and randomly assigned to a sham-operated control group (SH), a hepatic ischemia/reperfusion group (I/R) or a NAC pretreated, hepatic I/R group (I/R-NAC). The levels of TNF-alpha in the portal vein and plasma alanine aminotransferase (ALT) were measured at 1 and 3 hours after reperfusion. The lung wet-to-dry ratio was measured, and the expression of TLR2/4 mRNA and protein in the liver and lung were assessed with RT-PCR and Western blotting at the same time points. RESULTS: Compared with the I/R group, the expression of TLR2/4 mRNA and protein in the liver and lung in the I/R-NAC group was decreased at the same time point (P<0.05). The levels of portal vein TNF-a and plasma ALT increased continuously in the l/R group at I and 3 hours of reperfusion compared with the SH group; however, they declined significantly in the group pretreated with NAC (P<0.05). The extent of lung edema was relieved in the I/R-NAC group compared with the I/R group (P<0.05). CONCLUSIONS: TLR2/4 was activated in the liver and lung in the process of partial hepatic I/R injury. NAC inhibited the activation of TLR2/4 and the induction of TNF-alpha resulting from I/R injury via modulating the redox state, thus it may mitigate liver and lung injury following partial hepatic I/R in mice.
文摘Objective To investigate the possible protection provided by oral quercetin pretreatment against hepatic ischemia-reperfusion injury in rats. Methods The quercetin (0.13 mmol/kg) was orally administrated in 50 min prior to hepatic ischemia-reperfusion injury. Ascorbic acid was also similarly administered. The hepatic content of quercetin was assayed by high performance liquid chromatography (HPLC). Plasma glutamic pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT) activities and malondialdehyde (MDA) concentration were measured as markers of hepatic ischemia-reperfusion injury. Meanwhile, hepatic content of glutathione (GSH), activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and xanthine oxidase (XO), total antioxidant capacity (TAOC), contents of reactive oxygen species (ROS) and MDA, DNA fragmentation were also determined. Results Hepatic content of quercetin after intragastric administration of quercetin was increased significantly. The increases in plasma GPT
文摘BACKGROUND: Urinary trypsin inhibitor (UTI) inhibits the inflammatory response and protects against ischemia-reperfusion (I/R) injury. The inflammatory response is mediated by nuclear factor-kappa B (NF-kappa B) and its related target genes and products such as vascular endothelial cell adhesion molecule and CXC chemokines. We aimed to assess the roles of those mediators in a UTI-treated mouse model of hepatic I/R injury. METHODS: Treatment group 1 (UTI given 5 minutes prior to liver ischemia), treatment group 2 (UTI given 5 minutes after the anhepatic phase) and a control group were investigated. Blood and liver samples were obtained and compared at 1, 3, 6 and 24 hours after reperfusion. RESULTS: Attenuation of pathological hepatocellular damage was greater in the treatment groups than in the control group (P < 0.05). Compared with the control group, the UTI treatment groups showed significantly lower serum alanine aminotransferase and aspartate aminotransferase levels, decreased myeloperoxidase activity, and reduced NF-kappa B activation. Also downregulated was the expression of tumor necrosis factor-alpha, cytokine-induced neutrophil chemoattractant, and macrophage inflammatory protein-2 at the mRNA level. P-selectin protein and intercellular adhesion molecule-1 protein expression were also downregulated. In addition, the treatment group I showed a better protective effect against I/R injury than the treatment group 2. CONCLUSIONS: UTI reduces NF-kappa B activation and downregulates the expression of its related mediators, followed by the inhibition of neutrophil aggregation and infiltration in hepatic I/R injury. The protective role of UTI is more effective in prevention than in treatment.
文摘BACKGROUND: With the development of hepatic surgery, especially liver transplantation, the pathophysiological processes of hepatic ischemia-reperfusion (I/R) injury have gained special attention. Controlling I/R injury has become one of the most important factors for successful liver transplantation. This study aimed to investigate the effects of tumor necrosis factor-alpha (TNF-alpha) in rats with hepatic I/R injury and promote the recognition of I/R injury in the liver. METHODS: Thirty-two Sprague-Dawley rats were randomly divided into 2 groups. Rats in the sham-operated (SO) group served as controls. Rats in the hepatic ischemia-reperfusion (I/R) group underwent reperfusion after 30 minutes of liver ischemia. Rats were sacrificed at 1, 6 and 12 hours. The expression of TNF-alpha mRNA in the liver was measured by RT-PCR. Histological changes in the liver were assessed. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum were measured. RESULTS: The expression of TNF-alpha mRNA in the SO group was decreased compared with that in the I/R group (P<0.05). TNF-a mRNA expression progressively increased in the I/R group. The serum levels of ALT and AST in the I/R group were higher than those in the SO group (P<0.01). The histological changes were in accord with hepatic I/R injury. CONCLUSION: ALT and AST in serum are closely related to hepatic I/R injury and inflammatory reaction. TNF-alpha production in the liver triggers hepatic I/R injury through a cascade.
文摘BACKGROUND: Ischemia-reperfusion injury occurs when ischemic tissues or organs suffer from further functional and structural damage when their blood supply recovers. This study aimed to contrast the protective effects of ischemic preconditioning and ischemic postconditioning in hepatic ischemia-reperfusion injury in rats. METHODS: Thirty-two healthy male Wistar rats were randomly divided into four groups: sham-operated (SO), ischemia-reperfusion (IR), ischemic preconditioning (I-pre), and ischemic postconditioning (I-post). Blood samples and hepatic tissue were taken from all groups after the experiments. RESULTS: There were significant differences between the IR, I-pre and I-post groups in alanine aminotransferase and aspartate aminotransferase levels, NF-kappa B p65 expression, apoptosis index and superoxide dismutase activity in hepatic tissue. There were no significant differences between the I-pre and I-post groups. CONCLUSIONS: Ischemic postconditioning and ischemic preconditioning reduce hepatic ischemia-reperfusion injury, but in clinical practice the former is a more appropriate choice.
文摘BACKGROUND: During hepatectomy, a period of ischemia and restoration of the blood supply can result in hepatic ischemia-reperfusion injury (IRI). Current research indicates that erythropoietin (EPO) has a protective effect in animal models of cerebral ischemia, myocardial infarction, and renal IRI. However there is lack of research into the role of EPO in hepatic IRI. This study aimed to explore the role of EPO in hepatic IRI and its possible mechanism of action. METHODS: Thirty male Sprague-Dawley rats were divided into three groups: (1) ten rats in the experimental group were given 1000 IU/kg EPO one day before the operation; (2) ten rats in a control group were given normal saline preoperatively as a placebo; and (3) ten rats served as a sham-operated group. Hepatic IRI was induced by occluding the hepatic arteries of the three cephalad hepatic segments and the portal vein for about 45 minutes, while in the sham-operated group only laparotomy was performed. The levels of ALT and AST were tested 24 hours pre- and post-operation. All rats were sacrificed 24 hours after the operation to assess the pathologic changes in the liver and measure the expression of heme oxygenase-1 (HO-1) through Western blotting and RT-PCR. RESULTS: Hepatic IRI was markedly mitigated in the experimental group as compared with the control group. Moreover, the expression of HO-1 at the level of both transcription and protein increased prominently (P<0.05) in the experimental group. CONCLUSION: These results demonstrate that EPO can up-regulate HO-1 in liver tissues and accordingly decrease hepatic injury through its anti-inflammatory property. (Hepatobiliary Pancreat Dis Int 2009; 8: 294-299)
文摘OBJECTIVE: To investigate whether hepatocyte apoptosis in hepatic ischemia-reperfusion (I/R) injury is mediated by Fas pathway. METHODS: Fas-mRNA expression detected by in situ hybridization assay, caspase-3 activity measured by fluorescence spectrophotometer, and hepatocyte apoptosis detected by TUNEL assay were compared in different L/R conditions between cirrhotic and normal rats. The relationship was analyzed between hepatocyte apoptosis, Fas-mRNA expression, and caspase-3 activity. RESULTS: In cirrhotic rats, Fas-mRNA expression and caspase-3 activity were significantly increased when the ischemic time prolonged, and subsequently, hepatocyte apoptosis was increased (P<0.O1). Under the same I/R condition, the Fas-mRNA expression, caspase-3 activity and hepatocyte apoptosis in cirrhotic liver were significantly higher than those in normal liver (P<0.O1). CONCLUSIONS: Hepatocyte apoptosis in hepatic I/R injury might be mediated by Fas pathway. The possible underlying mechanism that cirrhotic liver is more sensitive to ischemic injury than normal liver is alteration of Fas expression level.