BACKGROUND: Interleukin-18 (IL-18), a pro-inflamma- tory cytokine that induces interferon-γ (IFN-γ) production in T cells and natural killer cells, plays a critical role in the T-lymphocyte helper type 1 ( Th1) resp...BACKGROUND: Interleukin-18 (IL-18), a pro-inflamma- tory cytokine that induces interferon-γ (IFN-γ) production in T cells and natural killer cells, plays a critical role in the T-lymphocyte helper type 1 ( Th1) response. This study was designed to explore the effect of IL-18 on peripheral blood mononuclear cells ( PBMCs) derived from chronic hepatitis B (CHB) and on hepatitis B virus (HBV) DNA released by HepG2.2.15 cell lines, which were transfected with hepatitis B virus gene in vitro. METHODS: PBMCs isolated from 25 healthy people and 25 patients with CHB were stimulated with HBcAg and IL-18 of various concentrations for 72 hours. The levels of IFN-γ in the supernatants of cultured PBMCs were determined by ELISA. After the stimulation of IL-18 of various concentra- tions, PBMCs derived from one patient were co-cultured for 96 hours with HepG2. 2. 15 cells which had been cul- tured for 24 hours, and then the supernatants were collected by centrifugation and used for HBV DNA quantitative as- say. RESULTS: When PBMCs were stimulated by HBcAg and IL-18 at various concentrations, the levels of IFN-γ in the supernatants of CHB groups were much higher than those in normal control groups, at 0.2 ng/ml: t =11.70, P< 0.01; at 1.0 ng/ml: t =16.19, P<0.01; and at5.0 ng/ml: t =20.12, P <0.01. In the CHB groups, the levels of IFN-γ in the supernatants of PBMCs stimulated by HBcAg alone were lower than both those stimulated by HBcAg and EL-18 at various concentrations and those stimulated by HBcAg and EL-18 (5.0 ng/ml) together with EL-12 (mild: t = 2.20, P<0.05; moderate; t=2.97, P<0.05; severe; t = 0.66, P >0.05). The content of HBV DNA in the superna- tant of co-cultivation of HepG2. 2. 15 cells and PBMCs without stimulated materials was higher than that stimula-ted by HBcAg and EL-18 at various concentrations of HBc- Ag and IL-18 together with IL-12/IFN-α1lb. CONCLUSION: DL-18 can induce IFN-γ secretion and pro- bably play a key role in the modulation of both innate and adaptive immunity. It has implications in improving im- munoregulatory effect and increasing the ability of immune cells to kill cells infected by virus.展开更多
AIM: To observe the inhibition of hepatitis B virus (HBV) replication and expression in HepG2.2.15 cells by combination of small interfering RNAs (siRNAs). METHODS: Recombinant plasmid psiI-HBV was constructed a...AIM: To observe the inhibition of hepatitis B virus (HBV) replication and expression in HepG2.2.15 cells by combination of small interfering RNAs (siRNAs). METHODS: Recombinant plasmid psiI-HBV was constructed and transfected into HepG2.2.15 cells. At 48 h, 72 h and 96 h after transfection, culture media were collected and cells were harvested for HBV replication assay. HBsAg and HBeAg in the cell culture medium were detected by enzyme-linked immunoadsorbent assay (ELISA). Intracellular viral DNA and covalently closed circular DNA (cccDNA) were quantified by real-time polymerase chain reaction (PCR). HBV viral mRNA was reverse transcribed and quantified by reverse-transcript PCR (RT-PCR). RESULTS: siRNAs showed marked anti-HBV effects. siRNAs could specifically inhibit the expression of HBsAg and the replication of HBV DNA in a dosedependent manner. Furthermore, combination of siRNAs, compared with individual use of each siRNA, exerted a stronger inhibition on antigen expression and viral replication. More importantlycombination of siRNAs significantly suppressed HBV cccDNA amplification. CONCLUSION: Combination of siRNAs mediates a stronger inhibition on viral replication and antigenexpression in HepG2.2.15 cells, especially on cccDNA amplification.展开更多
AIM: To explore the anti-hepatitis B virus (HBV) effects of Boehmeria nivea (B. nivea) root extract (BNE) by using the HepG2 2.2.15 cell model system. METHODS: Hepatitis B surface antigen (HBsAg), hepatitis B virus e ...AIM: To explore the anti-hepatitis B virus (HBV) effects of Boehmeria nivea (B. nivea) root extract (BNE) by using the HepG2 2.2.15 cell model system. METHODS: Hepatitis B surface antigen (HBsAg), hepatitis B virus e antigen (HBeAg), and HBV DNA were measured by using ELISA and real-time PCR, respectively. Viral DNA replication and RNA expression were determined by using Southern and Northern blot, respectively. RESULTS: In HepG2 2.2.15 cells, HBeAg (60%, P < 0.01) and particle-associated HBV DNA (> 99%, P < 0.01) secretion into supernatant were significantly inhibited by BNE at a dose of 100 mg/L, whereas the HBsAg was not inhibited. With different doses of BNE, the reduced HBeAg was correlated with the inhibition of HBV DNA. The anti-HBV effect of BNE was not caused by its cytotoxicity to cells or inhibition of viral DNA replication and RNA expression. CONCLUSION: BNE could effectively reduce the HBV production and its anti-HBV machinery might differ from the nucleoside analogues.展开更多
AIM To investigate the characteristics of newly established four hepatocellular carcinoma cell lines (SNU 739, SNU 761, SNU 878 and SNU 886) from Korean hepatocellular cancer patients. METHODS Morphologic and g...AIM To investigate the characteristics of newly established four hepatocellular carcinoma cell lines (SNU 739, SNU 761, SNU 878 and SNU 886) from Korean hepatocellular cancer patients. METHODS Morphologic and genetic studies were done. RESULTS All four lines grew as a monolayer with an adherent pattern, and their doubling times ranged from 20 to 29 hours. The viability rate was relatively high (88%-94%). Neither mycoplasmal nor bacterial contamination was present. The lines showed different patterns in fingerprinting analysis. The hepatitis B virus (HBV) DNA was integrated in the genomes of all four lines, and in all of them HBx, HBc and HBs transcripts were detected by reverse transcriptase PCR methods. Among the three cell lines used as control (Hep 3B, SK Hep1 and Hep G2), only Hep 3B showed HBx expression, and this line was used as a HBV integrated control. The RNA of albumin was detected in three lines (SNU 761, SNU 878 and SNU 886), that of transferrin in two lines (SNU 878, SNU 886), and that of IGF Ⅱ was detected in none of the cell lines. CONCLUSION These well characterized cell lines may be very useful for studying the biology of hepatocellular carcinoma in association with the hepatitis B virus.展开更多
AIM: To observe the inhibition of hepatitis B virus replication and expression by transfecting vector-based small interference RNA (siRNA) pGenesiI-HBV X targeting HBV X gene region into HepG2.2.15 cells. METHODS:...AIM: To observe the inhibition of hepatitis B virus replication and expression by transfecting vector-based small interference RNA (siRNA) pGenesiI-HBV X targeting HBV X gene region into HepG2.2.15 cells. METHODS:pGenesil-HBV X was constructed and transfected into HepG2.2.15 cells via lipofection. HBV antigen secretion was determined 24, 48, and 72 h after transfection by time-resolved immunofluorometric assays (TRFIA). HBV replication was examined by fluorescence quantitative PCR, and the expression of cytoplasmic viral proteins was determined by immunohistochemistry. RESULTS: The secretion of HBsAg and HBeAg into the supernatant was found to be inhibited by 28.5% and 32.2% (P 〈 0.01), and by 38.67% (P 〈 0.05) and 42.86% (P 〈 0.01) at 48 h and 72 h after pGenesil-HBV X transfection, respectively. Immunohistochemical staining for cytoplasmic HBsAg showed a similar decline in HepG2.2.15 cells 48 h after transfection. The number of HBV genomes within culture supernatants was also significantly decreased 48 h and 72 h post-transfection as quantified by fluorescence PCR (P 〈 0.05). CONCLUSION: In HepG2.2.15 cells, HBV replication and expression is inhibited by vector-based siRNA pGenesil- HBV X targeting the HBV X coding region.展开更多
AIM: To investigate the antiviral effect of beta-L- enantiomer of 2;3'-didehydro-2',3″-dideoxyadenosine (13-L-D4A) on 2.2.15 cells transfected with the hepatitis B virus (HBV) genome.METHODS: Lamivudine (3TC...AIM: To investigate the antiviral effect of beta-L- enantiomer of 2;3'-didehydro-2',3″-dideoxyadenosine (13-L-D4A) on 2.2.15 cells transfected with the hepatitis B virus (HBV) genome.METHODS: Lamivudine (3TC) as a positive control. Then, HBV DNA in treated 2.2.15 cells and the Hepatitis B surface antigen (HBsAg) in the culture supernatants were detected to determine the inhibitory effect of β-L- D4A. At the same time, 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) was used to detect the survival ratio of 2.2.15 cells.RESULTS: β-L-D4A has a dose-dependent inhibitory effect on HBV DNA replication; this effect was apparent when the concentration was above 1 mol/L. When β-L- D4A was at the highest concentration, 100 mol/L, the HBsAg inhibition ratio was above 50%. The Therapeutic index (TI) of β-L-D4A was above 2.1.CONCLUSION: β-L-D4A has a dose-dependent inhibitory effect on the replication of HBV DNA and the secretion of HBsAg at low toxicity,展开更多
In this study, the anti-HBV effects of tea polyphenols (TP) were examined. After cells were exposed to TP for 3, 6, 9 days, amounts of HBsAg, HBeAg and HBV-DNA released into the supernatant of the cultured HepG2 2.2...In this study, the anti-HBV effects of tea polyphenols (TP) were examined. After cells were exposed to TP for 3, 6, 9 days, amounts of HBsAg, HBeAg and HBV-DNA released into the supernatant of the cultured HepG2 2.2.15 cells were detected. TP, to some extent, inhibited the secretion of HBsAg and strongly suppressed the secretion of HBeAg in a dose-dependent (P〈0.01) and time-dependent manner, with 50% maximal inhibitory concentration (IC50) value being 7.34μg/mL on the 9th day, but the time-dependence was not significant (P=0.051). Expression of HBV-DNA in the supernatant of the cell culture also was significantly decreased in a dose-dependent fashion (P〈0.01). The ICS0 of TP in inhibiting HBV DNA was 2.54 pg/mL. It concluded that TP possessed potential anti-HBV effects and may be used as a treatment alternative for HBV infection.展开更多
BACKGROUND Previously,we have successfully constructed replication-competent hepatitis B virus(HBV)vectors by uncoupling the P open reading frame(ORF)from the preC/C ORF to carefully design the transgene insertion sit...BACKGROUND Previously,we have successfully constructed replication-competent hepatitis B virus(HBV)vectors by uncoupling the P open reading frame(ORF)from the preC/C ORF to carefully design the transgene insertion site to overcome the compact organization of the HBV genome and maintain HBV replication competence.Consequently,the replication-competent HBV vectors carrying foreign genes,including pCH-BsdR,carrying blasticidin resistance gene(399 bp),and pCH-hrGFP,carrying humanized renilla green fluorescent protein gene(720 bp),were successfully obtained.However,the replication efficiency of the former is higher but it is tedious to use,while that of the latter is poor and cannot be quantified.Hence,we need to search for a new reporter gene that is convenient and quantifiable for further research.AIM To establish a helpful tool for intracellular HBV replication and anti-viral drugs screening studies.METHODS We utilized the replication-competent HBV viral vectors constructed by our laboratory,combined with the secreted luciferase reporter gene,to construct replication-competent HBV vectors expressing the reporter gene secretory Nanoluc Luciferase(SecNluc).HepG2.TA2-7 cells were transfected with this vector to obtain cell lines with stably secreted HBV particles carrying secNluc reporter gene.RESULTS The replication-competent HBV vector carrying the SecNluc reporter gene pCHsNLuc could produce all major viral RNAs and a full set of envelope proteins and achieve high-level secreted luciferase expression.HBV replication intermediates could be produced from this vector.Via transfection with pTRE-sNLuc and selection by hygromycin,we obtained isolated cell clones,named HBV-NLuc-35 cells,which could secrete secNLuc recombinant viruses,and were sensitive to existing anti-HBV drugs.Using differentiated HepaRG cells,it was verified that recombinant HBV possessed infectivity.CONCLUSION Our research demonstrated that a replication-competent HBV vector carrying a secreted luciferase transgene possesses replication and expression ability,and the established HBV replication and expression cell lines could stably secrete viral particles carrying secNluc reporter gene.More importantly,the cell line and the secreted recombinant viral particles could be used to trace HBV replication or infection.展开更多
AIM: To observe the inhibition of hepatitis B virus (HBV) replication and expression by combination of siRNA and lamivudine in HepG2.2.15 cells. METHODS: Recombinant plasmid psil-HBV was constructed and transfected in...AIM: To observe the inhibition of hepatitis B virus (HBV) replication and expression by combination of siRNA and lamivudine in HepG2.2.15 cells. METHODS: Recombinant plasmid psil-HBV was constructed and transfected into HepG2.2.15 cells. The transfected cells were cultured in lamivudine-containing medium (0.05 μmol/L) and harvested at 48, 72 and 96 h. The concentration of HBeAg and HBsAg was determined using ELISA. HBV DNA replication was examined by real- time PCR and the level of HBV mRNA was measured by RT-PCR. RESULTS: In HepG2.2.15 cells treated with combination of siRNA and lamivudine, the secretion of HBeAg and HBsAg into the supernatant was found to be inhibited by 91.80% and 82.40% (2.89 ± 0.48 vs 11.73 ± 0.38, P < 0.05; 4.59 ± 0.57 vs 16.25 ± 0.48, P < 0.05) at 96 h, respectively; the number of HBV DNA copies within culture medium was also significantly decreased at 96 h (1.04 ± 0.26 vs 8.35 ± 0.33, P < 0.05). Moreover, mRNA concentration in HepG2.2.15 cells treated with combination of siRNA and lamivudine was obviously lower compared to those treated either with siRNA or lamivudine (19.44 ± 0.17 vs 33.27 ± 0.21 or 79.9 ± 0.13, P < 0.05). CONCLUSION: Combination of siRNA and lamivudine is more effective in inhibiting HBV replication as compared to the single use of siRNA or lamivudine in HepG2.2.15 cells.展开更多
AIM:To investigate the biological features of hepatitis B virus(HBV)-transfected HepG2.2.15 cells. METHODS:The cell ultrastructure,cell cycle and apoptosis,and the abilities of proliferation and invasion of HBV-transf...AIM:To investigate the biological features of hepatitis B virus(HBV)-transfected HepG2.2.15 cells. METHODS:The cell ultrastructure,cell cycle and apoptosis,and the abilities of proliferation and invasion of HBV-transfected HepG2.2.15 and the parent HepG2 cells were examined by electron microscopy,flow cytometry, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and trans-well assay.Oncogenicity of the two cell lines was compared via subcutaneous injection and orthotopic injection or implantation in nude mice,and the pathological analysis of tumor formation was performed.Two cytoskeletal proteins were detected by Western blotting. RESULTS:Compared with HepG2 cells,HepG2.2.15 cells showed organelle degeneration and filopodia disappearance under electron microscope.HepG2.2.15 cells proliferated and migrated slowly in vitro,and hardly formed tumor and lung metastasis in nude mice.Flow cytometry showed that the majority of HepG2.2.15 cells were arrested in G1 phase,and apoptosis was minor in both cell lines.Furthermore,the levels of cytoskeletal proteins F-actin and Ezrin were decreased in HepG2.2.15 cells. CONCLUSION:HepG2.2.15 cells demonstrated a lower proliferation and invasion ability than the HepG2 cells due to HBV transfection.展开更多
AIM: To investigate the effects of suberoylanilide hydroxamic acid(SAHA) on proliferation and apoptosis of a human hepatocellular carcinoma cell line(HepG2.2.15) and hepatitis B virus(HBV) replication.METHODS: HepG2.2...AIM: To investigate the effects of suberoylanilide hydroxamic acid(SAHA) on proliferation and apoptosis of a human hepatocellular carcinoma cell line(HepG2.2.15) and hepatitis B virus(HBV) replication.METHODS: HepG2.2.15 cells were treated with different concentrations of SAHA.Cell morphology was examined by confocal laser scanning microscopy,and cell proliferation was determined using a MTT colorimetric assay.Flow cytometry was used to detect apoptosis and determine cell cycle phase,while hepatitis B surface antigen and hepatitis B e antigen content were measured using chemiluminescence.Reverse transcription polymerase chain reaction was performed to measure HBV DNA in cell lysate.RESULTS: Cell proliferation rates were significantly reduced by the addition of SAHA.The inhibitory effect of SAHA on cell proliferation was both time-and dosedependent.After 24 h of treatment with SAHA,the early cell apoptotic rate increased from 3.25% to 21.02%(P = 0.041).The proportion of G0 /G1 phase cells increased from 50.3% to 65.3%(P = 0.039),while that of S phase cells decreased from 34.9% to 20.6%(P = 0.049).After 48 h of treatment,hepatitis B surface antigen and hepatitis B e antigen content increased from 12.33 ± 0.62 to 25.42 ± 2.67(P = 0.020) and 28.92 ± 1.24 to 50.48 ± 1.85(P = 0.026),respectively.Furthermore,HBV DNA content increased from 4.54 ± 0.46 to 8.34 ± 0.59(P = 0.029).CONCLUSION: SAHA inhibits HepG2.2.15 cell proliferation,promotes apoptosis,and stimulates HBV replication.In combination with anti-HBV drugs,SAHA may potentially be used cautiously for treatment of hepatocellular carcinoma.展开更多
AIM: To study the effect of oxymatrine-baicalin combination (OB) against HBV replication in 2.2.15 cells and α smooth muscle actin ( α SMA) expression, type I, collagen synthesis in HSC-T6 cells. METHODS: The ...AIM: To study the effect of oxymatrine-baicalin combination (OB) against HBV replication in 2.2.15 cells and α smooth muscle actin ( α SMA) expression, type I, collagen synthesis in HSC-T6 cells. METHODS: The 2.2.15 cells and HSC-T6 cells were cultured and treated respectively. HBsAg and HBeAg in the culture supernatants were detected by ELISA and HBV DNA levels were determined by fluorescence quantitative PCR. Total RNA was extracted from HSC-T6 cells and reverse transcribed into cDNA. The cDNAs were amplified by PCR and the quantities were expressed in proportion to β actin. The total cellular proteins extracted from HSC-T6 cells were separated by electrophoresis. Resolved proteins were electrophoretically transferred to nitrocellulose membrane. Protein bands were revealed and the quantities were corrected by β actin. RESULTS: In the 2.2.15 cell culture system, the inhibitory rate against secretion of HBsAg and HBeAg in the OB group was significantly stronger than that in the oxymatrine group (HBsAg, P = 0.043; HBeAg, P = 0.026; respectively); HBV DNA level in the OB group was significantly lower than that in the oxymatrine group (P = 0.041). In HSC-T6 cells the mRNA and protein expression levels of α SMA in the OB group were significantly lower as compared with those in the oxymatrine group (mRNA, P = 0.013; protein, P = 0.042; respectively); The mRNA and protein expression levels of type I collagen in the OB group were significantly lower as compared with those in the oxymatrine group (mRNA, P 〈 0.01; protein, P 〈 0.01; respectively).CONCLUSION: OB combination has a better effect against HBV replication in 2.2.15 cells and is more effective against α SMA expression and type I collagen synthesis in HSC-T6 cells than oxymatrine in vitro.展开更多
AIM: To investigate the inhibitory effects of hepatitis B virus (HBV) replication and expression by transfecting artificial microRNA (amiRNA) into HepG2.2.15 cells. METHODS: Three amiRNA-HBV plasmids were constructed ...AIM: To investigate the inhibitory effects of hepatitis B virus (HBV) replication and expression by transfecting artificial microRNA (amiRNA) into HepG2.2.15 cells. METHODS: Three amiRNA-HBV plasmids were constructed and transfected into HepG2.2.15 cells. HBV antigen secretion was detected in the cells with transient and stable transfection by time-resolved fluoroimmunoassays (TRFIA). HBV DNA replication was examined by ? uorescence quantitative PCR, and the level of HBV S mRNA was measured by semi- quantitative RT-PCR. RESULTS: The efficiency of transient transfection of the vectors into 2.2.15 cells was 55%-60%. All the vectors had significant inhibition effects on HBsAg and HBeAg at 72 h and 96 h after transfection (P < 0.01 for all). The secretion of HBsAg and HBeAg into the supernatant was inhibited by 49.8% ± 4.7% and 39.9% ± 6.7%, respectively, at 72 h in amiRNA- HBV-S608 plasmid transfection group. The copy of HBV DNA within culture supernatant was also significantly decreased at 72 h and 96 h after transfection (P <0.01 for all). In the cells with stable transfection, the secretion of HBsAg and HBeAg into the supernatant was significantly inhibited in all three transfection groups (P < 0.01 for all, vs negative control). The copies of HBV DNA were inhibited by 33.4% ± 3.0%, 60.8% ± 2.3% and 70.1% ± 3.3%, respectively. CONCLUSION: In HepG2.2.15 cells, HBV replication and expression could be inhibited by artif icial microRNA targeting the HBV S coding region. Vector-based artificial microRNA could be a promising therapeutic approach for chronic HBV infection.展开更多
Hepatitis B virus(HBV)chronically infects more than350 million people worldwide.HBV causes acute and chronic hepatitis,and is one of the major causes of cirrhosis and hepatocellular carcinoma.There exist complex inter...Hepatitis B virus(HBV)chronically infects more than350 million people worldwide.HBV causes acute and chronic hepatitis,and is one of the major causes of cirrhosis and hepatocellular carcinoma.There exist complex interactions between HBV and the immune system including adaptive and innate immunity.Tolllike receptors(TLRs)and TLR-signaling pathways are important parts of the innate immune response in HBV infections.It is well known that TLR-ligands could suppress HBV replication and that TLRs play important roles in anti-viral defense.Previous immunological studies demonstrated that HBV e antigen(HBeAg)is more efficient at eliciting T-cell tolerance,including production of specific cytokines IL-2 and interferon gamma,than HBV core antigen.HBeAg downregulates cytokine production in hepatocytes by the inhibition of MAPK or NF-κB activation through the interaction with receptor-interacting serine/threonine protein kinase.MicroRNAs(miRNAs)are also able to regulate various biological processes such as the innate immune response.When the expressions of approximately 1000 miRNAs were compared between human hepatoma cells HepG2 and HepG2.2.15,which could produce HBV virion that infects chimpanzees,using real-time RT-PCR,we observed several different expression levels in miRNAs related to TLRs.Although we and others have shown that HBV modulates the host immune response,several of the miRNAs seem to be involved in the TLR signaling pathways.The possibility that alteration of these miRNAs during HBV infection might play a critical role in innate immunity against HBV infection should be considered.This article is intended to comprehensively review the association between HBV and innate immunity,and to discuss the role of miRNAs in the innate immune response to HBV infection.展开更多
OBJECTIVE: To use 2.2.15 cell line to determine the effects of mycophenolate acid (MPA) on hepatitisB virus (HBV) replication and viral protein synthesis in vitro.METHODS: The 2.2.15 cells were treated with different ...OBJECTIVE: To use 2.2.15 cell line to determine the effects of mycophenolate acid (MPA) on hepatitisB virus (HBV) replication and viral protein synthesis in vitro.METHODS: The 2.2.15 cells were treated with different concentration of MPA (1-50 μg/ml) for 12days. HBsAg and HBeAg were detected in the supernatant fluid by ELISA and intracellular HBV DNAwas analyzed quantitatively by slot blot hybridization.RESULTS: MPA could suppress the expression of HBsAg and HBeAg, and the higher concentration ofMPA induced lower expression of HBsAg and HBeAg. The suppression rates of MPA for HBsAg andHBeAg at a concentration of 50 μg/ml were 34.2% and 24.1% respectively. The expression of HBVDNA was only 49% as compared with controls when treated with MPA at a concentration of 50 μg/ml.CONCLUSIONS: Mycophenolate acid can suppress the expression of HBsAg and HBeAg as well as thereplication of HBV DNA in the 2.2.15 cell. The suppressive degree is dose-dependent.展开更多
This study investigated the expression profiles of IL-10 gene in three human hepatoma cell lines including Huh7, HepG2, and HepG2 transfected with a plasmid containing hepatitis B virus (HBV) named HepG2.2.15. RT-PC...This study investigated the expression profiles of IL-10 gene in three human hepatoma cell lines including Huh7, HepG2, and HepG2 transfected with a plasmid containing hepatitis B virus (HBV) named HepG2.2.15. RT-PCR analysis demonstrated that IL-10 message RNA was absent in HepG2 and Huh7 cells, whereas it was present in HepG2.2.15 cells, which was consistent with ELISA result. Furthermore, except for lamivudine other antiviral treatments did not significantly decrease the HBV DNA level in HepG2.2.15 cells, while they had different effects on the expression of IL-10 protein, although stimulation by LPS had no significant effect. In addition, except for poly(I:C), the other treatments decreased the expression of IL-10 protein to different degrees, but had no sig-nificant effects on the expression of NF-κB and MyD88. Meanwhile, all treatments we used had effect on the expression of STAT1. In conclusion, IL-10 was expressed in HepG2.2.15 cells and STAT1 pathway might be involved in the regulation of IL-10 expression in HepG2.2.15 cells, but it was not the sole pathway, the exact mechanism warrants further study.展开更多
文摘BACKGROUND: Interleukin-18 (IL-18), a pro-inflamma- tory cytokine that induces interferon-γ (IFN-γ) production in T cells and natural killer cells, plays a critical role in the T-lymphocyte helper type 1 ( Th1) response. This study was designed to explore the effect of IL-18 on peripheral blood mononuclear cells ( PBMCs) derived from chronic hepatitis B (CHB) and on hepatitis B virus (HBV) DNA released by HepG2.2.15 cell lines, which were transfected with hepatitis B virus gene in vitro. METHODS: PBMCs isolated from 25 healthy people and 25 patients with CHB were stimulated with HBcAg and IL-18 of various concentrations for 72 hours. The levels of IFN-γ in the supernatants of cultured PBMCs were determined by ELISA. After the stimulation of IL-18 of various concentra- tions, PBMCs derived from one patient were co-cultured for 96 hours with HepG2. 2. 15 cells which had been cul- tured for 24 hours, and then the supernatants were collected by centrifugation and used for HBV DNA quantitative as- say. RESULTS: When PBMCs were stimulated by HBcAg and IL-18 at various concentrations, the levels of IFN-γ in the supernatants of CHB groups were much higher than those in normal control groups, at 0.2 ng/ml: t =11.70, P< 0.01; at 1.0 ng/ml: t =16.19, P<0.01; and at5.0 ng/ml: t =20.12, P <0.01. In the CHB groups, the levels of IFN-γ in the supernatants of PBMCs stimulated by HBcAg alone were lower than both those stimulated by HBcAg and EL-18 at various concentrations and those stimulated by HBcAg and EL-18 (5.0 ng/ml) together with EL-12 (mild: t = 2.20, P<0.05; moderate; t=2.97, P<0.05; severe; t = 0.66, P >0.05). The content of HBV DNA in the superna- tant of co-cultivation of HepG2. 2. 15 cells and PBMCs without stimulated materials was higher than that stimula-ted by HBcAg and EL-18 at various concentrations of HBc- Ag and IL-18 together with IL-12/IFN-α1lb. CONCLUSION: DL-18 can induce IFN-γ secretion and pro- bably play a key role in the modulation of both innate and adaptive immunity. It has implications in improving im- munoregulatory effect and increasing the ability of immune cells to kill cells infected by virus.
基金The Youth Foundation of Heilongjiang Province,No.QC06C061the Foundation of Education Department,Heilongjiang Province,No.11521089
文摘AIM: To observe the inhibition of hepatitis B virus (HBV) replication and expression in HepG2.2.15 cells by combination of small interfering RNAs (siRNAs). METHODS: Recombinant plasmid psiI-HBV was constructed and transfected into HepG2.2.15 cells. At 48 h, 72 h and 96 h after transfection, culture media were collected and cells were harvested for HBV replication assay. HBsAg and HBeAg in the cell culture medium were detected by enzyme-linked immunoadsorbent assay (ELISA). Intracellular viral DNA and covalently closed circular DNA (cccDNA) were quantified by real-time polymerase chain reaction (PCR). HBV viral mRNA was reverse transcribed and quantified by reverse-transcript PCR (RT-PCR). RESULTS: siRNAs showed marked anti-HBV effects. siRNAs could specifically inhibit the expression of HBsAg and the replication of HBV DNA in a dosedependent manner. Furthermore, combination of siRNAs, compared with individual use of each siRNA, exerted a stronger inhibition on antigen expression and viral replication. More importantlycombination of siRNAs significantly suppressed HBV cccDNA amplification. CONCLUSION: Combination of siRNAs mediates a stronger inhibition on viral replication and antigenexpression in HepG2.2.15 cells, especially on cccDNA amplification.
文摘AIM: To explore the anti-hepatitis B virus (HBV) effects of Boehmeria nivea (B. nivea) root extract (BNE) by using the HepG2 2.2.15 cell model system. METHODS: Hepatitis B surface antigen (HBsAg), hepatitis B virus e antigen (HBeAg), and HBV DNA were measured by using ELISA and real-time PCR, respectively. Viral DNA replication and RNA expression were determined by using Southern and Northern blot, respectively. RESULTS: In HepG2 2.2.15 cells, HBeAg (60%, P < 0.01) and particle-associated HBV DNA (> 99%, P < 0.01) secretion into supernatant were significantly inhibited by BNE at a dose of 100 mg/L, whereas the HBsAg was not inhibited. With different doses of BNE, the reduced HBeAg was correlated with the inhibition of HBV DNA. The anti-HBV effect of BNE was not caused by its cytotoxicity to cells or inhibition of viral DNA replication and RNA expression. CONCLUSION: BNE could effectively reduce the HBV production and its anti-HBV machinery might differ from the nucleoside analogues.
文摘AIM To investigate the characteristics of newly established four hepatocellular carcinoma cell lines (SNU 739, SNU 761, SNU 878 and SNU 886) from Korean hepatocellular cancer patients. METHODS Morphologic and genetic studies were done. RESULTS All four lines grew as a monolayer with an adherent pattern, and their doubling times ranged from 20 to 29 hours. The viability rate was relatively high (88%-94%). Neither mycoplasmal nor bacterial contamination was present. The lines showed different patterns in fingerprinting analysis. The hepatitis B virus (HBV) DNA was integrated in the genomes of all four lines, and in all of them HBx, HBc and HBs transcripts were detected by reverse transcriptase PCR methods. Among the three cell lines used as control (Hep 3B, SK Hep1 and Hep G2), only Hep 3B showed HBx expression, and this line was used as a HBV integrated control. The RNA of albumin was detected in three lines (SNU 761, SNU 878 and SNU 886), that of transferrin in two lines (SNU 878, SNU 886), and that of IGF Ⅱ was detected in none of the cell lines. CONCLUSION These well characterized cell lines may be very useful for studying the biology of hepatocellular carcinoma in association with the hepatitis B virus.
基金Supported by Natural Science Foundation of Shanxi Province, China, No.20051114
文摘AIM: To observe the inhibition of hepatitis B virus replication and expression by transfecting vector-based small interference RNA (siRNA) pGenesiI-HBV X targeting HBV X gene region into HepG2.2.15 cells. METHODS:pGenesil-HBV X was constructed and transfected into HepG2.2.15 cells via lipofection. HBV antigen secretion was determined 24, 48, and 72 h after transfection by time-resolved immunofluorometric assays (TRFIA). HBV replication was examined by fluorescence quantitative PCR, and the expression of cytoplasmic viral proteins was determined by immunohistochemistry. RESULTS: The secretion of HBsAg and HBeAg into the supernatant was found to be inhibited by 28.5% and 32.2% (P 〈 0.01), and by 38.67% (P 〈 0.05) and 42.86% (P 〈 0.01) at 48 h and 72 h after pGenesil-HBV X transfection, respectively. Immunohistochemical staining for cytoplasmic HBsAg showed a similar decline in HepG2.2.15 cells 48 h after transfection. The number of HBV genomes within culture supernatants was also significantly decreased 48 h and 72 h post-transfection as quantified by fluorescence PCR (P 〈 0.05). CONCLUSION: In HepG2.2.15 cells, HBV replication and expression is inhibited by vector-based siRNA pGenesil- HBV X targeting the HBV X coding region.
基金Grants from the National Natural Science Foundation of China, Key Program, No. 30330680
文摘AIM: To investigate the antiviral effect of beta-L- enantiomer of 2;3'-didehydro-2',3″-dideoxyadenosine (13-L-D4A) on 2.2.15 cells transfected with the hepatitis B virus (HBV) genome.METHODS: Lamivudine (3TC) as a positive control. Then, HBV DNA in treated 2.2.15 cells and the Hepatitis B surface antigen (HBsAg) in the culture supernatants were detected to determine the inhibitory effect of β-L- D4A. At the same time, 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) was used to detect the survival ratio of 2.2.15 cells.RESULTS: β-L-D4A has a dose-dependent inhibitory effect on HBV DNA replication; this effect was apparent when the concentration was above 1 mol/L. When β-L- D4A was at the highest concentration, 100 mol/L, the HBsAg inhibition ratio was above 50%. The Therapeutic index (TI) of β-L-D4A was above 2.1.CONCLUSION: β-L-D4A has a dose-dependent inhibitory effect on the replication of HBV DNA and the secretion of HBsAg at low toxicity,
基金supported by a grant from the R&D Department of Hubei Province (No.2007B07)
文摘In this study, the anti-HBV effects of tea polyphenols (TP) were examined. After cells were exposed to TP for 3, 6, 9 days, amounts of HBsAg, HBeAg and HBV-DNA released into the supernatant of the cultured HepG2 2.2.15 cells were detected. TP, to some extent, inhibited the secretion of HBsAg and strongly suppressed the secretion of HBeAg in a dose-dependent (P〈0.01) and time-dependent manner, with 50% maximal inhibitory concentration (IC50) value being 7.34μg/mL on the 9th day, but the time-dependence was not significant (P=0.051). Expression of HBV-DNA in the supernatant of the cell culture also was significantly decreased in a dose-dependent fashion (P〈0.01). The ICS0 of TP in inhibiting HBV DNA was 2.54 pg/mL. It concluded that TP possessed potential anti-HBV effects and may be used as a treatment alternative for HBV infection.
基金Supported by the National Natural Science Foundation of China,No.81672041the National Major Science and Technology Special Project for Infectious Diseases of China,No.2012ZX10004503-012
文摘BACKGROUND Previously,we have successfully constructed replication-competent hepatitis B virus(HBV)vectors by uncoupling the P open reading frame(ORF)from the preC/C ORF to carefully design the transgene insertion site to overcome the compact organization of the HBV genome and maintain HBV replication competence.Consequently,the replication-competent HBV vectors carrying foreign genes,including pCH-BsdR,carrying blasticidin resistance gene(399 bp),and pCH-hrGFP,carrying humanized renilla green fluorescent protein gene(720 bp),were successfully obtained.However,the replication efficiency of the former is higher but it is tedious to use,while that of the latter is poor and cannot be quantified.Hence,we need to search for a new reporter gene that is convenient and quantifiable for further research.AIM To establish a helpful tool for intracellular HBV replication and anti-viral drugs screening studies.METHODS We utilized the replication-competent HBV viral vectors constructed by our laboratory,combined with the secreted luciferase reporter gene,to construct replication-competent HBV vectors expressing the reporter gene secretory Nanoluc Luciferase(SecNluc).HepG2.TA2-7 cells were transfected with this vector to obtain cell lines with stably secreted HBV particles carrying secNluc reporter gene.RESULTS The replication-competent HBV vector carrying the SecNluc reporter gene pCHsNLuc could produce all major viral RNAs and a full set of envelope proteins and achieve high-level secreted luciferase expression.HBV replication intermediates could be produced from this vector.Via transfection with pTRE-sNLuc and selection by hygromycin,we obtained isolated cell clones,named HBV-NLuc-35 cells,which could secrete secNLuc recombinant viruses,and were sensitive to existing anti-HBV drugs.Using differentiated HepaRG cells,it was verified that recombinant HBV possessed infectivity.CONCLUSION Our research demonstrated that a replication-competent HBV vector carrying a secreted luciferase transgene possesses replication and expression ability,and the established HBV replication and expression cell lines could stably secrete viral particles carrying secNluc reporter gene.More importantly,the cell line and the secreted recombinant viral particles could be used to trace HBV replication or infection.
基金Supported by PhD Foundation of Education Ministry, China, No. 2005006Youth Foundation of Heilongjiang Province, No. QC060061Foundation of Health Hall, Heilongjiang Province, No. 2005-009
文摘AIM: To observe the inhibition of hepatitis B virus (HBV) replication and expression by combination of siRNA and lamivudine in HepG2.2.15 cells. METHODS: Recombinant plasmid psil-HBV was constructed and transfected into HepG2.2.15 cells. The transfected cells were cultured in lamivudine-containing medium (0.05 μmol/L) and harvested at 48, 72 and 96 h. The concentration of HBeAg and HBsAg was determined using ELISA. HBV DNA replication was examined by real- time PCR and the level of HBV mRNA was measured by RT-PCR. RESULTS: In HepG2.2.15 cells treated with combination of siRNA and lamivudine, the secretion of HBeAg and HBsAg into the supernatant was found to be inhibited by 91.80% and 82.40% (2.89 ± 0.48 vs 11.73 ± 0.38, P < 0.05; 4.59 ± 0.57 vs 16.25 ± 0.48, P < 0.05) at 96 h, respectively; the number of HBV DNA copies within culture medium was also significantly decreased at 96 h (1.04 ± 0.26 vs 8.35 ± 0.33, P < 0.05). Moreover, mRNA concentration in HepG2.2.15 cells treated with combination of siRNA and lamivudine was obviously lower compared to those treated either with siRNA or lamivudine (19.44 ± 0.17 vs 33.27 ± 0.21 or 79.9 ± 0.13, P < 0.05). CONCLUSION: Combination of siRNA and lamivudine is more effective in inhibiting HBV replication as compared to the single use of siRNA or lamivudine in HepG2.2.15 cells.
基金Supported by Graduate Innovation Foundation of Harbin Medical University No.HCXB2010010Key Technology Project of Heilongjiang Science and Technology Department,No.ZJY04-0102
文摘AIM:To investigate the biological features of hepatitis B virus(HBV)-transfected HepG2.2.15 cells. METHODS:The cell ultrastructure,cell cycle and apoptosis,and the abilities of proliferation and invasion of HBV-transfected HepG2.2.15 and the parent HepG2 cells were examined by electron microscopy,flow cytometry, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and trans-well assay.Oncogenicity of the two cell lines was compared via subcutaneous injection and orthotopic injection or implantation in nude mice,and the pathological analysis of tumor formation was performed.Two cytoskeletal proteins were detected by Western blotting. RESULTS:Compared with HepG2 cells,HepG2.2.15 cells showed organelle degeneration and filopodia disappearance under electron microscope.HepG2.2.15 cells proliferated and migrated slowly in vitro,and hardly formed tumor and lung metastasis in nude mice.Flow cytometry showed that the majority of HepG2.2.15 cells were arrested in G1 phase,and apoptosis was minor in both cell lines.Furthermore,the levels of cytoskeletal proteins F-actin and Ezrin were decreased in HepG2.2.15 cells. CONCLUSION:HepG2.2.15 cells demonstrated a lower proliferation and invasion ability than the HepG2 cells due to HBV transfection.
文摘AIM: To investigate the effects of suberoylanilide hydroxamic acid(SAHA) on proliferation and apoptosis of a human hepatocellular carcinoma cell line(HepG2.2.15) and hepatitis B virus(HBV) replication.METHODS: HepG2.2.15 cells were treated with different concentrations of SAHA.Cell morphology was examined by confocal laser scanning microscopy,and cell proliferation was determined using a MTT colorimetric assay.Flow cytometry was used to detect apoptosis and determine cell cycle phase,while hepatitis B surface antigen and hepatitis B e antigen content were measured using chemiluminescence.Reverse transcription polymerase chain reaction was performed to measure HBV DNA in cell lysate.RESULTS: Cell proliferation rates were significantly reduced by the addition of SAHA.The inhibitory effect of SAHA on cell proliferation was both time-and dosedependent.After 24 h of treatment with SAHA,the early cell apoptotic rate increased from 3.25% to 21.02%(P = 0.041).The proportion of G0 /G1 phase cells increased from 50.3% to 65.3%(P = 0.039),while that of S phase cells decreased from 34.9% to 20.6%(P = 0.049).After 48 h of treatment,hepatitis B surface antigen and hepatitis B e antigen content increased from 12.33 ± 0.62 to 25.42 ± 2.67(P = 0.020) and 28.92 ± 1.24 to 50.48 ± 1.85(P = 0.026),respectively.Furthermore,HBV DNA content increased from 4.54 ± 0.46 to 8.34 ± 0.59(P = 0.029).CONCLUSION: SAHA inhibits HepG2.2.15 cell proliferation,promotes apoptosis,and stimulates HBV replication.In combination with anti-HBV drugs,SAHA may potentially be used cautiously for treatment of hepatocellular carcinoma.
文摘AIM: To study the effect of oxymatrine-baicalin combination (OB) against HBV replication in 2.2.15 cells and α smooth muscle actin ( α SMA) expression, type I, collagen synthesis in HSC-T6 cells. METHODS: The 2.2.15 cells and HSC-T6 cells were cultured and treated respectively. HBsAg and HBeAg in the culture supernatants were detected by ELISA and HBV DNA levels were determined by fluorescence quantitative PCR. Total RNA was extracted from HSC-T6 cells and reverse transcribed into cDNA. The cDNAs were amplified by PCR and the quantities were expressed in proportion to β actin. The total cellular proteins extracted from HSC-T6 cells were separated by electrophoresis. Resolved proteins were electrophoretically transferred to nitrocellulose membrane. Protein bands were revealed and the quantities were corrected by β actin. RESULTS: In the 2.2.15 cell culture system, the inhibitory rate against secretion of HBsAg and HBeAg in the OB group was significantly stronger than that in the oxymatrine group (HBsAg, P = 0.043; HBeAg, P = 0.026; respectively); HBV DNA level in the OB group was significantly lower than that in the oxymatrine group (P = 0.041). In HSC-T6 cells the mRNA and protein expression levels of α SMA in the OB group were significantly lower as compared with those in the oxymatrine group (mRNA, P = 0.013; protein, P = 0.042; respectively); The mRNA and protein expression levels of type I collagen in the OB group were significantly lower as compared with those in the oxymatrine group (mRNA, P 〈 0.01; protein, P 〈 0.01; respectively).CONCLUSION: OB combination has a better effect against HBV replication in 2.2.15 cells and is more effective against α SMA expression and type I collagen synthesis in HSC-T6 cells than oxymatrine in vitro.
基金The National Natural Science Foundation ofChina, No. 30700698
文摘AIM: To investigate the inhibitory effects of hepatitis B virus (HBV) replication and expression by transfecting artificial microRNA (amiRNA) into HepG2.2.15 cells. METHODS: Three amiRNA-HBV plasmids were constructed and transfected into HepG2.2.15 cells. HBV antigen secretion was detected in the cells with transient and stable transfection by time-resolved fluoroimmunoassays (TRFIA). HBV DNA replication was examined by ? uorescence quantitative PCR, and the level of HBV S mRNA was measured by semi- quantitative RT-PCR. RESULTS: The efficiency of transient transfection of the vectors into 2.2.15 cells was 55%-60%. All the vectors had significant inhibition effects on HBsAg and HBeAg at 72 h and 96 h after transfection (P < 0.01 for all). The secretion of HBsAg and HBeAg into the supernatant was inhibited by 49.8% ± 4.7% and 39.9% ± 6.7%, respectively, at 72 h in amiRNA- HBV-S608 plasmid transfection group. The copy of HBV DNA within culture supernatant was also significantly decreased at 72 h and 96 h after transfection (P <0.01 for all). In the cells with stable transfection, the secretion of HBsAg and HBeAg into the supernatant was significantly inhibited in all three transfection groups (P < 0.01 for all, vs negative control). The copies of HBV DNA were inhibited by 33.4% ± 3.0%, 60.8% ± 2.3% and 70.1% ± 3.3%, respectively. CONCLUSION: In HepG2.2.15 cells, HBV replication and expression could be inhibited by artif icial microRNA targeting the HBV S coding region. Vector-based artificial microRNA could be a promising therapeutic approach for chronic HBV infection.
基金Supported by Grants for"Asia-Oceania Collaborative Research Grants"from Kanae Foundation for the Promotion of Medical Science(to Kanda T)Grants for Scientific Research from the Ministry of Education,Culture,Sports,Science,and Technology,Japan(to Kanda T)
文摘Hepatitis B virus(HBV)chronically infects more than350 million people worldwide.HBV causes acute and chronic hepatitis,and is one of the major causes of cirrhosis and hepatocellular carcinoma.There exist complex interactions between HBV and the immune system including adaptive and innate immunity.Tolllike receptors(TLRs)and TLR-signaling pathways are important parts of the innate immune response in HBV infections.It is well known that TLR-ligands could suppress HBV replication and that TLRs play important roles in anti-viral defense.Previous immunological studies demonstrated that HBV e antigen(HBeAg)is more efficient at eliciting T-cell tolerance,including production of specific cytokines IL-2 and interferon gamma,than HBV core antigen.HBeAg downregulates cytokine production in hepatocytes by the inhibition of MAPK or NF-κB activation through the interaction with receptor-interacting serine/threonine protein kinase.MicroRNAs(miRNAs)are also able to regulate various biological processes such as the innate immune response.When the expressions of approximately 1000 miRNAs were compared between human hepatoma cells HepG2 and HepG2.2.15,which could produce HBV virion that infects chimpanzees,using real-time RT-PCR,we observed several different expression levels in miRNAs related to TLRs.Although we and others have shown that HBV modulates the host immune response,several of the miRNAs seem to be involved in the TLR signaling pathways.The possibility that alteration of these miRNAs during HBV infection might play a critical role in innate immunity against HBV infection should be considered.This article is intended to comprehensively review the association between HBV and innate immunity,and to discuss the role of miRNAs in the innate immune response to HBV infection.
文摘OBJECTIVE: To use 2.2.15 cell line to determine the effects of mycophenolate acid (MPA) on hepatitisB virus (HBV) replication and viral protein synthesis in vitro.METHODS: The 2.2.15 cells were treated with different concentration of MPA (1-50 μg/ml) for 12days. HBsAg and HBeAg were detected in the supernatant fluid by ELISA and intracellular HBV DNAwas analyzed quantitatively by slot blot hybridization.RESULTS: MPA could suppress the expression of HBsAg and HBeAg, and the higher concentration ofMPA induced lower expression of HBsAg and HBeAg. The suppression rates of MPA for HBsAg andHBeAg at a concentration of 50 μg/ml were 34.2% and 24.1% respectively. The expression of HBVDNA was only 49% as compared with controls when treated with MPA at a concentration of 50 μg/ml.CONCLUSIONS: Mycophenolate acid can suppress the expression of HBsAg and HBeAg as well as thereplication of HBV DNA in the 2.2.15 cell. The suppressive degree is dose-dependent.
基金supported by grants from the National Major Science and Technology Special Project for Infectious Diseases of China (No. 2008ZX10002-011)
文摘This study investigated the expression profiles of IL-10 gene in three human hepatoma cell lines including Huh7, HepG2, and HepG2 transfected with a plasmid containing hepatitis B virus (HBV) named HepG2.2.15. RT-PCR analysis demonstrated that IL-10 message RNA was absent in HepG2 and Huh7 cells, whereas it was present in HepG2.2.15 cells, which was consistent with ELISA result. Furthermore, except for lamivudine other antiviral treatments did not significantly decrease the HBV DNA level in HepG2.2.15 cells, while they had different effects on the expression of IL-10 protein, although stimulation by LPS had no significant effect. In addition, except for poly(I:C), the other treatments decreased the expression of IL-10 protein to different degrees, but had no sig-nificant effects on the expression of NF-κB and MyD88. Meanwhile, all treatments we used had effect on the expression of STAT1. In conclusion, IL-10 was expressed in HepG2.2.15 cells and STAT1 pathway might be involved in the regulation of IL-10 expression in HepG2.2.15 cells, but it was not the sole pathway, the exact mechanism warrants further study.